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ABSTRACT. In 1940 S.M. Ulam proposed the famous Ulam stability problem. In 1941 D.H.
Hyers solved the well-known Ulam stability problem for additive mappings subject to the Hyers
condition on approximately additive mappings. In this paper we introduce generalized addi-
tive mappings of Jensen type mappings and establish new theorems about the Ulam stability of
additive and alternative additive mappings.
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1. I NTRODUCTION

In 1940 and in 1964 S.M. Ulam [34] proposed the famous Ulam stability problem:
“When is it true that by changing a little the hypotheses of a theorem one can still assert that

the thesis of the theorem remains true or approximately true?”
For very general functional equations, the concept of stability for a functional equation arises

when we replace the functional equation by an inequality which acts as a perturbation of the
equation. Thus the stability question of functional equations is: Do the solutions of the in-
equality differ from those of the given functional equation? If the answer is affirmative, we
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would say that the equation is stable. These stability results can be applied in stochastic anal-
ysis [17], financial and actuarial mathematics, as well as in psychology and sociology. We
wish to note that stability properties of different functional equations can have applications to
unrelated fields. For instance, Zhou [35] used a stability property of the functional equation
f(x−y)+f(x+y) = 2f(x) to prove a conjecture of Z. Ditzian about the relationship between
the smoothness of a mapping and the degree of its approximation by the associated Bernstein
polynomials.

In 1941 D.H. Hyers [8] solved this stability problem for additive mappings subject to the
Hyers condition on approximately additive mappings. In 1978 P.M. Gruber [7] remarked that
Ulam’s problem is of particular interest in probability theory and in the case of functional equa-
tions of different types. Th.M. Rassias [31] and then P. Gǎvruta [5] obtained generalized results
of Hyers’ Theorem which allow the Cauchy difference to be unbounded. The stability prob-
lems of several functional equations have been extensively investigated by a number of authors
and there are many interesting results concerning this problem. In 1982–2006 J.M. Rassias
[20, 21, 23, 24, 25, 26, 27] established the Hyers–Ulam stability of linear and nonlinear map-
pings. In 2003-2006 J.M. Rassias and M.J. Rassias [28, 29] and J.M. Rassias [30] solved the
above Ulam problem for Jensen and Jensen type mappings. In 1999 P. Gǎvruta [6] answered a
question of J.M. Rassias [22] concerning the stability of the Cauchy equation.

We note that J.M. Rassias introduced theEuler–Lagrange quadratic mappings,motivated
from the following pertinent algebraic equation

(1.1) |a1x1 + a2x2|2 + |a2x1 − a1x2|2 = (a2
1 + a2

2)
[
|x1|2 + |x2|2

]
.

Thus the third author of this paper introduced and investigated the stability problem of Ulam
for the relativeEuler–Lagrange functional equation

(1.2) f(a1x1 + a2x2) + f(a2x1 − a1x2) = (a2
1 + a2

2) [f(x1) + f(x2)] .

in the publications [23, 24, 25]. Analogous quadratic mappings were introduced and investi-
gated through J.M Rassias’ publications [26, 29]. Before 1992 these mappings and equations
were not known at all in functional equations and inequalities. However, a completely different
kind of Euler–Lagrange partial differential equation is known in calculus of variations. In this
paper we introduce Cauchy and Cauchy–Jensen mappings of Euler–Lagrange and thus general-
ize Ulam stability results controlled by more general mappings, by considering approximately
Cauchy and Cauchy–Jensen mappings of Euler–Lagrange satisfying conditions much weaker
than D.H. Hyers and J.M. Rassias conditions on approximately Cauchy and Cauchy–Jensen
mappings of Euler–Lagrange.

Throughout this paper, letX be a real normed space andY a real Banach space in the case
of functional inequalities. Also, letX andY be real linear spaces for functional equations. Let
us denote byN the set of all natural numbers and byR the set of all real numbers.

Definition 1.1. A mappingA : X → Y is calledadditiveif A satisfies the functional equation

(1.3) A(x+ y) = A(x) + A(y)

for all x, y ∈ X. We note that the equation (1.3) is equivalent tothe Jensen equation

2A

(
x+ y

2

)
= A(x) + A(y)

for all x, y ∈ X andA(0) = 0.

Now we consider a mappingA : X → Y , which may be analogously calledEuler–Lagrange
additive, satisfying the functional equation

(1.4) A(ax+ by) + A(bx+ ay) + (a+ b)[A(−x) + A(−y)] = 0
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EULER–LAGRANGE ADDITIVE MAPPINGS 3

for all x, y ∈ X, wherea, b ∈ R are nonzero fixed reals witha + b 6= 0. Next, we consider a
mappingA : X → Y of Euler–Lagrange satisfying the functional equation

(1.5) A(ax+ by) + A(ax− by) + 2aA(−x) = 0

which is equivalent to the equation of Jensen type

A(x) + A(y) + 2aA

(
−x+ y

2a

)
= 0

for all x, y ∈ X, wherea, b ∈ R are nonzero fixed reals. It is easy to see that if the equation
(1.5) holds for allx, y ∈ X andA(0) = 0, then equation (1.3) holds for allx, y ∈ X. However,
the converse does not hold. In fact, choosea, x0 ∈ R and an additive mappingA : R → R such
thatA(ax0) 6= aA(x0). In this case, (1.3) holds for allx, y ∈ R andA(0) = 0. But we see that

A(ax0 + 0) + A(ax0 − 0) + 2aA(−x0) = 2A(ax0)− 2aA(ax0) 6= 0,

and thus (1.5) does not hold. However we can show that if (1.3) holds for allx, y ∈ X and
A(ax) = aA(x), then (1.5) holds for allx, y ∈ X. Alternatively, we investigate the functional
equation of Euler–Lagrange

(1.6) A(ax+ by)− A(ax− by) + 2bA(−y) = 0

for all x, y ∈ X. We note that the equation (1.6) is equivalent to

(1.7) A(x)− A(y) + 2bA

(
−x− y

2b

)
= 0

for all x, y ∈ X, wherea, b ∈ R are nonzero fixed reals. It follows that (1.6) implies (1.3).
However we can show that if (1.3) holds for allx, y ∈ X andA(bx) = bA(x), then (1.5) holds
for all x, y ∈ X.

