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1. Basic Results

An n-tuple of real numbersX = (x1, x2, . . . , xn) is said to be increasingly ordered
if x1 ≤ x2 ≤ · · · ≤ xn. If x1 ≥ x2 ≥ · · · ≥ xn, thenX is decreasingly ordered.

In addition, a setX = (x1, x2, . . . , xn) with x1+x2+···+xn

n
= s is said to bek-

arithmetic ordered ifk of the numbersx1, x2, . . . , xn are smaller than or equal tos,
and the othern− k are greater than or equal tos. On the assumption thatx1 ≤ x2 ≤
· · · ≤ xn, X is k-arithmetic ordered if

x1 ≤ · · · ≤ xk ≤ s ≤ xk+1 ≤ · · · ≤ xn.

It is easily seen that

X1 = (s− x1 + xk+1, s− x2 + xk+2, . . . , s− xn + xk)

is ak-arithmetic ordered set ifX is increasingly ordered, and is an(n−k)-arithmetic
ordered set ifX is decreasingly ordered.

Similarly, an n-tuple of positive real numbersA = (a1, a2, . . . , an) with
n
√

a1a2 · · · an = r is said to bek-geometric ordered ifk of the numbersa1, a2, . . . , an

are smaller than or equal tor, and the othern− k are greater than or equal tor. No-
tice that

A1 =

(
ak+1

a1

,
ak+2

a2

, . . . ,
ak

an

)
is ak-geometric ordered set ifA is increasingly ordered, and is an(n−k)-geometric
ordered set ifA is decreasingly ordered.

Theorem 1.1.Letn ≥ 2 and1 ≤ k ≤ n− 1 be natural numbers, and letf(u) be a
function on a real intervalI, which is convex foru ≥ s, s ∈ I, and satisfies

f(x) + kf(y) ≥ (1 + k)f(s)
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for any x, y ∈ I such thatx ≤ y andx + ky = (1 + k)s. If x1, x2, . . . , xn ∈ I such
that

x1 + x2 + · · ·+ xn

n
= S ≥ s

and at leastn− k of x1, x2, . . . , xn are smaller than or equal toS, then

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(S).

Proof. We will consider two cases:S = s andS > s.

A. CaseS = s. Without loss of generality, assume thatx1 ≤ x2 ≤ · · · ≤ xn. Since
x1 +x2 + · · ·+xn = ns, and at leastn−k of the numbersx1, x2, . . . , xn are smaller
than or equal tos, there exists an integern−k ≤ i ≤ n−1 such that(x1, x2, . . . , xn)
is ani-arithmetic ordered set, i.e.

x1 ≤ · · · ≤ xi ≤ s ≤ xi+1 ≤ · · · ≤ xn.

By Jensen’s inequality for convex functions,

f(xi+1) + f(xi+2) + · · ·+ f(xn) ≥ (n− i)f(z),

where
z =

xi+1 + xi+2 + · · ·+ xn

n− i
, z ≥ s, z ∈ I.

Thus, it suffices to prove that

f(x1) + · · ·+ f(xi) + (n− i)f(z) ≥ nf(s).

Let y1, y2, . . . , yi ∈ I be defined by

x1 + ky1 = (1 + k)s, x2 + ky2 = (1 + k)s, . . . , xi + kyi = (1 + k)s.
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We will show thatz ≥ y1 ≥ y2 ≥ · · · ≥ yi ≥ s. Indeed, we have

y1 ≥ y2 ≥ · · · ≥ yi,

yi − s =
s− xi

k
≥ 0,

and

ky1 = (1 + k)s− x1

= (1 + k − n)s + x2 + · · ·+ xn

≤ (k + i− n)s + xi+1 + · · ·+ xn

= (k + i− n)s + (n− i)z ≤ kz.

Sincez ≥ y1 ≥ y2 ≥ · · · ≥ yi ≥ s impliesy1, y2, . . . , yi ∈ I, by hypothesis we have

f(x1) + kf(y1) ≥ (1 + k)f(s),

f(x2) + kf(y2) ≥ (1 + k)f(s),

. . . . . . . . .

f(xi) + kf(yi) ≥ (1 + k)f(s).

Adding all these inequalities, we get

f(x1) + f(x2) + · · ·+ f(xi) + k[f(y1) + f(y2) + · · ·+ f(yi)] ≥ i(1 + k)f(s).

Consequently, it suffices to show that

pf(z) + (i− p)f(s) ≥ f(y1) + f(y2) + · · ·+ f(yi),

wherep = n−i
k
≤ 1. Let t = pz + (1 − p)s, s ≤ t ≤ z. Since the decreasingly

ordered vector~Ai = (t, s, . . . , s) majorizes the decreasingly ordered vector~Bi =
(y1, y2, . . . , yi), by Karamata’s inequality for convex functions we have

f(t) + (i− 1)f(s) ≥ f(y1) + f(y2) + · · ·+ f(yi).
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Adding this inequality to Jensen’s inequality for the convex function

pf(z) + (1− p)f(s) ≥ f(t),

the conclusion follows.
B. CaseS > s. The functionf(u) is convex foru ≥ S, u ∈ I. According to the
result from Case A, it suffices to show that

f(x) + kf(y) ≥ (1 + k)f(S),

for anyx, y ∈ I such thatx < S < y andx + ky = (1 + k)S.
Forx ≥ s, this inequality follows by Jensen’s inequality for convex function.
For x < s, let z be defined byx + kz = (1 + k)s. Sincek(z − s) = s − x > 0

andk(y − z) = (1 + k)(S − s) > 0, we have

x < s < z < y, s < S < y.

