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ABSTRACT. In 1940 S.M. Ulam proposed the famous Ulam stability problem. In 1941 D.H.
Hyers solved the well-known Ulam stability problem for additive mappings subject to the Hyers
condition on approximately additive mappings. In this paper we introduce generalized addi-
tive mappings of Jensen type mappings and establish new theorems about the Ulam stability of
additive and alternative additive mappings.
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1. INTRODUCTION

In 1940 and in 1964 S.M. Ulam [34] proposed the famous Ulam stability problem:

“When is it true that by changing a little the hypotheses of a theorem one can still assert that
the thesis of the theorem remains true or approximately true?”

For very general functional equations, the concept of stability for a functional equation arises
when we replace the functional equation by an inequality which acts as a perturbation of the
equation. Thus the stability question of functional equations is: Do the solutions of the in-
equality differ from those of the given functional equation? If the answer is affirmative, we
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would say that the equation is stable. These stability results can be applied in stochastic anal-
ysis [17], financial and actuarial mathematics, as well as in psychology and sociology. We
wish to note that stability properties of different functional equations can have applications to
unrelated fields. For instance, Zhou [35] used a stability property of the functional equation
f(x—y)+ f(x+y) = 2f(x) to prove a conjecture of Z. Ditzian about the relationship between
the smoothness of a mapping and the degree of its approximation by the associated Bernstein
polynomials.

In 1941 D.H. Hyers[[8] solved this stability problem for additive mappings subject to the
Hyers condition on approximately additive mappings. In 1978 P.M. Gruber [7] remarked that
Ulam’s problem is of particular interest in probability theory and in the case of functional equa-
tions of different types. Th.M. Rassias [31] and then &f@ta [5] obtained generalized results
of Hyers’ Theorem which allow the Cauchy difference to be unbounded. The stability prob-
lems of several functional equations have been extensively investigated by a number of authors
and there are many interesting results concerning this problem. In 1982-2006 J.M. Rassias
[20,121,/23] 24, 25, 26, 27] established the Hyers—Ulam stability of linear and nonlinear map-
pings. In 2003-2006 J.M. Rassias and M.J. Rassias [28, 29] and J.M. Rassias [30] solved the
above Ulam problem for Jensen and Jensen type mappings. In 1999mt&5[6] answered a
guestion of J.M. Rassias [22] concerning the stability of the Cauchy equation.

We note that J.M. Rassias introduced thaler—Lagrange quadratic mappings)otivated
from the following pertinent algebraic equation

(1.1) la1 21 + agxo|* + |agzy — ayxs|* = (af + a3) [|x1|2 + ]x2|2] )

Thus the third author of this paper introduced and investigated the stability problem of Ulam
for the relativeEuler—Lagrange functional equation

(1.2) flarzy + axs) + flagmy — army) = (af + a3) [f (1) + f(x2)].

in the publications[[23, 24, 25]. Analogous quadratic mappings were introduced and investi-
gated through J.M Rassias’ publications![26, 29]. Before 1992 these mappings and equations
were not known at all in functional equations and inequalities. However, a completely different
kind of Euler—Lagrange partial differential equation is known in calculus of variations. In this
paper we introduce Cauchy and Cauchy—Jensen mappings of Euler—-Lagrange and thus general-
ize Ulam stability results controlled by more general mappings, by considering approximately
Cauchy and Cauchy-Jensen mappings of Euler—Lagrange satisfying conditions much weaker
than D.H. Hyers and J.M. Rassias conditions on approximately Cauchy and Cauchy-Jensen
mappings of Euler—Lagrange.

Throughout this paper, leX be a real normed space akida real Banach space in the case
of functional inequalities. Also, leX andY be real linear spaces for functional equations. Let
us denote bW the set of all natural numbers and Rythe set of all real numbers.

Definition 1.1. A mappingA : X — Y is calledadditiveif A satisfies the functional equation
(1.3) Alx +y) = A(z) + A(y)
for all z,y € X. We note that the equation (1.3) is equivalenttte Jensen equation

24 (x ;L y) — Az) + Aly)

forall z,y € X andA(0) = 0.