2. STABILITY OF EULER –LAGRANGE ADDITIVE M APPINGS

We will investigate the conditions under which it is possible to find a true Euler–Lagrange
additive mapping near an approximate Euler–Lagrange additive mapping with small error. We
note that ifλ = 1 in the next two theorems, then the mappingϕ1 is identically zero by the
convergence of series and thusf is itself the solution of the equation (1.4). Thus we may
assume without loss of generality thatλ 6= 1 in these theorems.

Theorem 2.1. Assume that there exists a mappingϕ1 : X2 → [0,∞) for which a mapping
f : X → Y satisfies the inequality

(2.1) ‖f(ax+ by) + f(bx+ ay) + (a+ b)[f(−x) + f(−y)]‖ ≤ ϕ1(x, y)

and the series

(2.2)
∞∑
i=1

|λ|iϕ1

( x
λi
,
y

λi

)
<∞

for all x, y ∈ X, whereλ := −(a+b) 6= 0. Then there exists a unique Euler–Lagrange additive
mappingA : X → Y which satisfies the equation (1.4) and the inequality

(2.3) ‖f(x)− A(x)‖ ≤ 1

2|λ|

∞∑
i=1

|λ|iϕ1

(
−x
λi
,
−x
λi

)
for all x ∈ X.
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Proof. Substitutingx for y in the functional inequality (2.1), we obtain

(2.4) 2‖f(−λx)− λf(−x)‖ ≤ ϕ1(x, x),
∥∥∥f(x)− λf

(x
λ

)∥∥∥ ≤ 1

2
ϕ1

(
−x
λ
,
−x
λ

)
for all x ∈ X. Therefore from (2.4) withx

λi in place ofx (i = 1, . . . , n − 1) and iterating, one
gets

(2.5)
∥∥∥f(x)− λnf

( x
λn

)∥∥∥ ≤ 1

2|λ|

n∑
i=1

|λ|iϕ1

(
−x
λi
,
−x
λi

)
for all x ∈ X and alln ∈ N. By (2.5), for anyn > m ≥ 0 we have∥∥∥λmf ( x

λm

)
− λnf

( x
λn

)∥∥∥ = |λ|m
∥∥∥f ( x

λm

)
− λn−mf

( x

λn−mλm

)∥∥∥
≤ 1

2|λ|

n−m∑
i=1

|λ|i+mϕ1

(
−x
λi+m

,
−x
λi+m

)
which tends to zero by (2.2) asm tends to infinity. Thus it follows that a sequence

{
λnf( x

λn )
}

is Cauchy inY and it thus converges. Therefore we see that a mappingA : X → Y defined by

A(x) := lim
n→∞

λnf
( x
λn

)
= lim

n→∞
(−a− b)nf

(
x

(−a− b)n

)
exists for allx ∈ X. In addition it is clear from (2.1) and (2.2) that the following inequality

‖A(ax+ by) + A(bx+ ay) + (a+ b)[A(−x) + A(−y)]‖
= lim

n→∞
|λ|n‖f(λ−n(ax+ by)) + f(λ−n(bx+ ay)) + (a+ b)[f(−λ−nx) + f(−λ−ny)]‖

≤ lim
n→∞

|λ|nϕ1(λ
−nx, λ−ny) = 0

holds for allx, y ∈ X. Thus taking the limitn→∞ in (2.5), we find that the mappingA is an
Euler–Lagrange additive mapping satisfying the equation (1.4) and the inequality (2.3) near the
approximate mappingf : X → Y .

To prove the afore-mentioned uniqueness, we assume now that there is another Euler–Lagrange
additive mappingǍ : X → Y which satisfies the equation (1.4) and the inequality (2.3). Then
it follows easily that by settingy := x in (1.4) we get

λnA(x) = A(λnx), λnǍ(x) = Ǎ(λnx)

for all x ∈ X and alln ∈ N. Thus from the last equality and (2.3) one proves that

‖A(x)− Ǎ(x)‖ = |λ|n‖A(λ−nx)− Ǎ(λ−nx)‖
≤ |λ|n

(∥∥A(λ−nx)− f(λ−nx)
∥∥+

∥∥f(λ−nx)− Ǎ(λ−nx)
∥∥)

≤ 1

|λ|

∞∑
i=1

|λ|i+nϕ1(−λ−i−nx,−λ−i−nx)

for all x ∈ X and alln ∈ N. Therefore fromn→∞, one establishes

A(x)− Ǎ(x) = 0

for all x ∈ X, completing the proof of uniqueness. �

Theorem 2.2. Assume that there exists a mappingϕ1 : X2 → [0,∞) for which a mapping
f : X → Y satisfies the inequality

‖f(ax+ by) + f(bx+ ay) + (a+ b)[f(−x) + f(−y)]‖ ≤ ϕ1(x, y)
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and the series
∞∑
i=0

ϕ1(λ
ix, λiy)

|λ|i
<∞

for all x, y ∈ X, whereλ := −(a + b). Then there exists a unique Euler–Lagrange additive
mappingA : X → Y which satisfies the equation (1.4) and the inequality

‖f(x)− A(x)‖ ≤ 1

2|λ|

∞∑
i=0

ϕ1(−λix,−λix)
|λ|i

for all x ∈ X.