Sincex + kz = (1 + k)s andx < z, we have by hypothesis

f(x) + kf(z) ≥ (1 + k)f(s).

Therefore, it suffices to show that

k[f(y)− f(z)] ≥ (1 + k)[f(S)− f(s)],

which is equivalent to
f(y)− f(z)

y − z
≥ f(S)− f(s)

S − s
.

This inequality is true if

f(y)− f(z)

y − z
≥ f(y)− f(s)

y − s
≥ f(S)− f(s)

S − s
.
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The left inequality and the right inequality can be reduced to Jensen’s inequalities
for convex functions,

(y − z)f(s) + (z − s)f(y) ≥ (y − s)f(z)

and
(S − s)f(y) + (y − S)f(s) ≥ (y − s)f(S),

respectively.

Remark1. In the particular casek = n− 1, if f(x) + (n− 1)f(y) ≥ nf(s) for any
x, y ∈ I such thatx ≤ y andx+(n− 1)y = ns, then the inequality in Theorem1.1,

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf(S),

holds for anyx1, x2, . . . , xn ∈ I which satisfyx1+x2+···+xn

n
= S ≥ s. This result has

been established in [1, p. 143] and [2].
Remark2. In the particular casek = 1 (whenn − 1 of x1, x2, . . . , xn are smaller
than or equal toS), the hypothesisf(x) + kf(y) ≥ (1 + k)f(s) in Theorem1.1has
a symmetric form:

f(x) + f(y) ≥ 2f(s)

for anyx, y ∈ I such thatx + y = 2s.

Remark3. Let g(u) = f(u)−f(s)
u−s

. In some applications it is useful to replace the
hypothesisf(x)+kf(y) ≥ (1+k)f(s) in Theorem1.1by the equivalent condition:

g(x) ≤ g(y) for any x, y ∈ I such thatx < s < y andx + ky = (1 + k)s.

Their equivalence follows from the following observation:

f(x) + kf(y)− (1 + k)f(s) = f(x)− f(s) + k(f(y)− f(s))

= (x− s)g(x) + k(y − s)g(y)

= (x− s)(g(x)− g(y)).
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Remark4. If f is differentiable onI, then Theorem1.1holds true by replacing the
hypothesisf(x) + kf(y) ≥ (1 + k)f(s) with the more restrictive condition:

f ′(x) ≤ f ′(y) for any x, y ∈ I such thatx ≤ s ≤ y andx + ky = (1 + k)s.

To prove this assertion, we have to show that this condition impliesf(x) + kf(y) ≥
(1 + k)f(s) for any x, y ∈ I such thatx ≤ s ≤ y andx + ky = (1 + k)s. Let us
denote

F (x) = f(x) + kf(y)− (1 + k)f(s) = f(x) + kf

(
s + ks− x

k

)
− (1 + k)f(s).

SinceF ′(x) = f ′(x) − f ′(y) ≤ 0, F (x) is decreasing forx ∈ I, x ≤ s, and hence
F (x) ≥ F (s) = 0.

Remark5. The inequality in Theorem1.1 becomes equality forx1 = x2 = · · · =
xn = S. In the particular caseS = s, if there arex, y ∈ I such thatx < s < y,
x + ky = (k + 1)s andf(x) + kf(y) = (1 + k)f(s), then equality holds again for
x1 = x, x2 = · · · = xn−k = s andxn−k+1 = · · · = xn = y.

Remark6. Let i be an integer such thatn − k ≤ i ≤ n − 1. We may rewrite the
inequality in Theorem1.1as either

f(S − a1 + an−i+1) + f(S − a2 + an−i+2) + · · ·+ f(S − an + an−i) ≥ nf(S)

with a1 ≥ a2 ≥ · · · ≥ an, or

f(S − a1 + ai+1) + f(S − a2 + ai+2) + · · ·+ f(S − an + ai) ≥ nf(S)

with a1 ≤ a2 ≤ · · · ≤ an.

Corollary 1.2. Let n ≥ 2 and1 ≤ k ≤ n − 1 be natural numbers, and letg be a
function on(0,∞) such thatf(u) = g(eu) is convex foru ≥ 0, and

g(x) + kg(y) ≥ (1 + k)g(1)
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for any positive real numbersx and y with x ≤ y and xyk = 1. If a1, a2, . . . , an

are positive real numbers such thatn
√

a1a2 · · · an = r ≥ 1 and at leastn − k of
a1, a2, . . . , an are smaller than or equal tor, then

g(a1) + g(a2) + · · ·+ g(an) ≥ ng(r).

Proof. We apply Theorem1.1 to the functionf(u) = g(eu). In addition, we set
s = 0, S = ln r, and replacex with ln x, y with ln y, and eachxi with ln ai.

Remark7. If f is differentiable on(0,∞), then Corollary1.2holds true by replacing
the hypothesisg(x) + kg(y) ≥ (1 + k)g(1) with the more restrictive condition:

xg′(x) ≤ yg′(y) for all x, y > 0 such thatx ≤ 1 ≤ y andxyk = 1.