Now we consider a mapping : X — Y, which may be analogously call&liler—Lagrange
additive satisfying the functional equation

(1.4) Aax + by) + A(bx + ay) + (a + b)[A(—z) + A(—y)] =0
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forall x,y € X, wherea,b € R are nonzero fixed reals wiih+ b # 0. Next, we consider a
mappingA : X — Y of Euler—Lagrange satisfying the functional equation

(1.5) Alaz + by) + A(ax — by) + 2aA(—x) =0

which is equivalent to the equation of Jensen type

A(x) + A(y) + 2dA (_x;y) =0
forall z,y € X, wherea,b € R are nonzero fixed reals. It is easy to see that if the equation
(1.5) holds for allz, y € X and A(0) = 0, then equatior] (1]3) holds for all y € X. However,
the converse does not hold. In fact, choase, € R and an additive mappingd : R — R such
that A(az) # aA(xo). In this case[(1]3) holds for all, y € R and A(0) = 0. But we see that

Alazo +0) + A(axzg — 0) + 2aA(—xo) = 2A(axg) — 2aA(azy) # 0,

and thus[(1]5) does not hold. However we can show that if (1.3) holds far @l X and
A(az) = aA(z), then [1.5) holds for alt,y € X. Alternatively, we investigate the functional
equation of Euler-Lagrange

(1.6) Aax + by) — A(ax — by) + 2bA(—y) =0
for all z,y € X. We note that the equation (1.6) is equivalent to

(1.7) A(z) — Aly) + 2bA (—%) =0

for all z,y € X, wherea,b € R are nonzero fixed reals. It follows that ([L.6) impligs [1.3).
However we can show that {f (1.3) holds for ally € X andA(bx) = bA(z), then [1.5) holds
forall z,y € X.

2. STABILITY OF EULER—-LAGRANGE ADDITIVE MAPPINGS

We will investigate the conditions under which it is possible to find a true Euler—-Lagrange
additive mapping near an approximate Euler—Lagrange additive mapping with small error. We
note that if A = 1 in the next two theorems, then the mappingis identically zero by the
convergence of series and thyiss itself the solution of the equatiof (1.4). Thus we may
assume without loss of generality that# 1 in these theorems.

Theorem 2.1. Assume that there exists a mappipg : X? — [0, 00) for which a mapping
f: X — Y satisfies the inequality

(2.1) If(az 4+ by) + f(bx + ay) + (a + b)[f (—z) + f(=y)lll < ¢1(2,y)
and the series
S o (&Y

(2.2) ;w o1 (55 ) < o0
forall z,y € X, where) := —(a+b) # 0. Then there exists a unique Euler—Lagrange additive
mappingA : X — Y which satisfies the equation (1L.4) and the inequality

1 — . —r —T
2.3 —A < — Al —_—
23) 176) ~ A < iy W (5757
forall z € X.
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Proof. Substitutinge for y in the functional inequality] (2]1), we obtain

@4 2frn) Mol <ot 1@ - (5)] < 50 (55 F)

for all x € X. Therefore from) withY: in place ofz (i = 1,...,n — 1) and iterating, one

gets
(25) [ - ar ()] < ﬁz e (;—“’;—x)
forall z € X and alln € N. By (Z5), for anyn > m > 0 we have
s () =2 Gl = () =271 ()|
< 37 2 1o (57 3

which tends to zero by (2.2) as tends to infinity. Thus it follows that a sequengs” f(%) }
is Cauchy inY” and it thus converges. Therefore we see that a mapping — Y defined by

A(z) == lim A"f (%) = lim (—a—0)"f (ﬁ)

exists for allx € X. In addition it is clear from[(2]1) andl (2.2) that the following inequality

|A(azx + by) + A(bz + ay) + (a + b)[A(—x) + A(—y)]|

= lim [A"[[f(A"(az +by)) + f(A" (b2 + ay)) + (a + O)[f(=A""2) + f(=A""y)]|

< lim (A" (A2, A7"y) =0
holds for allz, y € X. Thus taking the limit. — oo in (2.5), we find that the mapping is an
Euler-Lagrange additive mapping satisfying the equafion (1.4) and the inequaljty (2.3) near the
approximate mapping : X — Y.

To prove the afore-mentioned uniqueness, we assume now that there is another Euler—Lagrange

additive mappingd : X — Y which satisfies the equation (I..4) and the inequdlity (2.3). Then
it follows easily that by setting := z in (1.4) we get

ANA(x) = A(N"x), NA(z) = A(\"x)
for all z € X and alln € N. Thus from the last equality and (2.3) one proves that
1A(z) = A(2)]| = A" |ANT"2) — AN "2)|
< yw (HA A x) — fOA )| + || (AT e) — AAT)])

|)\| Z|)\|z+n B e _/\—i—nx)

forallz € X and alln € N. Therefore fromn — oo, one establishes
A(x) — A(z) =0
for all x € X, completing the proof of uniqueness. O

Theorem 2.2. Assume that there exists a mappipg : X? — [0, 00) for which a mapping
f: X — Y satisfies the inequality

[ (az +by) + f(bx + ay) + (a + O)[f (—2) + f(=)]l| < @1 (2,9)
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and the series
Z o1 (N, X'y) < o0
Al
forall z,y € X, where\ := —(a + b). Then there exists a unique Euler—Lagrange additive
mappingA : X — Y which satisfies the equation (1L.4) and the inequality

I = o1(—=Na, —\'x)
I762) =A@ < 553 =5

forall z € X.