We obtain the following corollary concerning the stability for approximately Euler–Lagrange
additive mappings in terms of a product of powers of norms.

Corollary 2.3. If a mappingf : X → Y satisfies the functional inequality

‖f(ax+ by) + f(bx+ ay) + (a+ b)[f(−x) + f(−y)]‖ ≤ δ‖x‖α‖y‖β,

for all x, y ∈ X (X \ {0} if α, β ≤ 0) and for some fixedα, β ∈ R, such thatρ := α + β ∈
R, ρ 6= 1, λ := −(a + b) 6= 1 andδ ≥ 0, then there exists a unique Euler–Lagrange additive
mappingA : X → Y which satisfies the equation (1.4) and the inequality

‖f(x)− A(x)‖ ≤


δ‖x‖ρ

2(|λ|−|λ|ρ)
if |λ| > 1, ρ < 1 (|λ| < 1, ρ > 1);

δ‖x‖ρ

2(|λ|ρ−|λ|) if |λ| > 1, ρ > 1 (|λ| < 1, ρ < 1)

for all x ∈ X (X \ {0} if ρ ≤ 0). The mappingA is defined by the formula

A(x) =

 lim
n→∞

f(λnx)
λn , if |λ| > 1, ρ < 1 (|λ| < 1, ρ > 1);

lim
n→∞

λnf
(
x
λn

)
, if |λ| > 1, ρ > 1 (|λ| < 1, ρ < 1).

Now we are going to investigate the stability problem of the Euler–Lagrange type equation
(1.5), [23, 24, 25], by using either Banach’s contraction principle or fixed points. For explicit
later use, we state the following theorem (The alternative of fixed point) [18, 32] : Suppose
that we are given a complete generalized metric space(Ω, d) and a strictly contractive mapping
T : Ω → Ω with Lipschitz constantL. Then for each givenx ∈ Ω, either

d(T nx, T n+1x) = ∞ for all n ≥ 0,

or there exists a nonnegative integern0 such that

(1) d(T nx, T n+1x) <∞ for all n ≥ n0;
(2) the sequence(T nx) is convergent to a fixed pointy∗ of T ;
(3) y∗ is the unique fixed point ofT in the set∆ := {y ∈ Ω|d(T n0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Ty) for all y ∈ ∆.

The reader is referred to the book of D.H. Hyers, G. Isac and Th.M. Rassias [10] for an
extensive theory of fixed points with a large variety of applications. In recent years, L. Cădariu
and V. Radu [3, 4] applied the fixed point method to the investigation of the Cauchy and Jensen
functional equations. Using such an elegant idea, they could present a short and simple proof
for the stability of these equations [19, 19]. The reader can be referred to the references [11, 12,
13, 14].

Utilizing the above mentioned fixed point alternative, we now obtain our main stability result
for the equation (1.5).
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Theorem 2.4. Suppose that a mappingf : X → Y with f(0) = 0 satisfies the functional
inequality

(2.6) ‖f(ax+ by) + f(ax− by) + 2af(−x)‖ ≤ ϕ2(x, y)

andϕ2 : X2 → [0,∞) is a mapping satisfying

(2.7) lim
n→∞

ϕ2(λ
nx, λny)

|λ|n
= 0

(
lim
n→∞

|λ|nϕ2

( x
λn
,
y

λn

)
= 0, respectively

)
for all x, y ∈ X, where|λ := −2a| 6= 1. If there exists a constantL < 1 such that the mapping

x 7→ ψ2(x) := ϕ2

(
−x
λ
,−ax

bλ

)
has the property

ψ2(x) ≤ L|λ|ψ2

(x
λ

)
,(2.8) (

ψ2(x) ≤ L
ψ2(λx)

|λ|
, respectively

)
(2.9)

for all x ∈ X, then there exists a unique additive mappingA : X → Y of Euler–Lagrange
which satisfies the equation (1.5) and the inequality

‖f(x)− A(x)‖ ≤ L

1− L
ψ2(x)(

‖f(x)− A(x)‖ ≤ 1

1− L
ψ2(x), respectively

)
for all x ∈ X. If, moreover,f is measurable orf(tx) is continuous int for each fixedx ∈ X
thenA(tx) = tA(x) for all x ∈ X andt ∈ R.

Proof. Consider the function space

Ω := {g | g : X → Y, g(0) = 0}
equipped with the generalized metricd onΩ,

d(g, h) := inf{K ∈ [0,∞] | ‖g(x)− h(x)‖ ≤ Kψ2(x), x ∈ X}.
It is easy to see that(Ω, d) is complete generalized metric space.

Now we define an operatorT : Ω → Ω by

Tg(x) :=
g(λx)

λ

(
Tg(x) := λg

(x
λ

)
, respectively

)
for all x ∈ X. Note that for allg, h ∈ Ω with d(g, h) ≤ K, one has

‖g(x)− h(x)‖ ≤ Kψ2(x), x ∈ X,
which implies by (2.8)∥∥∥∥g(λx)λ

− h(λx)

λ

∥∥∥∥ ≤ Kψ2(λx)

|λ|
≤ LKψ2(x), x ∈ X.