To prove this claim, it suffices to show that this condition impliesg(x) + kg(y) ≥
(1 + k)g(1) for all x, y > 0 with x ≤ 1 ≤ y andxyk = 1. Let us define the function
G by

G(x) = g(x) + kg(y)− (1 + k)g(1) = g(x) + kg

(
k

√
1

x

)
− (1 + k)g(1).

Since

G′(x) = g′(x)− 1

x k
√

x
g′(y) =

xg′(x)− yg′(y)

x
≤ 0,

G(x) is decreasing forx ≤ 1. Therefore,G(x) ≥ G(1) = 0 for x ≤ 1, and hence
g(x) + kg(y) ≥ (1 + k)g(1).

Remark8. Let i be an integer such thatn − k ≤ i ≤ n − 1. We may rewrite the
inequality forr = 1 in Corollary1.2as either

g

(
xn−i+1

x1

)
+ g

(
xn−i+2

x2

)
+ · · ·+ g

(
xn−i

xn

)
≥ ng(1)
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for x1 ≥ x2 ≥ · · · ≥ xn > 0, or

g

(
xi+1

x1

)
+ g

(
xi+2

x2

)
+ · · ·+ g

(
xi

xn

)
≥ ng(1)

for 0 < x1 ≤ x2 ≤ · · · ≤ xn.

Theorem 1.3.Letn ≥ 2 and1 ≤ k ≤ n− 1 be natural numbers, and letf(u) be a
function on a real intervalI, which is concave foru ≤ s, s ∈ I, and satisfies

kf(x) + f(y) ≤ (k + 1)f(s)

for anyx, y ∈ I such thatx ≤ y andkx + y = (k + 1)s. If x1, x2, . . . , xn ∈ I such
that x1+x2+···+xn

n
= S ≤ s and at leastn − k of x1, x2, . . . , xn are greater than or

equal toS, then
f(x1) + f(x2) + · · ·+ f(xn) ≤ nf(S).

Proof. This theorem follows from Theorem1.1by replacingf(u) by−f(−u), s by
−s, S by−S, x by−y, y by−x, and eachxi by−xn−i+1 for all i.

Remark9. In the particular casek = n− 1, if (n− 1)f(x) + f(y) ≤ nf(s) for any
x, y ∈ I such thatx ≤ y and(n− 1)x+ y = ns, then the inequality in Theorem1.3,

f(x1) + f(x2) + · · ·+ f(xn) ≤ nf(S),

holds for anyx1, x2, . . . , xn ∈ I which satisfyx1+x2+···+xn

n
= S ≤ s. This result has

been established in [1, p. 147] and [2].

Remark10. In the particular casek = 1 (whenn − 1 of x1, x2, . . . , xn are greater
than or equal toS), the hypothesiskf(x) + f(y) ≤ (k + 1)f(s) in Theorem1.3has
a symmetric form:f(x) + f(y) ≤ 2f(s) for anyx, y ∈ I such thatx + y = 2s.
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Remark11. Let g(u) = f(u)−f(s)
u−s

. The hypothesiskf(x) + f(y) ≤ (k + 1)f(s) in
Theorem1.3 is equivalent to

g(x) ≥ g(y) for any x, y ∈ I such thatx < s < y andkx + y = (k + 1)s.

Remark12. If f is differentiable onI, then Theorem1.3holds true if we replace the
hypothesiskf(x) + f(y) ≤ (k + 1)f(s) with the more restrictive condition

f ′(x) ≥ f ′(y) for any x, y ∈ I such thatx ≤ s ≤ y andkx + y = (k + 1)s.

Remark13. The inequality in Theorem1.3 becomes equality forx1 = x2 = · · · =
xn = S. In the particular caseS = s, if there arex, y ∈ I such thatx < s < y,
kx + y = (k + 1)s andkf(x) + f(y) = (1 + k)f(s), then equality holds again for
x1 = · · · = xk = x, xk+1 = · · · = xn−1 = s andxn = y.
Remark14. Let i be an integer such that1 ≤ i ≤ k. We may rewrite the inequality
in Theorem1.3as either

f(S − a1 + ai+1) + f(S − a2 + ai+2) + · · ·+ f(S − an + ai) ≤ nf(S)

with a1 ≤ a2 ≤ · · · ≤ an, or

f(S − a1 + an−i+1) + f(S − a2 + an−i+2) + · · ·+ f(S − an + an−i) ≤ nf(S)

with a1 ≥ a2 ≥ · · · ≥ an.

Corollary 1.4. Let n ≥ 2 and1 ≤ k ≤ n − 1 be natural numbers, and letg be a
function on(0,∞) such thatf(u) = g(eu) is concave foru ≤ 0, and

kg(x) + g(y) ≤ (k + 1)g(1)

for any positive real numbersx and y with x ≤ y and xky = 1. If a1, a2, . . . , an

are positive real numbers such thatn
√

a1a2 · · · an = r ≤ 1 and at leastn − k of
a1, a2, . . . , an are greater than or equal tor, then

g(a1) + g(a2) + · · ·+ g(an) ≤ ng(r).

http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au


Jensen Type Inequalities
With Ordered Variables

Vasile Cîrtoaje

vol. 9, iss. 1, art. 19, 2008

Title Page

Contents

JJ II

J I

Page 12 of 28

Go Back

Full Screen

Close

Proof. We apply Theorem1.3 to the functionf(u) = g(eu). In addition, we set
s = 0, S = ln r, and replacex with ln x, y with ln y, and eachxi with ln ai.