We obtain the following corollary concerning the stability for approximately Euler—Lagrange
additive mappings in terms of a product of powers of norms.

Corollary 2.3. If a mappingf : X — Y satisfies the functional inequality

1 (az + by) + f(bx + ay) + (a + ) [f (=) + f(=y)]Il < 8llz]*[ly]”,

forall z,y € X (X \ {0} if o, 8 < 0) and for some fixed, 5 € R, such thatp := o+ €
R,p#1,A:=—(a+b) # 1andd > 0, then there exists a unique Euler-Lagrange additive
mappingA : X — Y which satisfies the equation (1L.4) and the inequality

sk N> p<1(A <1, p>1);

HOEFCTER S

2(]AlP =1

forall z € X (X \ {0} if p < 0). The mapping is defined by the formula

if (A >1,p>1(N<1, p<])

lim L&) it A >1,p<1(N<1p>1);

( _ n—oo AT

lim A" f (&%), if [A>1,p>1(A<1, p<]1).

Now we are going to investigate the stability problem of the Euler—-Lagrange type equation
(1.5), [23,24[ 25], by using either Banach’s contraction principle or fixed points. For explicit
later use, we state the following theoreifhg alternative of fixed poip{l18,/32] : Suppose
that we are given a complete generalized metric space) and a strictly contractive mapping
T : Q2 — Q with Lipschitz constant.. Then for each givem € (2, either

d(T"z, T"'z) = 0o for all n >0,

or there exists a nonnegative integgrsuch that
(1) d(T™z, T"'z) < oo for all n > ny;
(2) the sequencgl™x) is convergent to a fixed point: of T';
(3) y* is the unique fixed point df in the setA := {y € Q|d(T™z,y) < oo};
(4) d(y,y") < =pd(y, Ty) forally € A.
The reader is referred to the book of D.H. Hyers, G. Isac and Th.M. Rassias [10] for an
extensive theory of fixed points with a large variety of applications. In recent yeargdariD
and V. Radul[B, 4] applied the fixed point method to the investigation of the Cauchy and Jensen
functional equations. Using such an elegant idea, they could present a short and simple proof
for the stability of these equatioris [19, 19]. The reader can be referred to the references [11, 12,
13,[14].
Utilizing the above mentioned fixed point alternative, we now obtain our main stability result
for the equation(1]5).
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Theorem 2.4. Suppose that a mapping : X — Y with f(0) = 0 satisfies the functional
inequality

(2.6) I/ (az +by) + flaz — by) + 2af(—=)|| < ¢a(,y)
andy, : X% — [0, 00) is @ mapping satisfying

AT, A" .
(2.7) lim P2, Ay) =0 (hm |A|" @2 (ﬁ, i) =0, respectlvelg
forall x,y € X, where|\ := —2a| # 1. If there exists a constarit < 1 such that the mapping

T axr

0= (5,1
has the property

(2.8) Vo(x) < LIA|ty (%) :
(2.9) <¢2(x) < L%’(;\f), respectivel9

for all z € X, then there exists a unique additive mappinig X — Y of Euler—Lagrange
which satisfies the equation (IL.5) and the inequality

L
/() = A@)]| € = ta(a)

1
(1) - Al < 12

for all z € X. If, moreover,f is measurable orf (¢z) is continuous irt for each fixedr € X
thenA(tx) = tA(x) forall x € X andt € R.

Yo(x), respective|9

Proof. Consider the function space
Q:={g|g: X =Y, g(0) =0}
equipped with the generalized metdon (2,
d(g, h) == inf{ K" € [0,00] | [[g(z) — h(z)[| < Kips(z), =€ X}.

It is easy to see thaf, d) is complete generalized metric space.
Now we define an operatdr : Q — by

Tg(x):= @ (Tg(x) = \g (;) , respectivelg

for all z € X. Note that for allg, h € Q with d(g, h) < K, one has
lg(x) = h(2)|| < Kps(z), =€ X,
which implies by|[(2.B)

'g(kw) _hQAz)|| _ K¢e(Ax)
A AT A
Hence we see that for all constamtSe [0, co] with d(g, h) < K,
d(Tg,Th) < LK,
or d(Tg,Th) < Ld(g,h),

that is, T is a strictly self-mapping of2 with the Lipschitz constant.