Hence we see that for all constantSK ∈ [0,∞] with d(g, h) ≤ K,

d(Tg, Th) ≤ LK,

or d(Tg, Th) ≤ Ld(g, h),

that is,T is a strictly self-mapping ofΩ with the Lipschitz constantL.
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Substituting(x, a
b
x) for (x, y) in the functional inequality (2.6) with the case (2.8), we obtain

by (2.8)

‖f(2ax) + 2af(−x)‖ ≤ ϕ2

(
x,
a

b
x
)
,(2.10) ∥∥∥∥f(x)− f(λx)

λ

∥∥∥∥ ≤ 1

|λ|
ϕ2

(
−x,−a

b
x
)

=
1

|λ|
ψ2(λx) ≤ Lψ2(x)

for all x ∈ X. Thusd(f, Tf) ≤ L <∞.
From (2.10) with the case (2.9), one gets by (2.9)∥∥∥λf (x

λ

)
− f(x)

∥∥∥ ≤ ϕ2

(
−x
λ
,−ax

bλ

)
= ψ2(x)

for all x ∈ X, and sod(Tf, f) ≤ 1 <∞.
Now, it follows from the fixed point alternative in both cases that there exists a unique fixed

pointA of T in the set∆ = {g ∈ Ω|d(f, g) <∞} such that

(2.11) A(x) := lim
n→∞

f(λnx)

λn

(
A(x) := lim

n→∞
λnf

( x
λn

)
, respectively

)
for all x ∈ X since lim

n→∞
d(T nf, A) = 0. According to the fixed point alternative,A is the

unique fixed point ofT in the set∆ such that

‖f(x)− A(x)‖ ≤ d(f, A)ψ2(x) ≤
1

1− L
d(f, Tf)ψ2(x) ≤

L

1− L
ψ2(x)(

‖f(x)− A(x)‖ ≤ 1

1− L
d(f, Tf)ψ2(x) ≤

1

1− L
ψ2(x), respectively

)
.

Now it follows from (2.7) that

|λ|−n‖f(λn(ax+ by)) + f(λn(ax− by)) + 2af(−λnx)‖
≤ |λ|−nϕ2(λ

nx, λny),(
|λ|n‖f(λ−n(ax+ by)) + f(λ−n(ax− by)) + 2af(−λ−nx)‖

≤ |λ|nϕ2(λ
−nx, λ−ny), respectively

)
from which we conclude byn → ∞ that the mappingA : X → Y satisfies the equation (1.5)
and so it is additive.

The proof of the last assertion in our Theorem 2.4 is obvious by [20]. �

Corollary 2.5. If a mappingf : X → Y with f(0) = 0 satisfies the functional inequality

‖f(ax+ by) + f(ax− by) + 2af(−x)‖ ≤ δ‖x‖α‖y‖β,
for all x, y ∈ X (X \ {0} if α, β ≤ 0) and for some fixedα, β ∈ R, such thatρ := α + β ∈
R, ρ 6= 1, λ := −2a 6= 1 andδ ≥ 0, then there exists a unique additive mappingA : X → Y of
Euler–Lagrange which satisfies the equation (1.5) and the inequality

‖f(x)− A(x)‖ ≤


|a|βδ‖x‖ρ

|b|β(|λ|−|λ|ρ)
, L = |λ|ρ

|λ| if |λ| > 1, ρ < 1, (|λ| < 1, ρ > 1);

|a|βδ‖x‖ρ

|b|β(|λ|ρ−|λ|) , L = |λ|
|λ|ρ if |λ| > 1, ρ > 1, (|λ| < 1, ρ < 1)

for all x ∈ X (X \ {0} if ρ ≤ 0).

We will investigate the conditions under which it is then possible to find a true additive Euler–
Lagrange mapping of Eq. (1.6) near an approximate additive Euler–Lagrange mapping of Eq.
(1.6) with small error.

J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 120, 17 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


8 HARK-MAHN K IM , K IL -WOUNG JUN, AND J.M. RASSIAS

Theorem 2.6. Suppose that a mappingf : X → Y with f(0) = 0 satisfies the functional
inequality

(2.12) ‖f(ax+ by)− f(ax− by) + 2bf(−y)‖ ≤ ϕ3(x, y)

andϕ3 : X2 → [0,∞) is a mapping satisfying

(2.13) lim
n→∞

ϕ3(λ
nx, λny)

|λ|n
= 0

(
lim
n→∞

|λ|nϕ3

( x
λn
,
y

λn

)
= 0, respectively

)
for all x, y ∈ X, where|λ := −2b| 6= 1. If there exists a constantL < 1 such that the mapping

x 7→ ψ3(x) := ϕ3

(
− bx
aλ
,−x

λ

)
has the property

ψ3(x) ≤ L|λ|ψ3

(x
λ

)
,(2.14) (

ψ3(x) ≤ L
ψ3(λx)

|λ|
, respectively

)
for all x ∈ X, then there exists a unique additive mappingA : X → Y of Euler–Lagrange
which satisfies the equation (1.6) and the inequality

‖f(x)− A(x)‖ ≤ L

1− L
ψ3(x)(

‖f(x)− A(x)‖ ≤ 1

1− L
ψ3(x), respectively

)
for all x ∈ X. If, moreover,f is measurable orf(tx) is continuous int for each fixedx ∈ X
thenA(tx) = tA(x) for all x ∈ X andt ∈ R.

Proof. The proof of this theorem is similar to that of Theorem 2.4. �

Corollary 2.7. If a mappingf : X → Y with f(0) = 0 satisfies the functional inequality

‖f(ax+ by)− f(ax− by) + 2bf(−y)‖ ≤ δ‖x‖α‖y‖β,
for all x, y ∈ X (X \ {0} if α, β ≤ 0) and for some fixedα, β ∈ R, such thatρ := α + β ∈ R,
ρ 6= 1, λ := −2b 6= 1 andδ ≥ 0, then there exists a unique additive mappingA : X → Y of
Euler–Lagrange which satisfies the equation (1.6) and the inequality

‖f(x)− A(x)‖ ≤


|b|αδ‖x‖ρ

|a|α(|λ|−|λ|ρ)
if |λ| > 1, ρ < 1, (|λ| < 1, ρ > 1);

|b|αδ‖x‖ρ

|a|α(|λ|ρ−|λ|) if |λ| > 1, ρ > 1 (|λ| < 1, ρ < 1)

for all x ∈ X (X \ {0} if ρ ≤ 0).