Remark15. If f is differentiable on(0,∞), then Corollary1.4holds true by replac-
ing the hypothesiskg(x) + g(y) ≤ (k + 1)g(1) with the more restrictive condition:

xg′(x) ≥ yg′(y) for all x, y > 0 such thatx ≤ 1 ≤ y andxky = 1.

Remark16. Let i be an integer such that1 ≤ i ≤ k. We may rewrite the inequality
for r = 1 in Corollary1.4as either

g

(
xi+1

x1

)
+ g

(
xi+2

x2

)
+ · · ·+ g

(
xi

xn

)
≤ ng(1)

for 0 < x1 ≤ x2 ≤ · · · ≤ xn, or

g

(
xn−i+1

x1

)
+ g

(
xn−i+2

x2

)
+ · · ·+ g

(
xn−i

xn

)
≤ ng(1)

for x1 ≥ x2 ≥ · · · ≥ xn > 0.
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2. Applications

Proposition 2.1. Let n ≥ 2 and 1 ≤ k ≤ n − 1 be natural numbers, and let
x1, x2, . . . , xn be nonnegative real numbers such thatx1 + x2 + · · ·+ xn = n.

(a) If at leastn− k of x1, x2, . . . , xn are smaller than or equal to1, then

k(x3
1 + x3

2 + · · ·+ x3
n) + (1 + k)n ≥ (1 + 2k)(x2

1 + x2
2 + · · ·+ x2

n);

(b) If at leastn− k of x1, x2, . . . , xn are greater than or equal to1, then

x3
1 + x3

2 + · · ·+ x3
n + (k + 1)n ≤ (k + 2)(x2

1 + x2
2 + · · ·+ x2

n).

Proof. (a) The inequality is equivalent tof(x1) + f(x2) + · · · + f(xn) ≥ nf(S),
whereS = x1+x2+···+xn

n
= 1 andf(u) = ku3 − (1 + 2k)u2. Foru ≥ 1,

f ′′(u) = 2(3ku− 1− 2k) ≥ 2(k − 1) ≥ 0.

Therefore,f is convex foru ≥ s = 1. According to Theorem1.1and Remark3, we
have to show thatg(x) ≤ g(y) for any nonnegative real numbersx < y such that
x + ky = 1 + k, where

g(u) =
f(u)− f(1)

u− 1
= ku2 − (1 + k)u− 1− k.

Indeed,
g(y)− g(x) = (k − 1)x(y − x) ≥ 0.

Equality occurs forx1 = x2 = · · · = xn = 1. On the assumption thatx1 ≤
x2 ≤ · · · ≤ xn, equality holds again forx1 = 0, x2 = · · · = xn−k = 1 and
xn−k+1 = · · · = xn = 1 + 1

k
.
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(b) Write the inequality asf(x1) + f(x2) + · · · + f(xn) ≤ nf(S), whereS =
x1+x2+···+xn

n
= 1 andf(u) = u3 − (k + 2)u2. From the second derivative,

f ′′(u) = 2(3u− k − 2),

it follows thatf is concave foru ≤ s = 1. According to Theorem1.3and Remark
11, we have to show thatg(x) ≥ g(y) for any nonnegative real numbersx < y such
thatkx + y = k + 1, where

g(u) =
f(u)− f(1)

u− 1
= u2 − (k + 1)u− k − 1.

It is easy to see that

g(x)− g(y) = (k − 1)x(y − x) ≥ 0.

Equality occurs forx1 = x2 = · · · = xn = 1. On the assumption thatx1 ≤ x2 ≤
· · · ≤ xn, equality holds again forx1 = · · · = xk = 0, xk+1 = · · · = xn−1 = 1 and
xn = k + 1.

Remark17. Fork = n− 1, the inequalities above become as follows

(n− 1)(x3
1 + x3

2 + · · ·+ x3
n) + n2 ≥ (2n− 1)(x2

1 + x2
2 + · · ·+ x2

n)

and
x3

1 + x3
2 + · · ·+ x3

n + n2 ≤ (n + 1)(x2
1 + x2

2 + · · ·+ x2
n),

respectively. By Remark1 and Remark9, these inequalities hold for any nonnegative
real numbersx1, x2, . . . , xn which satisfyx1 + x2 + · · · + xn = n (Problems 3.4.1
and 3.4.2 from [1, p. 154]).

Remark18. Fork = 1, we get the following statement:
Let x1, x2, . . . , xn be nonnegative real numbers such thatx1 +x2 + · · ·+xn = n.
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(a) If x1 ≤ · · · ≤ xn−1 ≤ 1 ≤ xn , then

x3
1 + x3

2 + · · ·+ x3
n + 2n ≥ 3(x2

1 + x2
2 + · · ·+ x2

n);

(b) If x1 ≤ 1 ≤ x2 ≤ · · · ≤ xn , then

x3
1 + x3

2 + · · ·+ x3
n + 2n ≤ 3(x2

1 + x2
2 + · · ·+ x2

n).