< LKiy(x), =€ X.
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Substituting(z, $z) for (z, y) in the functional inequality (2]6) with the cage (2.8), we obtain
by (2.8)

(2.10) 1 (202) +2af (=) || < ¢ (=, 72) |
f(Az) 1 ay 1
f@) = 25| = e (2 —3e) = ye0) < L)

forallz € X. Thusd(f,Tf) < L < oc.
From [2.10) with the casé (2.9), one gets[by|(2.9)

T ax

H)\f (§> - f(x)” < v <_X’ _H) — ()

forallz € X,and sad(Tf, f) <1 < .
Now, it follows from the fixed point alternative in both cases that there exists a unique fixed
point A of T"in the setA = {g € Q|d(f, g) < oo} such that
o f(Amh) L nel T .
(2.11) A(z) = nhjglo ST (A(x) = 7}1}010/\ f <V> : respectwel;)
for all x € X since lim d(T"f, A) = 0. According to the fixed point alternative} is the

n—00

unique fixed point off” in the setA such that

1£(2) =A@ < d(f, AYa(a) < T d(f, T () <

1
1-L

L
1-L

Ya(T)

(Hf(ﬂﬁ) —Az)|| < id(f, Tf)by(x) < Yo(), respectiveg .

Now it follows from (2.7) that

AN (az + by)) + fF(A"(ax = by)) + 2af(=A"z)]]
< A2 (N, Ay),

(IM"Hf(Y”(a.r +by)) + FOA(ax — by)) + 2af(—=A""z)|
< A" oA, A"y, respectivelg

from which we conclude by — oo that the mappingl : X — Y satisfies the equatiop (1.5)
and so it is additive.
The proof of the last assertion in our Theorler 2.4 is obvious by [20]. O

Corollary 2.5. If amappingf : X — Y with f(0) = 0 satisfies the functional inequality

1 (az + by) + f(az — by) + 2af ()| < &)= ]*[|y])”,

forall z,y € X (X \ {0} if o, 5 < 0) and for some fixed, 3 € R, such thatp := o+ €
R,p # 1, \:= —2a # 1 andé§ > 0, then there exists a unique additive mappihig X — Y of
Euler—Lagrange which satisfies the equation](1.5) and the inequality
alP§l|z||P AP .
e L= > Lo <L (A<, p>1);
If@) =A< {7 .
W’L:W |f ’)\‘>1,p>1,(’)\’<1,p<1)
forall z € X (X \ {0}if p <0).
We will investigate the conditions under which itis then possible to find a true additive Euler—
Lagrange mapping of Eq[ (1.6) near an approximate additive Euler-Lagrange mapping of Eq.
(1.6) with small error.
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Theorem 2.6. Suppose that a mapping : X — Y with f(0) = 0 satisfies the functional
inequality

(2.12) 1f(az +by) — flaz —by) +2bf(—y)|| < ¢3(z,y)
andyps : X? — [0, 00) is a mapping satisfying

(2.13) T}Ln;lo MR =0 (TLIEEO A" 3 (/\n, /\”> =0, respectlvelg
forall x,y € X, where|\ := —2b| # 1. If there exists a constarit < 1 such that the mapping

bx =
T — P3(7) = 3 (—aa _X)
has the property

(2.14) Ua(a) < LMwa ()
wg()\x)
(vato) < 2228

for all z € X, then there exists a unique additive mappinig X — Y of Euler—Lagrange
which satisfies the equation (IL.6) and the inequality

L
I7(@) = A@)]| € +=ts(a)

1
(1) - Al < 12

for all z € X. If, moreover,f is measurable orf (¢x) is continuous it for each fixedr € X
thenA(tz) = tA(z) forall x € X andt € R.

Proof. The proof of this theorem is similar to that of Theorem 2.4. O

, respectivel9

Y3(x), respective|9

Corollary 2.7. If amappingf : X — Y with f(0) = 0 satisfies the functional inequality

1f (az +by) — flaz —by) + 2bf (—y)I| < 8]z ]|*[|yl|”,

forall z,y € X (X \ {0} if o, 5 < 0) and for some fixed, 5 € R, such thap := a + 3 € R,
p# 1, A:==2b+# 1andé§ > 0, then there exists a unique additive mappiig X — Y of
Euler—Lagrange which satisfies the equation](1.6) and the inequality

b|*d||z||? :
m if A >1 p<1, (N <1, p>1);

s i A > 1 p> 1 (A <1, p<1)
forall z € X (X \ {0}if p <0).
Corollary 2.8. If a mappingf : X — Y with f(0) = 0 satisfies the functional inequality
If(ax +by) + flaz — by) + 2af(—z)|| <6, |A:=—-2a] #1
(Il f(ax + by) — f(ax — by) + 2bf(—y)|| < d, |\ := —2b|] # 1, respectively

forall z, y € X and for some fixed > 0, then there exists a unique additive mappig X —
Y of Euler—Lagrange which satisfies the equation](1/5) {(1.6), respectively) and the inequality

if Al >1;
Hﬂm—A@ws{ .