Corollary 2.8. If a mappingf : X → Y with f(0) = 0 satisfies the functional inequality

‖f(ax+ by) + f(ax− by) + 2af(−x)‖ ≤ δ, |λ := −2a| 6= 1

(‖f(ax+ by)− f(ax− by) + 2bf(−y)‖ ≤ δ, |λ := −2b| 6= 1, respectively)

for all x, y ∈ X and for some fixedδ ≥ 0, then there exists a unique additive mappingA : X →
Y of Euler–Lagrange which satisfies the equation (1.5) ((1.6), respectively) and the inequality

‖f(x)− A(x)‖ ≤

{
δ

|λ|−1
if |λ| > 1;

δ
1−|λ| if |λ| < 1

for all x ∈ X.
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3. C∗-ALGEBRA I SOMORPHISMS BETWEEN UNITAL C∗-ALGEBRAS

Throughout this section, assume thatA andB are unitalC∗-algebras. LetU(A) be the unitary
group ofA, Ain the set of invertible elements inA, Asa the set of self-adjoint elements inA,
A1 := {a ∈ A | |a| = 1},A+ the set of positive elements inA. As an application, we are going
to investigateC∗-algebra isomorphisms between unitalC∗-algebras. We denote byN0 the set
of nonnegative integers.

Theorem 3.1. Let h : A → B be a bijective mapping withh(0) = 0 for which there exist
mappingsϕ : A2 → R+ := [0,∞) satisfying

(3.1)
∞∑
i=0

ϕ(λix, λiy)

|λ|i
<∞,

ψ1 : A×A → R+, andψ : A → R+ such that

‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y),(3.2)

‖h(λnux)− h(λnu)h(x)‖ ≤ ψ1(λ
nu, x),(3.3)

‖h (λnu∗)− h (λnu)∗‖ ≤ ψ (λnu)(3.4)

for all µ ∈ S1 := {µ ∈ C | |µ| = 1}, all u ∈ U(A), all x, y ∈ A and all n ∈ N0, where
λ := −2a 6= 1. Assume that

lim
n→∞

λ−nψ1 (λnu, x) = 0 for all u ∈ U(A), x ∈ A,(3.5)

lim
n→∞

λ−nψ (λnu) = 0 for all u ∈ U(A),(3.6)

lim
n→∞

λ−nh (λnu0) ∈ Bin for some u0 ∈ A.(3.7)

Then the bijective mappingh : A → B is in fact aC∗-algebra isomorphism.

Proof. Substituting(x, y) for
(
x, a

b
x
)

in the functional inequality (3.2) withµ = 1, we obtain

‖h(2ax) + 2ah(−x)‖ ≤ ϕ
(
x,
a

b
x
)
,(3.8) ∥∥∥∥h(x)− h(λx)

λ

∥∥∥∥ ≤ 1

|λ|
ϕ
(
−x,−a

b
x
)
,

for all x ∈ X. From (3.8), one gets

(3.9)

∥∥∥∥h(x)− h(λnx)

λn

∥∥∥∥ ≤ 1

|λ|

n−1∑
i=0

ϕ
(
−λix,−a

b
λix
)

|λ|i

for all x ∈ X and alln ∈ N. Thus it follows from (3.1) and (3.9) that a sequence
{
λ−nh(λnx)

}
is Cauchy inY and it thus converges. Therefore we see that there exists a unique mapping
H : A → B, defined byH(x) := limn→∞ λ−nh (λnx) , satisfyingH(0) = 0, the equation (1.5)
and the inequality

(3.10) ‖h(x)−H(x)‖ ≤ 1

|λ|

∞∑
i=0

ϕ
(
−λix,−a

b
λix
)

|λ|i

for all x ∈ A. We claim that the mappingH is C-linear. For this, puttingx := 0 andy := 0
separately in (1.5) one gets thatH is odd andH(ax) = aH(x) for all x ∈ A. Now replacingy
by ay

b
in (1.5) we getH(ax + ay) +H(ax − ay) = 2aH(x) and soH(x + y) +H(x − y) =
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2H(x), which means thatH is additive. On the other hand, we obtain from (3.1) and (3.2) that
H(aµx+ bµy) +H(aµx− bµy)− 2aµH(x) = 0 for all x, y ∈ A and so

(3.11) H(µx)− µH(x) = 0

for all x ∈ A and allµ ∈ S1 = U(C). Now, letη be a nonzero element inC andK a positive
integer greater than4|η|. Then we have| η

K
| < 1

4
< 1− 2

3
. By [15, Theorem 1], there exist three

elementsµ1, µ2, µ3 ∈ S1 such that3 η
K

= µ1 + µ2 + µ3. Thus we calculate by (3.11)

H(ηx) = H

(
K

3
· 3 η
K
x

)
=

(
K

3

)
H(µ1x+ µ2x+ µ3x)

=

(
K

3

)(
H(µ1x) +H(µ2x) +H(µ3x)

)
=

(
K

3

)
(µ1 + µ2 + µ3)H(x) =

(
K

3

)
· 3 η
K
g(x) = ηH(x)

for all η ∈ C (η 6= 0) and allx ∈ A. So the unique mappingH : A → B is C-linear, as desired.
By (3.4) and (3.6), we have

H(u∗) = lim
n→∞

λ−nh (λnu∗)(3.12)

= lim
n→∞

λ−nh (λnu)∗

=
(

lim
n→∞

λ−nh (λnu)
)∗

= H(u)∗

for all u ∈ U(A). Since eachx ∈ A is a finite linear combination of unitary elements ([16,
Theorem 4.1.7]), i.e.,x =