Proposition 2.2. Let n ≥ 2 and 1 ≤ k ≤ n − 1 be natural numbers, and let
x1, x2, . . . , xn be positive real numbers such thatx1 + x2 + · · ·+ xn = n. If at least
n− k of x1, x2, . . . , xn are greater than or equal to1, then

1

x1

+
1

x2

+ · · ·+ 1

xn

− n ≥ 4k

(k + 1)2
(x2

1 + x2
2 + · · ·+ x2

n − n).

Proof. Rewrite the inequality asf(x1) + f(x2) + · · · + f(xn) ≤ nf(S), where
S = x1+x2+···+xn

n
= 1 andf(u) = 4ku2

(k+1)2
− 1

u
. For0 < u ≤ s = 1, we have

f ′′(u) =
8k

(k + 1)2
− 2

u3
≤ 8k

(k + 1)2
− 2 =

−2(k − 1)2

(k + 1)2
≤ 0;

therefore,f is concave on(0, 1]. By Theorem1.3and Remark11, we have to show
that g(x) ≥ g(y) for any positive real numbersx < y such thatkx + y = k + 1,
where

g(u) =
f(u)− f(1)

u− 1
=

4k(u + 1)

(k + 1)2
+

1

u
.

Indeed,

g(x)− g(y) = (y − x)

[
1

xy
− 4k

(k + 1)2

]
=

(y − x)(2kx− k − 1)2

(k + 1)2xy
≥ 0.
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Equality occurs forx1 = x2 = · · · = xn = 1. Under the assumption thatx1 ≤ x2 ≤
· · · ≤ xn, equality holds again forx1 = · · · = xk = k+1

2k
, xk+1 = · · · = xn−1 = 1

andxn = k+1
2

.

Remark19. Fork = n− 1, the inequality in Proposition2.2becomes as follows:

1

x1

+
1

x2

+ · · ·+ 1

xn

− n ≥ 4(n− 1)

n2
(x2

1 + x2
2 + · · ·+ x2

n − n).

By Remark9, this inequality holds for any positive real numbersx1, x2, . . . , xn

which satisfyx1 + x2 + · · ·+ xn = n (Problems 3.4.5 from [1, p. 158]).

Remark20. Fork = 1, the following nice statement follows:
If x1, x2, . . . , xn are positive real numbers such thatx1 ≤ 1 ≤ x2 ≤ · · · ≤ xn and

x1 + x2 + · · ·+ xn = n, then

1

x1

+
1

x2

+ · · ·+ 1

xn

≥ x2
1 + x2

2 + · · ·+ x2
n.

Proposition 2.3. Let n ≥ 2 and 1 ≤ k ≤ n − 1 be natural numbers, and let
x1, x2, . . . , xn be nonnegative real numbers such thatx1 + x2 + · · ·+ xn = n.

(a) If at leastn− k of x1, x2, . . . , xn are smaller than or equal to1, then

1

k + 1 + kx2
1

+
1

k + 1 + kx2
2

+ · · ·+ 1

k + 1 + kx2
n

≥ n

2k + 1
;

(b) If at leastn− k of x1, x2, . . . , xn are greater than or equal to1, then

1

k2 + k + 1 + kx2
1

+
1

k2 + k + 1 + kx2
2

+ · · ·+ 1

k2 + k + 1 + kx2
n

≤ n

(k + 1)2
.
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Proof. (a) We may write the inequality asf(x1) + f(x2) + · · · + f(xn) ≥ nf(S),
whereS = x1+x2+···+xn

n
= 1 andf(u) = 1

k+1+ku2 . Since the second derivative,

f ′′(u) =
2k(3ku2 − k − 1)

(k + 1 + ku2)3
,

is positive foru ≥ 1, f is convex foru ≥ s = 1. According to Theorem1.1 and
Remark3, we have to show thatg(x) ≤ g(y) for any nonnegative real numbers
x < y such thatx + ky = 1 + k, where

g(u) =
f(u)− f(1)

u− 1
=

−k(u + 1)

(2k + 1)(k + 1 + ku2)
.

Indeed, we have

g(y)− g(x) =
k2(y − x)

(2k + 1)(k + 1 + kx2)(k + 1 + ky2)

(
xy + x + y − 1− 1

k

)
≥ 0,

since

xy + x + y − 1− 1

k
=

x(2k − 1 + y)

k
≥ 0.

Equality occurs forx1 = x2 = · · · = xn = 1. On the assumption thatx1 ≤
x2 ≤ · · · ≤ xn, equality holds again forx1 = 0, x2 = · · · = xn−k = 1 and
xn−k+1 = · · · = xn = 1 + 1

k
.

(b) We will apply Theorem1.3 to the functionf(u) = 1
k2+k+1+ku2 , for s = S = 1.

Since the second derivative,

f ′′(u) =
2k(3ku2 − k2 − k − 1)

(k2 + k + 1 + ku2)3
,
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is negative for0 ≤ u < 1, f is concave for0 ≤ u ≤ 1. According to Remark11,
we have to show thatg(x) ≥ g(y) for any nonnegative real numbersx < y such that
kx + y = k + 1, where

g(u) =
f(u)− f(1)

u− 1
=

−k(u + 1)

(k + 1)2(k2 + k + 1 + ku2)
.