If(z) = A(z)]] < {

‘oq

-1

—_
o

forall x € X.
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3. C*-ALGEBRA | SOMORPHISMS BETWEEN UNITAL C*-ALGEBRAS

Throughout this section, assume theandB are unitalC*-algebras. Let/(.A) be the unitary
group of A, A;, the set of invertible elements A, A,, the set of self-adjoint elements i,
A :={a € A|la] = 1}, AT the set of positive elements i#. As an application, we are going
to investigateC*-algebra isomorphisms between unit&i-algebras. We denote Y, the set
of nonnegative integers.

Theorem 3.1.Leth : A — B be a bijective mapping with(0) = 0 for which there exist
mappingsy : A? — RT := [0, oo) satisfying

(3.1) Z L X& M) o

P Ax A— RT, andy : A — R* such that

(3.2) [h(apz + buy) + h(apz — buy) + 2aph(—z)|| < ¢(z,y),
(3.3) |h(A"ux) — h(A"u)h(x)|| < ¥ (N'u, x),

(3.4) [ (A" ") — B (A"u)"|| < ¢ (A"u)

forall y € S' .= {p e C|lul =1}, alu e U(A), all z,y € Aand alln € Ny, where
A= —2a # 1. Assume that

(3.5) lim A"y (A"u,x) =0 for all uweU(A),x € A,
(3.6) lim A7 (N'u) =0 for all ue U(A),
(3.7) lim A™"h (\"ug) € B;,, for some w € A.

n—oo

Then the bijective mapping: .4 — B is in fact aC*-algebra isomorphism.

Proof. Substituting(z, y) for (x, %:c) in the functional inequalitZ) with = 1, we obtain

(3.8) 1h(2az) + 2ah(—2)|| < ¢ <9c %m) ,
’ h(z) h(ix) < ’—i\|<p (——32).

forall z € X. From (3.8), one gets
A\, ——)\Z )

)\

MH

(3.9) Hh(x) -

forall x € X and alln € N. Thus it follows from | ) an9) thatasequer{c‘x,f”h()\”x)}

is Cauchy inY” and it thus converges. Therefore we see that there exists a unique mapping
H : A — B, defined byH (z) := lim,, .. A™"h (\"z) , satisfyingH (0) = 0, the equation| (1]5)
and the inequality

x—/\’)

(3.10) Ih(x) = H@)| < 757> Z

for all z € A. We claim that the mapping/ is C-linear. For this, putting: := 0 andy := 0
separately in[(1]5) one gets thtis odd andH (ax) = aH (z) for all z € A. Now replacingy
by % in (1.5) we getH (ax + ay) + H(ax — ay) = 2aH (x) and soH (z +y) + H(z — y) =
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2H (), which means tha#/ is additive. On the other hand, we obtain frgm [3.1) (3.2) that
H(apx + bpy) + H(apx — buy) — 2apH(x) = 0 for all z,y € A and so

(3.11) H(px) — pH(x) =0

forallz € Aandally € S' = U(C). Now, letn be a nonzero element iti and K a positive
integer greater tha#in|. Then we have | < i <1-— % By [15, Theorem 1], there exist three
elementsuy, iy, s € S' such thaB = 1y + ps + p3. Thus we calculate by (3.11)

H(npz) = H (g : 3%95)

K
= (g) H(pw + poz + p3z)

= (%) (H(le) + H(paw) + H(M:ﬂ))
_ (g) (1 + po + p3)H(x) = (g) : 3%9(%) = nH(z)

foralln € C (n # 0) and allx € A. So the unique mapping : A — B is C-linear, as desired.
By (3.4) and|(3.5), we have
(3.12) Hu*) = lim A™"h (\"u")

n—oo

= lim A™"h (\"u)*

n—oo

= (lim A~ ()\"u)>* — H(u)"

n—oo

for all u € U(A). Since eachx € A is a finite linear combination of unitary elements ([16,
Theorem 4.1.7]),i.ex = 7", cju; (¢; € C,u; € U(A)), we get by|((3.1P)

m

H(z*)=H <Z c_ju;) = Z@H(uj) = ZC_JH(uJ)*
= (ZCjH(uj)> =H (Z Cj“j) = H(z)*

j=1 i=1
for all x € A. So the mappind{ is preserved by involution.
Using the relationd (3]3) and (3.5), we get
(3.13) H(uzx) = lim A™"h (\"uzx)
= lim A™"h (A"u)h(x) = H(u)h(x)

forallu € U(A) and allz € A. Now, letz € A be an arbitrary element. Then= 3" | c;u;
(¢c; € C,u; € U(A)), and it follows from|(3.1B) that