∑m
j=1 cjuj (cj ∈ C, uj ∈ U(A)), we get by (3.12)

H(x∗) = H

(
m∑
j=1

c̄ju
∗
j

)
=

m∑
j=1

c̄jH(u∗j) =
m∑
j=1

c̄jH(uj)
∗

=

(
m∑
j=1

cjH(uj)

)∗
= H

(
m∑
j=1

cjuj

)∗
= H(x)∗

for all x ∈ A. So the mappingH is preserved by involution.
Using the relations (3.3) and (3.5), we get

H(ux) = lim
n→∞

λ−nh (λnux)(3.13)

= lim
n→∞

λ−nh (λnu)h(x) = H(u)h(x)

for all u ∈ U(A) and allx ∈ A. Now, letz ∈ A be an arbitrary element. Thenz =
∑m

j=1 cjuj
(cj ∈ C, uj ∈ U(A)), and it follows from (3.13) that

H(zx) = H

(
m∑
j=1

cjujx

)
=

m∑
j=1

cjH(ujx) =
m∑
j=1

cjH(uj)h(x)(3.14)

= H

(
m∑
j=1

cjuj

)
h(x) = H(z)h(x)

for all z, x ∈ A.
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On the other hand, it follows from (3.13) and the linearity ofH that the equation

H(ux) = λ−nH (λnux) = λ−nH (uλnx)

= λ−nH(u)h (λnx) = H(u)λ−nh (λnx)

holds for allu ∈ U(A) and allx ∈ A. Taking the limit asn → ∞ in the last equation, we
obtain

(3.15) H(ux) = H(u)H(x)

for all u ∈ U(A) and allx ∈ A. Using the same argument as (3.14), we see from (3.15) that

H(zx) = H

(
m∑
j=1

cjujx

)
=

m∑
j=1

cjH(ujx) =
m∑
j=1

cjH(uj)H(x)(3.16)

= H

(
m∑
j=1

cjuj

)
H(x) = H(z)H(x)

for all z, x ∈ A. Hence the mappingH is multiplicative.
Finally, it follows from (3.14) and (3.16) that

H(u0)H(x) = H(u0x) = H(u0)h(x)

for all x ∈ A. SinceH(u0) = limn→∞ λ−nh (λnu0) is invertible for someu0 ∈ A by (3.7),
we see thatH(x) = h(x) for all x ∈ A. Hence the bijective mappingh : A → B is in fact a
C∗-algebra isomorphism, as desired. �

Theorem 3.2. Let h : A → B be a bijective mapping withh(0) = 0 for which there exist
mappingsϕ : A2 → R+ := [0,∞) satisfying

∞∑
i=1

|λ|iϕ(λ−ix, λ−iy) <∞,

ψ1 : A×A → R+, andψ : A → R+ such that

‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y),

‖h(λ−nux)− h(λ−nu)h(x)‖ ≤ ψ1(λ
−nu, x),∥∥h (λ−nu∗)− h

(
λ−nu

)∗∥∥ ≤ ψ
(
λ−nu

)
for all µ ∈ S1 := {µ ∈ C | |µ| = 1}, all u ∈ U(A), all x, y ∈ A and all n ∈ N0, where
λ := −2a 6= 1. Assume that

lim
n→∞

λnψ1

(
λ−nu, x

)
= 0 for all u ∈ U(A), x ∈ A,

lim
n→∞

λnψ
(
λ−nu

)
= 0 for all u ∈ U(A),

lim
n→∞

λnh
(
λ−nu0

)
∈ Bin for some u0 ∈ A.

Then the bijective mappingh : A → B is in fact aC∗-algebra isomorphism.

Proof. The proof is similar to that of Theorem 3.1. �

As an application we shall derive a stability result for the equation (1.5) which is very con-
nected with theβ-homogeneity of the norm onF -spaces.

J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 120, 17 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


12 HARK-MAHN K IM , K IL -WOUNG JUN, AND J.M. RASSIAS

Corollary 3.3. Suppose thatG is anF -space andE a β-homogeneousF -space,0 < β ≤ 1.
Leth : G→ E be a mapping withh(0) = 0 for which there exist constantspi, εi ≥ 0 andδ ≥ 0
such that

‖h(ax+ by) + h(ax− by) + 2ah(−x)‖ ≤ δ + ε1‖x‖p1 + ε2‖y‖p2

for all x, y ∈ G, where|λ := −2a| 6= 1. Then there exists a unique additive mappingA : G→
E of Euler–Lagrange which satisfies the equation (1.5) and the inequality

‖h(x)− A(x)‖

≤



δ
|λ|−1

+ ε1‖x‖p1

|λ|−|λ|βp1
+ |a

b
|βp2 ε2‖x‖p2

|λ|−|λ|βp2
, if |λ| > 1, βpi < 1 for all i = 1, 2,

(|λ| < 1, βpi > 1 and δ = 0);

δ
1−|λ| +

ε1‖x‖p1

|λ|βp1−|λ| + |a
b
|βp2 ε2‖x‖p2

|λ|βp2−|λ| , if |λ| < 1, βpi < 1 for all i = 1, 2,

(|λ| > 1, βpi > 1 and δ = 0)

for all x ∈ G.