We have

g(x)− g(y) =
k2(y − x)

(k + 1)2(k2 + k + 1 + kx2)(k2 + k + 1 + ky2)

×
(

k +
1

k
+ 1− xy − x− y

)
≥ 0,

since

k +
1

k
+ 1− xy − x− y = k

(
x− 1

k

)2

≥ 0.

Equality occurs forx1 = x2 = · · · = xn = 1. On the assumption thatx1 ≤ x2 ≤
· · · ≤ xn, equality holds again forx1 = · · · = xk = 1

k
, xk+1 = · · · = xn−1 = 1 and

xn = k.

Remark21. Fork = n− 1, the inequalities in Proposition2.3become as follows:

1

n + (n− 1)x2
1

+
1

n + (n− 1)x2
2

+ · · ·+ 1

n + (n− 1)x2
n

≥ n

2n− 1

and

1

n2 − n + 1 + (n− 1)x2
1

+
1

n2 − n + 1 + (n− 1)x2
2

+· · ·+ 1

n2 − n + 1 + (n− 1)x2
n

≤ 1

n
,

http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au


Jensen Type Inequalities
With Ordered Variables

Vasile Cîrtoaje

vol. 9, iss. 1, art. 19, 2008

Title Page

Contents

JJ II

J I

Page 19 of 28

Go Back

Full Screen

Close

respectively. By Remark1 and Remark9, these inequalities hold for any nonnegative
numbersx1, x2, . . . , xn which satisfyx1 + x2 + · · · + xn = n (Problems 3.4.3 and
3.4.4 from [1, p. 156]).

Remark22. Fork = 1, we get the following statement:
Let x1, x2, . . . , xn be nonnegative real numbers such thatx1 +x2 + · · ·+xn = n.

(a) If x1 ≤ · · · ≤ xn−1 ≤ 1 ≤ xn , then

1

2 + x2
1

+
1

2 + x2
2

+ · · ·+ 1

2 + x2
n

≥ n

3
;

(b) If x1 ≤ 1 ≤ x2 ≤ · · · ≤ xn , then

1

3 + x2
1

+
1

3 + x2
2

+ · · ·+ 1

3 + x2
n

≤ n

4
.

Remark23. By Theorem1.1and Theorem1.3, the following more general statement
holds:

Let n ≥ 2 and1 ≤ k ≤ n − 1 be natural numbers, and letx1, x2, . . . , xn be
nonnegative real numbers such thatx1 + x2 + · · ·+ xn = nS.

(a) If S ≥ 1 and at leastn − k of x1, x2, . . . , xn are smaller than or equal toS,
then

1

k + 1 + kx2
1

+
1

k + 1 + kx2
2

+ · · ·+ 1

k + 1 + kx2
n

≥ n

k + 1 + kS2
;

(b) If S ≤ 1 and at leastn−k of x1, x2, . . . , xn are greater than or equal toS, then

1

k2 + k + 1 + kx2
1

+
1

k2 + k + 1 + kx2
2

+· · ·+ 1

k2 + k + 1 + kx2
n

≤ n

k2 + k + 1 + kS2
.
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Proposition 2.4. Let n ≥ 2 and 1 ≤ k ≤ n − 1 be natural numbers, and let
a1, a2, . . . , an be positive real numbers such thata1a2 · · · an = 1.

(a) If at leastn− k of x1, x2, . . . , xn are smaller than or equal to1, then

1

1 + ka1

+
1

1 + ka2

+ · · ·+ 1

1 + kan

≥ n

1 + k
;

(b) If at leastn− k of x1, x2, . . . , xn are greater than or equal to1, then

1

a1 + k
+

1

a2 + k
+ · · ·+ 1

an + k
≤ n

1 + k
.

Proof. (a) We will apply Corollary1.2 to the functiong(x) = 1
1+kx

, for r = 1. The
functionf(u) = g(eu) = 1

1+keu has the second derivative

f ′′(u) =
keu(keu − 1)

(1 + keu)3
,

which is positive foru > 0. Therefore,f is convex foru ≥ 0. Thus, it suffices to
show thatg(x) + kg(y) ≥ (1 + k)g(1) for any x, y > 0 such thatxyk = 1. The
inequalityg(x) + kg(y) ≥ (1 + k)g(1) is equivalent to

yk

yk + k
+

k

1 + ky
≥ 1,

or, equivalently,
yk + k − 1 ≥ ky.

The last inequality immediately follows from the AM-GM inequality applied to the
positive numbersyk, 1, . . . , 1. Equality occurs fora1 = a2 = · · · = an = 1.
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(b) We can obtain the required inequality either by replacing each numberai with its
reverse1

ai
in the inequality in part (a), or by means of Corollary1.4. Equality occurs

for a1 = a2 = · · · = an = 1.

Remark24. Fork = n− 1, we get the known inequalities

1

1 + (n− 1)a1

+
1

1 + (n− 1)a2

+ · · ·+ 1

1 + (n− 1)an

≥ 1

and
1

a1 + n− 1
+

1

a2 + n− 1
+ · · ·+ 1

an + n− 1
≤ 1,

which hold for any positive numbersa1, a2, . . . , an such thata1a2 · · · an = 1.