(3.14) H(zx)=H (Z cjuj:v> = chH(ujx) = chH(uj)h(x)

—H (Z cjuj) h(z) = H(z)h(z)

j=1
forall 2,z € A.
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On the other hand, it follows from (3.[L3) and the linearityfbthat the equation
H(uzx) =X"H (N'ux) = \""H (u\"x)
= AN"H(uh(N\'z) = H(u)A™"h (\"z)

holds for allu € U(A) and allz € A. Taking the limit asn — oo in the last equation, we
obtain

(3.15) H(uz) = H(u)H (z)
forall uw € U(A) and allz € A. Using the same argument &s (3.14), we see ffom|(3.15) that

(3.16) H(zx)=H (Z cjujx> = chH(uja:) = chH(uj)H(:E)

—H (Z cjuj> H(z) = H(2)H(z)
j=1
forall z, x € A. Hence the mapping/ is multiplicative.
Finally, it follows from (3.14) and (3.16) that
H(up)H(x) = H(upx) = H(ug)h(x)

for all z € A. SinceH (up) = lim,_..c A™"h (\"uy) is invertible for somey, € A by (3.7),
we see thaf{(x) = h(x) for all z € A. Hence the bijective mapping : A — B is in fact a
C*-algebra isomorphism, as desired. O

Theorem 3.2.Leth : A — B be a bijective mapping with(0) = 0 for which there exist
mappingsy : A? — R := [0, oo) satisfying

Z N (A2, A y) < oo,
i=1

P Ax A— RT, andy : A — R* such that
[h(apx + buy) + h(apz — bupy) + 2aph(—2)|| < (2, y),
[P uz) — (A" u)h(z) || < 1 (A"u, 2),
A (A ) = h (A™0) 7] < ¥ (A )
forall p € S* == {u e C|ul =1}, alu e UA), al z,y € Aand alln € Ny, where
A= —2a # 1. Assume that
lim A" (A "u,2) =0 for all we U(A),z € A,

lim A" (A\u) =0 for all wue U(A),

n—oo

lim A"k (A\™"uo) € By, for some ug € A.

n—oo

Then the bijective mapping: A — B is in fact aC*-algebra isomorphism.
Proof. The proof is similar to that of Theoreim 3.1. O

As an application we shall derive a stability result for the equafior (1.5) which is very con-
nected with the3-homogeneity of the norm oR-spaces.
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Corollary 3.3. Suppose thatr is an F’-space andt a 5-homogeneousg’-space) < ( < 1.
Leth : G — E be amapping withk(0) = 0 for which there exist constants, ¢; > 0 andé > 0
such that

|7z + by) + h(az — by) + 2ah(=z)|| < 6 + &1[z]|”* + &2ly[|”
for all z,y € G, where|\ := —2a| # 1. Then there exists a unique additive mappihgG —
E of Euler—Lagrange which satisfies the equation|(1.5) and the inequality

1A (z) = A(z)]]

) [[=][P2 a [[=][2 i -
st o T e i A > 1, 8p < Lfor all i =1,2,
(IN| < 1,8p; > 1and § = 0);

IA

x||P1 a x||P2 . .
=y + |;\1"|’|’1H—|M + |§|Pp2 &@',',J‘_W if |\ <1,8p; <1for all i=1,2,
(IA| > 1,8p; > 1and 6 = 0)

forall x € G.

Proof. Takingp(z,y) := d +&1||z||"* +2||y||”2 and applying[(3.10) and the corresponding part
of Theorenj 3.1 and Theorgm B.2, respectively, we obtain the desired results in all cages.

Theorem 3.4.Leth : A — B be a bijective mapping satisfyirig0) = 0 and [3.7) for which
there exists a mapping : A?> — R* satisfying[(3.]L), and mappings, 1> such that

[h(apx + buy) + h(apz — bupy) + 2aph(—z)|| < (2, y),
(3.17) [h(X"uz) — h(A"u)h(z)|| < 1 (A"u, z),
(3.18) Ih (") = B (") < & (")
forall pe S*:={peCl|u =1} alue A" andallz,y € Aandalln € Ny, where
A= —2a # 1. Assume that

(3.19) lim A~ (\N'u,x) =0 for all we A", allx e A,
(3.20) lim A7) (\"u) =0 for all we A" .