Proof. Takingϕ(x, y) := δ+ε1‖x‖p1 +ε2‖y‖p2 and applying (3.10) and the corresponding part
of Theorem 3.1 and Theorem 3.2, respectively, we obtain the desired results in all cases.�

Theorem 3.4. Leth : A → B be a bijective mapping satisfyingh(0) = 0 and (3.7) for which
there exists a mappingϕ : A2 → R+ satisfying (3.1), and mappingsψ1, ψ such that

‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y),

‖h(λnux)− h(λnu)h(x)‖ ≤ ψ1(λ
nu, x),(3.17)

‖h (λnu∗)− h (λnu)∗‖ ≤ ψ (λnu)(3.18)

for all µ ∈ S1 := {µ ∈ C | |µ| = 1}, all u ∈ A1
+ and all x, y ∈ A and all n ∈ N0, where

λ := −2a 6= 1. Assume that

lim
n→∞

λ−nψ1 (λnu, x) = 0 for all u ∈ A1
+, all x ∈ A,(3.19)

lim
n→∞

λ−nψ (λnu) = 0 for all u ∈ A1
+.(3.20)

Then the bijective mappingh : A → B is in fact aC∗-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 3.1, there exists a uniqueC-linear
mappingH : A → B, defined byH(x) := limn→∞ λ−nh (λnx) , satisfyingH(0) = 0, the
equation (1.5) and the functional inequality (3.10).

By (3.18) and (3.20), we haveH(u∗) = H(u)∗ for all u ∈ A1
+, and so

H(v∗) = H

(
|v| · v

∗

|v|

)
= |v|H

(
v∗

|v|

)
=

[
|v|H

(
v

|v|

)]∗
= H(v)∗(3.21)

for all nonzerov ∈ A+. Now, for any elementv ∈ A, v = v1 + iv2, wherev1, v2 ∈ Asa;
furthermore,v = v+

1 − v−1 + iv+
2 − iv−2 , wherev+

1 , v
−
1 , v

+
2 andv−2 are all positive elements (see

[2, Lemma 38.8]). SinceH is C-linear, we figure out by (3.21)

H(v∗) = H
(
(v+

1 − v−1 + iv+
2 − iv−2 )∗

)
= H(v+

1
∗
)−H(v−1

∗
) +H((iv+

2 )∗)−H((iv−2 )∗)

= H(v+
1 )∗ −H(v−1 )∗ − iH(v+

2 )∗ + iH(v−2 )∗

=
[
H(v+

1 − v−1 + iv+
2 − iv−2 )

]∗
= H(v)∗

for all v ∈ A.
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Using (3.17) and (3.19) we getH(ux) = H(u)h(x) for all u ∈ A1
+ and allx ∈ A, and so

H(vx) = H(v)h(x) for all v ∈ A+ and allx ∈ A because

H(vx) = H

(
|v| v
|v|

· x
)

= |v|H
(
v

|v|
· x
)

(3.22)

= |v|H
(
v

|v|

)
· h(x) = H(v)h(x), ∀v ∈ A+.

Now, for any elementv ∈ A, v = v+
1 − v−1 + iv+

2 − iv−2 , wherev+
1 , v

−
1 , v

+
2 andv−2 are positive

elements (see [2, Lemma 38.8]). Thus we calculate by (3.22) and the linearity ofH

H(vx) = H
(
v+

1 x− v−1 x+ iv+
2 x− iv−2 x

)
(3.23)

= H(v+
1 x)−H(v−1 x) + iH(v+

2 x)− iH(v−2 x)

=
(
H(v+

1 )−H(v−1 ) + iH(v+
2 )− iH(v−2 )

)
h(x)

= H(v)h(x)

for all v, x ∈ A. By (3.23) and the linearity ofH, one has

H(vx) = λ−nH (λnvx) = λ−nH (vλnx)

= λ−nH(v)h (λnx) = H(v)λ−nh (λnx) ,

which yields by taking the limit asn→∞

(3.24) H(vx) = H(v)H(x)

for all v, x ∈ A.
It follows from (3.23) and (3.24) that for a givenu0 subject to (3.7)

H(u0)H(x) = H(u0x) = H(u0)h(x)

for all x ∈ A. SinceH(u0) = limn→∞ λ−nh (λnu0) ∈ Bin, we see thatH(x) = h(x) for all
x ∈ A. Hence the bijective mappingh : A → B is aC∗-algebra isomorphism, as desired.�

Theorem 3.5. Leth : A → B be a bijective mapping withh(0) = 0 satisfying (3.1), (3.3) and
(3.4) such that

(3.25) ‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y)

holds forµ = 1, i. Assume that the conditions (3.5), (3.6) and (3.7) are satisfied, and thath is
measurable orh(tx) is continuous int ∈ R for each fixedx ∈ A. Then the bijective mapping
h : A → B is aC∗-algebra isomorphism.

Proof. Fix µ = 1 in (3.25). By the same reasoning as in the proof of Theorem 3.1, there exists a
unique additive mappingH : A → B satisfyingH(0) = 0, the equation (1.5) and the inequality
(3.10).

By the assumption thath is measurable orh(tx) is continuous int ∈ R for each fixedx ∈ A,
the mappingH : A → B is R-linear, that is,H(tx) = tH(x) for all t ∈ R and allx ∈ A
[20, 31]. Putµ = i in (3.25). Then applying the same argument to (3.11) as in the proof of
Theorem 3.1, we obtain that

H(ix) = iH(x),
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and so for anyµ = s+ it ∈ C
H(µx) = H(sx+ itx)

= H(sx) +H(itx)

= sH(x) + itH(x)

= (s+ it)H(x) = µH(x)

for all x ∈ A. Hence the mappingH : A → B is C-linear.
The rest of the proof is similar to the corresponding part of Theorem 3.1. �

Theorem 3.6. Let h : A → B be a bijective mapping withh(0) = 0 satisfying (3.1), (3.7),
(3.17) and (3.18) such that

(3.26) ‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y)

holds forµ = 1, i. Assume that the equations (3.19), (3.20) are satisfied, and thath is mea-
surable orh(tx) is continuous int ∈ R for each fixedx ∈ A. Then the bijective mapping
h : A → B is aC∗-algebra isomorphism.