Remark25. Using the substitutiona1 = xk+1

x1
, a2 = xk+2

x2
, . . . , an = xk

xn
, we get the

following statement:
Let n ≥ 2 and1 ≤ k ≤ n − 1 be natural numbers, and letx1, x2, . . . , xn be

positive real numbers.

(a) If x1 ≥ x2 ≥ · · · ≥ xn, then

x1

x1 + kxk+1

+
x2

x2 + kxk+2

+ · · ·+ xn

xn + kxk

≥ n

1 + k
;

(b) If x1 ≤ x2 ≤ · · · ≤ xn, then

x1

kx1 + xk+1

+
x2

kx2 + xk+2

+ · · ·+ xn

kxn + xk

≤ n

k + 1
.

In the particular casek = 1, we get

x1

x1 + x2

+
x2

x2 + x3

+ · · ·+ xn

xn + x1

≥ n

2

http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au


Jensen Type Inequalities
With Ordered Variables

Vasile Cîrtoaje

vol. 9, iss. 1, art. 19, 2008

Title Page

Contents

JJ II

J I

Page 22 of 28

Go Back

Full Screen

Close

for x1 ≥ x2 ≥ · · · ≥ xn > 0, and
x1

x1 + x2

+
x2

x2 + x3

+ · · ·+ xn

xn + x1

≤ n

2

for 0 < x1 ≤ x2 ≤ · · · ≤ xn.

Remark26. By Corollary1.2and Corollary1.4, we can see that the following more
general statement holds:

Let n ≥ 2 and1 ≤ k ≤ n − 1 be natural numbers, and leta1, a2, . . . , an be
positive real numbers such thatn

√
a1a2 · · · an = r.

(a) If r ≥ 1, and at leastn−k of a1, a2, . . . , an are smaller than or equal tor, then

1

1 + ka1

+
1

1 + ka2

+ · · ·+ 1

1 + kan

≥ n

1 + kr
;

(b) If r ≤ 1, and at leastn− k of a1, a2, . . . , an are greater than or equal tor, then

1

a1 + k
+

1

a2 + k
+ · · ·+ 1

an + k
≤ n

r + k
.

Proposition 2.5. Leta1, a2, . . . , an be positive numbers such thata1a2 · · · an = 1.

(a) If a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, then

1√
1 + 3a1

+
1√

1 + 3a2

+ · · ·+ 1√
1 + 3an

≥ n

2
;

(b) If a1 ≤ 1 ≤ a2 ≤ · · · ≤ an, then

1√
1 + 2a1

+
1√

1 + 2a2

+ · · ·+ 1√
1 + 2an

≤ n√
3
.
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Proof. (a) We will apply Corollary1.2 (casek = 1 and r = 1) to the function
g(x) = 1√

1+3x
. The functionf(u) = g(eu) = 1√

1+3eu has the second derivative

f ′′(u) =
1

2
eu(3eu − 2)(1 + 3eu)−

5
2 .

Sincef ′′ > 0 for u ≥ 0, f is convex foru ≥ 0. Therefore, to finish the proof, we
have to show thatg(x)+g(y) ≥ 2g(1) for anyx, y > 0 with xy = 1. This inequality
is equivalent to

1√
1 + 3x

+

√
x

x + 3
≥ 1.

Using the substitution 1√
1+3x

= t, 0 < t < 1, transforms the inequality into√
1− t2

8t2 + 1
≥ 1− t.

By squaring, we gett(1− t)(2t− 1)2 ≥ 0, which is clearly true. Equality occurs for
a1 = a2 = · · · = an = 1.

(b) We will apply Corollary1.4(casek = 1 andr = 1) to the functiong(x) = 1√
1+2x

.

The functionf(u) = g(eu) = 1√
1+2eu is concave foru ≤ 0, since

f ′′ = eu(eu − 1)(1 + 2eu)−
5
2 ≤ 0.

Thus, it suffices to show thatg(x) + g(y) ≤ 2g(1) for anyx, y > 0 with xy = 1.
This inequality follows from the Cauchy-Schwarz inequality, as follows√

3

1 + 2x
+

√
3

1 + 2y
≤

√(
3

1 + 2x
+ 1

)(
1 +

3

1 + 2y

)
= 2.

Equality occurs fora1 = a2 = · · · = an = 1.

http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au


Jensen Type Inequalities
With Ordered Variables

Vasile Cîrtoaje

vol. 9, iss. 1, art. 19, 2008

Title Page

Contents

JJ II

J I

Page 24 of 28

Go Back

Full Screen

Close

Remark27. Using the substitutiona1 = x2

x1
, a2 = x3

x2
, . . . , an = x1

xn
, we get the

following statement:
Let x1, x2, . . . , xn be positive real numbers.

(a) If x1 ≥ x2 ≥ · · · ≥ xn, then√
x1

x1 + 3x2

+

√
x2

x2 + 3x3

+ · · ·+
√

xn

xn + 3x1

≥ n

2
;

(b) If x1 ≤ x2 ≤ · · · ≤ xn, then√
3x1

x1 + 2x2

+

√
3x2

x2 + 2x3

+ · · ·+
√

3xn

xn + 2x1

≤ n.