Then the bijective mapping: A — B is in fact aC*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theofem 3.1, there exists a udilijuear
mappingHd : A — B, defined byH (z) := lim, ., A™"h (A\"x), satisfyingH(0) = 0, the
eguation ) and the functional inequality (3.10).

By (3.18) and[(3.20), we hav# (v*) = H(u)* forallu € A, ", and so

@2y e =i () = 1o () = o ()| = e

for all nonzerov € A*. Now, for any element € A, v = v + ivy, Wherev, v, € Ay,
furthermorepy = v — vy +ivy — iv, , wherev;, vy, v5 andv, are all positive elements (see
[2, Lemma 38.8]). Sincé/ is C-linear, we figure out by (3.21)

H(v*) = H ((vf — vy +iv5 —ivy)")

H(v{") — H(vy ") + H((iv3)") — H((ivy)")
= H(v)" — H(vy)" — iH(vy)" +iH(vy)"
= [H(v] — vy +ivy —ivy)]" = H(v)*

forallv € A.

J. Inequal. Pure and Appl. Math8(4) (2007), Art. 120, 17 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

EULER-LAGRANGE ADDITIVE MAPPINGS 13

Using [3.17) and (3.19) we géf(ux) = H(u)h(z) forallu € A,™ and allz € A, and so
H(vz) = H(v)h(x) forallv € A* and allx € A because

(3.22) H(vz)=H (|v||%| . x) = |v|H <|Z—| : :17)

]v|H<| ‘) h(z) = H(v)h(z), Yve AT,

Now, for any element € A, v = v —v; + vy — iv, , wherev v, ,v; andv, are positive
elements (seé[2, Lemma 38.8]). Thus we calculat¢ by|(3.22) and the lineafity of

(3.23) H(vz) = H<u1+x — T+ v — w;x)
= H(viz) — Hvyz) + iH(viz) — iH (03 @)
= (H(vf) = Hwp) +iH (o)) - il (v3) ) h(x)
= H(v)h(z)

for all v, z € A. By (3.23) and the linearity off, one has

H(vx) = X"H (\"vz) = A""H (v\"x)
= AN"H(v)h(N'x) = H(v)A\""h (\"x),

which yields by taking the limit as — oo
(3.24) H(vx) = H(v)H (z)

forallv,z € A.
It follows from (3.23) and[(3.24) that for a given subject to[(3.]7)

H(up)H(x) = H(upx) = H(ug)h(x)

forall 2 € A. SinceH (ug) = lim,, oo A"k (N"ug) € By, We see that (z) = h(z) for all
x € A. Hence the bijective mapping: A — B is aC*-algebra isomorphism, as desired.[]

Theorem 3.5.Leth : A — B be a bijective mapping with(0) = 0 satisfying[(3.1L),[(3]3) and
(3-4) such that

(3.25) 1h(apx + buy) + h(apx — buy) + 2aph(—2)|| < ¢(z,y)

holds foru = 1,i. Assume that the conditiorjs (B.5), (3.6) and](3.7) are satisfied, and tisat
measurable oh(tzx) is continuous int € R for each fixedr € A. Then the bijective mapping
h: A — BisaC*-algebra isomorphism.

Proof. Fix 1 = 1in (3.23). By the same reasoning as in the proof of The¢rem 3.1, there exists a
unique additive mapping : A — B satisfyingH (0) = 0, the equation| (1|5) and the inequality
@.10).

By the assumption thatis measurable dk(tx) is continuous irt € R for each fixedr € A,
the mappingH : A — B is R-linear, that is,H(tz) = tH(z) forallt € Rand allx € A
[20,[31]. Puty = i in (3.25). Then applying the same argument/io (8.11) as in the proof of
Theoremn 3.1, we obtain that

H(ix) = iH(x),
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andsoforanys = s+ it € C
H(pzx) = H(sx + itx)
= H(sz) + H(itzx)
= sH(x) +itH(x)
=(s+it)H(z) = pH(x)
for all z € A. Hence the mappingf : A — B is C-linear.

The rest of the proof is similar to the corresponding part of Thegrefn 3.1. O
Theorem 3.6.Leth : A — B be a bijective mapping with(0) = 0 satisfying [(3.11),[(3]7),
(3.17) and|(3.1B) such that
(3.26) [h(apx + buy) + h(aps — buy) + 2aph(—2)|| < ¢(z,y)

holds foru = 1,i. Assume that the equatioris (3.19), (8.20) are satisfied, andhtiea-
surable orh(tz) is continuous int € R for each fixedr € A. Then the bijective mapping
h : A — BisaC*-algebra isomorphism.