Proof. The proof is similar to that of Theorem 3.5. �

4. DERIVATIONS M APPING INTO THE RADICALS OF BANACH ALGEBRAS

Throughout this section, assume thatA is a complex Banach algebra with norm‖ · ‖. As
an application, we are going to investigate the stability of derivations on Banach algebras and
consider the range of derivations on Banach algebras.

Lemma 4.1. Leth : A → A be a mapping satisfyingh(0) = 0 for which there exists a mapping
ϕ : A2 → R+ satisfying (3.1) and a mappingψ : A2 → R+ satisfying

(4.1) lim
n→∞

ψ(λnx, λny)

|λ|2n
= 0

for all x, y ∈ X, whereλ := −2a 6= 1, such that

‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y),(4.2)

‖h(xy)− h(x)y − xh(y)‖ ≤ ψ(x, y)(4.3)

for all µ ∈ S1 := {µ ∈ C | |µ| = 1} and all x, y ∈ A. Then there exists a uniqueC-linear
derivationH : A → A which satisfies the inequality

(4.4) ‖h(x)−H(x)‖ ≤ 1

|λ|

∞∑
i=0

ϕ
(
−λix,−a

b
λix
)

|λ|i

for all x ∈ A.

Proof. By the same reasoning as in the proof of Theorem 3.1, there exists a uniqueC-linear
mappingH : A → A, defined byH(x) := limn→∞ λ−nh (λnx) , satisfyingH(0) = 0, the
equation (1.5) and the functional inequality (4.4).

Replacingx andy in (4.2) byλnx andλny, respectively, and dividing the result by|λ|2n, we
obtain ∥∥∥∥h(λ2nxy)

λ2n
− h(λnx)

λn
y − x

h(λny)

λn

∥∥∥∥ ≤ ψ(λnx, λny)

|λ|2n
for all x, y ∈ A. Taking the limit in the last inequality, one obtains that

H(xy)−H(x)y − xH(y) = 0
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for all x, y ∈ A becauselimn→∞
ψ(λnx,λny)

|λ|2n = 0 and limn→∞
h(λ2nxy)
λ2n = H(xy). Thus the

mappingH : A → A is a uniqueC-linear derivation satisfying the functional inequality (4.4).
�

Lemma 4.2. Leth : A → A be a mapping satisfyingh(0) = 0 for which there exists a mapping
ϕ : A2 → R+ satisfying

(4.5)
∞∑
i=1

|λ|iϕ
( x
λi
,
y

λi

)
<∞

and a mappingψ : A2 → R+ satisfying

(4.6) lim
n→∞

|λ|2nψ
( x
λn
,
y

λn

)
= 0

for all x, y ∈ X, whereλ := −2a 6= 1, such that

‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ϕ(x, y),(4.7)

‖h(xy)− h(x)y − xh(y)‖ ≤ ψ(x, y)

for all µ ∈ S1 := {µ ∈ C | |µ| = 1} and all x, y ∈ A. Then there exists a uniqueC-linear
derivationH : A → A which satisfies the inequality

(4.8) ‖h(x)−H(x)‖ ≤ 1

|λ|

∞∑
i=1

|λ|iϕ
(
− x

λi
,−a

b

x

λi

)
for all x ∈ A.

Corollary 4.3. Let |λ := −2a| 6= 1. Assume thath : A → A is a mapping satisfyingh(0) = 0
for which there exist nonnegative constantsε1, ε2, such that

‖h(aµx+ bµy) + h(aµx− bµy) + 2aµh(−x)‖ ≤ ε1,

‖h(xy)− h(x)y − xh(y)‖ ≤ ε2

for all µ ∈ S1 := {µ ∈ C | |µ| = 1} and all x, y ∈ A. Then there exists a uniqueC-linear
derivationH : A → A which satisfies the inequality

‖h(x)−H(x)‖ ≤ ε1

||λ| − 1|
for all x ∈ A.

Lemma 4.4. Leth : A → A be a linear mapping for which there exists a mappingψ : A2 →
R+ satisfying either

(4.9) lim
n→∞

ψ(λnx, λny)

|λ|2n
= 0 or, lim

n→∞
|λ|2nψ

( x
λn
,
y

λn

)
= 0

for all x, y ∈ X, whereλ := −2a is a nonzero real number withλ 6= 1, such that

(4.10) ‖h(xy)− h(x)y − xh(y)‖ ≤ ψ(x, y)

for all x, y ∈ A. Then the mappingh is in fact a derivation onA.

Proof. Takingϕ(x, y) := 0 in the previous two lemmas, we have the desired result. �

Theorem 4.5. LetA be a commutative Banach algebra. Leth : A → A be a given linear
mapping and an approximate derivation with differenceDh bounded byψ, that is, there exists
a mappingψ : A×A → R+ such that

(4.11) ‖Dh(x, y) := h(xy)− h(x)y − xh(y)‖ ≤ ψ(x, y)
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for all x, y ∈ A. Assume that there exists a nonzero real numberλ with λ 6= 1 such that the
limit

(4.12) lim
n→∞

ψ(λnx, λny)

|λ|2n
= 0

(
lim
n→∞

|λ|2nψ
( x
λn
,
y

λn

)
= 0, respectively

)
for all x, y ∈ A. Then the mappingh is in fact a linear derivation which maps the algebra into
its radical.

Proof. By Lemma 4.4, the mappingh is in fact a linear derivation which maps the algebra into
its radical by Thomas’ result [33]. �

It is well-known that all linear derivations on commutative semi-simple Banach algebras
are zero [33]. We remark that every linear mappingh on a commutative semi-simple Banach
algebra, which is an approximate derivation satisfying (4.11) and (4.12), is also zero.
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