Remark28. By Corollary 1.2 and Corollary1.4, the following more general state-
ment holds:

Let a1, a2, . . . , an be positive real numbers such thatn
√

a1a2 · · · an = r.

(a) If r ≥ 1 anda1 ≤ · · · ≤ an−1 ≤ r ≤ an, then

1√
1 + 3a1

+
1√

1 + 3a2

+ · · ·+ 1√
1 + 3an

≥ n√
1 + 3r

;

(b) If r ≤ 1 anda1 ≤ r ≤ a2 ≤ · · · ≤ an, then

1√
1 + 2a1

+
1√

1 + 2a2

+ · · ·+ 1√
1 + 2an

≤ n√
1 + 2r

.

Proposition 2.6. Leta1, a2, . . . , an be positive numbers such thata1a2 · · · an = 1.
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(a) If a1 ≤ · · · ≤ an−1 ≤ 1 ≤ an, then the following inequality holds for0 ≤ p ≤
p0, wherep0

∼= 1.5214 is the positive root of the equationp3 − p− 2 = 0:

1

(p + a1)2
+

1

(p + a2)2
+ · · ·+ 1

(p + an)2
≥ n

(p + 1)2
;

(b) If a1 ≤ 1 ≤ a2 ≤ · · · ≤ an, then the following inequality holds forp ≥ 1+
√

2:

1

(p + a1)2
+

1

(p + a2)2
+ · · ·+ 1

(p + an)2
≤ n

(p + 1)2
.

Proof. (a) We will apply Corollary1.2 (casek = 1 and r = 1) to the function
g(x) = 1

(p+x)2
. Notice that the functionf(u) = g(eu) = 1

(p+eu)2
is convex foru ≥ 0,

because

f ′′(u) =
2eu(2eu − p)

(p + eu)4
> 0.

Consequently, we have to show thatg(x) + g(y) ≥ 2g(1) for any x, y > 0 with
xy = 1; that is

1

(p + x)2
+

1

(p + y)2
≥ 2

(p + 1)2
.

Using the substitutionx + y = 2t, t ≥ 1, the inequality transforms into

2t2 + 2pt + p2 − 1

(2pt + p2 + 1)2
≥ 1

(p + 1)2
,

or, equivalently,

(t− 1)[(1 + 2p− p2)t + (1− p)(p2 + 1)] ≥ 0.
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It is true, because1 + 2p− p2 > p(2− p) > 0 and

(1 + 2p− p2)t + (1− p)(p2 + 1) ≥ (1 + 2p− p2) + (1− p)(p2 + 1)

= 2 + p− p3 ≥ 0

for 0 ≤ p ≤ p0. Equality holds fora1 = a2 = · · · = an = 1.

(b) We will apply Corollary1.4(casek = 1 andr = 1) to the functiong(x) = 1
(p+x)2

.

The functionf(u) = g(eu) = 1
(p+eu)2

is concave foru ≤ 0, since

f ′′(u) =
2eu(2eu − p)

(p + eu)4
< 0.

By Corollary1.4, it suffices to show thatg(x) + g(y) ≤ 2g(1) for anyx, y > 0 with
xy = 1; that is

1

(p + x)2
+

1

(p + y)2
≤ 2

(p + 1)2
.

Using the notationx + y = 2t, t ≥ 1, the inequality becomes

(t− 1)[(p2 − 2p− 1)t + (p− 1)(p2 + 1)] ≥ 0.

It is true, sincep2− 2p− 1 ≥ 0 for p ≥ 1 +
√

2. Equality holds fora1 = a2 = · · · =
an = 1.

Remark29. Using the substitutiona1 = x2

x1
, a2 = x3

x2
, . . . , an = x1

xn
, we get the

following statement:
Let x1, x2, . . . , xn be positive real numbers.

(a) If 0 ≤ p ≤ p0
∼= 1.5214 andx1 ≥ x2 ≥ · · · ≥ xn, then(

x1

px1 + x2

)2

+

(
x2

px2 + x3

)2

+ · · ·+
(

xn

pxn + x1

)2

≥ n

(p + 1)2
;
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(b) If p ≥ 1 +
√

2 andx1 ≤ x2 ≤ · · · ≤ xn, then(
x1

px1 + x2

)2

+

(
x2

px2 + x3

)2

+ · · ·+
(

xn

pxn + x1

)2

≤ n

(p + 1)2
.

Remark30. By Corollary 1.2 and Corollary1.4, the following more general state-
ment holds:

Let a1, a2, . . . , an be positive real numbers such thatn
√

a1a2 · · · an = r.

(a) If r ≥ 1 and a1 ≤ · · · ≤ an−1 ≤ r ≤ an, then the following inequality
holds for0 ≤ p ≤ p0, wherep0

∼= 1, 5214 is the positive root of the equation
p3 − p− 2 = 0:

1

(p + a1)2
+

1

(p + a2)2
+ · · ·+ 1

(p + an)2
≥ n

(p + r)2
;

(b) If r ≤ 1 anda1 ≤ r ≤ a2 ≤ · · · ≤ an, then the following inequality holds for
p ≥ 1 +

√
2:

1

(p + a1)2
+

1

(p + a2)2
+ · · ·+ 1

(p + an)2
≤ n

(p + r)2
.
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