Proof. The proof is similar to that of Theoreim 3.5. O

4. DERIVATIONS MAPPING INTO THE RADICALS OF BANACH ALGEBRAS

Throughout this section, assume thétis a complex Banach algebra with notfm ||. As
an application, we are going to investigate the stability of derivations on Banach algebras and
consider the range of derivations on Banach algebras.

Lemma4.1l.Leth : A — Abe amapping satisfyink(0) = 0 for which there exists a mapping
¢+ A — R* satisfying[(3.]L) and a mapping : A% — R* satisfying

. (A, AMy)
@4 Jm e =0
forall z,y € X, where) := —2a # 1, such that
(4.2) [h(apx + buy) + h(apz — bupy) + 2aph(—2)|| < (2, y),
(4.3) [h(zy) — h(2)y — zh(y)|| < P(z,y)

forall p € S' .= {u € C| |yl = 1} and allz,y € A. Then there exists a uniqu&linear
derivationH : A — A which satisfies the inequality
iz, —%/\ix)

RY§

(4.4) ) = @)l < 5307 2

forall z € A.

Proof. By the same reasoning as in the proof of Theofem 3.1, there exists a udilijuear
mappingH : A — A, defined byH(x) := lim,,_... A™"h (\"x) , satisfyingH(0) = 0, the
equation[(1.b) and the functional inequality (4.4).

Replacingr andy in ) by \"z and\"y, respectively, and dividing the result by*", we

obtain
B . < Yz, \y)
)\2n A" A" - ’)\’211
for all z,y € A. Taking the limit in the last inequality, one obtains that
H(zy) — H(z)y — xH(y) =0

h(A*"zy)  h(\"x) y h(A™y) ‘
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for all z,y € A becausdim,,_. W — 0 andlim, o, "7 — H(zy). Thus the
mappingH : A — Ais a uniqueC-linear derivation satisfying the functional inequality (4.4).

O

Lemma4.2.Leth : A — Abe amapping satisfyinlg(0) = 0 for which there exists a mapping
¢ : A — RT satisfying

o0

in(L Y
and a mapping) : A?> — R* satisfying
i e (E Y -
(46) Yim N (55 5) = 0
forall x,y € X, where) := —2a # 1, such that
(4.7) [h(apz + buy) + h(apz — buy) + 2aph(—z)| < ¢(z,y),

1P (zy) — h(z)y — ah(y)|| < P(z,y)
forall p € S* .= {p e C| |yl = 1} and allz,y € A. Then there exists a uniqué&linear
derivationH : A — A which satisfies the inequality

I o=, . T aw
(4.8) Ih(z) — H(z)|| < W; iy <_F’_W>

forall z € A.

Corollary 4.3. Let |\ := —2a| # 1. Assume thak : A — A is a mapping satisfying(0) = 0
for which there exist nonnegative consta#its:z,, such that

[h(apz + buy) + h(apx — buy) + 2aph(—x)|| < e,
[h(zy) — h(z)y — xh(y)]] < &2
forall p € S* .= {p e C| |y = 1} and allz,y € A. Then there exists a uniqué-linear

derivationH : A — A which satisfies the inequality

€1
h(z)— H(z)|| < ————
1A (@) =1
forall z € A.

Lemma 4.4. Leth : A — A be a linear mapping for which there exists a mapping .4> —
R* satisfying either

(4.9) im0 on lim A ¥ (3 3w) =0
forall =,y € X, where) := —2a is a nonzero real number witk = 1, such that
(4.10) 1h(zy) = h(z)y — xh(y)|| < ¥(z,y)

for all x,y € A. Then the mapping is in fact a derivation onA.
Proof. Takingy(z,y) := 0 in the previous two lemmas, we have the desired result. [

Theorem 4.5. Let A be a commutative Banach algebra. lLet A — A be a given linear
mapping and an approximate derivation with differeri¢e bounded by), that is, there exists
a mappingy : A x A — R" such that

(4.11) IDh(z,y) == h(zy) — h(z)y — zh(y)|| < ¢(z,y)
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for all z,y € A. Assume that there exists a nonzero real numbeith A\ # 1 such that the
limit

Az, A"
(4.12) lim Y7 A"Y)

n—o00 |)\‘2n

=0 (lim PAREY (i i) =0, respectivel?

n—oo A”’ L
for all =,y € A. Then the mapping is in fact a linear derivation which maps the algebra into
its radical.

Proof. By Lemmd 4.4, the mappingyis in fact a linear derivation which maps the algebra into
its radical by Thomas’ result [33]. O

It is well-known that all linear derivations on commutative semi-simple Banach algebras
are zero([38]. We remark that every linear mappingn a commutative semi-simple Banach
algebra, which is an approximate derivation satisfyjing (4.11) [and|(4.12), is also zero.
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