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Abstract: In 1940 S.M. Ulam proposed the famous Ulam stability problem. In 1941 D.H.
Hyers solved the well-known Ulam stability problem for additive mappings sub-
ject to the Hyers condition on approximately additive mappings. In this paper
we introduce generalized additive mappings of Jensen type mappings and estab-
lish new theorems about the Ulam stability of additive and alternative additive
mappings.
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1. Introduction

J
bas

In 1940 and in 1964 S.M. Ulan8] proposed the famous Ulam stability problem:

“When is it true that by changing a little the hypotheses of a theorem one can still
assert that the thesis of the theorem remains true or approximately true?”

For very general functional equations, the concept of stability for a functional
equation arises when we replace the functional equation by an inequality which acts - _
as a perturbation of the equation. Thus the stability question of functional equations = arkans ki Ki-woure
is: Do the solutions of the inequality differ from those of the given functional equa- i i el Resitas
tion? If the answer is affirmative, we would say that the equation is stable. These vol. 8, iss. 4, art. 120, 2007
stability results can be applied in stochastic analy$§, [financial and actuarial
mathematics, as well as in psychology and sociology. We wish to note that stabil-
ity properties of different functional equations can have applications to unrelated
fields. For instance, ZhoB§] used a stability property of the functional equation Contents
f(z—y)+ f(x +y) = 2f(z) to prove a conjecture of Z. Ditzian about the relation- o N
ship between the smoothness of a mapping and the degree of its approximation by
the associated Bernstein polynomials. < >

In 1941 D.H. Hyers 8] solved this stability problem for additive mappings sub-
ject to the Hyers condition on approximately additive mappings. In 1978 P.M. Gru-
ber [7] remarked that Ulam’s problem is of particular interest in probability theory Go Back
and in the case of functional equations of different types. Th.M. Ras3iasnd
then P. Gwruta p] obtained generalized results of Hyers’ Theorem which allow
the Cauchy difference to be unbounded. The stability problems of several func- Close
tional equations have been extensively investigated by a number of authors and there
are many interesting results concerning this problem. In 1982-2006 J.M. Rassias journal of inequalifies
[20, 21, 23, 24, 25, 26, 27] established the Hyers—Ulam stability of linear and non- in pure and applied
linear mappings. In 2003-2006 J.M. Rassias and M.J. Rasa&a29| and J.M. mathematics
Rassias30] solved the above Ulam problem for Jensen and Jensen type mappings. = ssni 1443-575k
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N

In 1999 P. Gwruta p] answered a question of J.M. Rassi&g][concerning the I

stability of the Cauchy equation. o
We note that J.M. Rassias introduced thder—Lagrange quadratic mappings,

motivated from the following pertinent algebraic equation P

e
*

(1.1) a2y + ags|* + agwr — ars|* = (af + a3) [|x1|2 + |x2]2} .

Thus the third author of this paper introduced and investigated the stability problem _ N .
. . . —Lagrange Additive Mappings
of Ulam for the relativeEuler—Lagrange functional equation Hark-Mahn Kim, Kil-Woung Jun

and John Michael Rassias

(12) f(alxl + CLQJ)Q) + f(CLQJJl - (11132) = (CL% + ag) [f(l’1> + f(l’g)} . vol. 8, iss. 4, art. 120, 2007

in the publicationsZ3, 24, 25]. Analogous quadratic mappings were introduced and
investigated through J.M Rassias’ publicatio6,[29]. Before 1992 these map- Title Page
pings and equations were not known at all in functional equations and inequali-

ties. However, a completely different kind of Euler—Lagrange partial differential Contents
equation is known in calculus of variations. In this paper we introduce Cauchy <« >
and Cauchy-Jensen mappings of Euler—Lagrange and thus generalize Ulam stability

results controlled by more general mappings, by considering approximately Cauchy < >
and Cauchy—-Jensen mappings of Euler—Lagrange satisfying conditions much weaker Page 4 of 35
than D.H. Hyers and J.M. Rassias conditions on approximately Cauchy and Cauchy—

Jensen mappings of Euler—Lagrange. Go Back

Throughout this paper, leX be a real normed space akda real Banach space Full Screen

in the case of functional inequalities. Also, I&tandY be real linear spaces for
functional equations. Let us denote Nythe set of all natural numbers and Bythe Close

set of all real numbers. . _ »
journal of inequalities

Definition 1.1. A mapping4 : X — Y is called additive ifA satisfies the functional in pure and applied
equation mathematics

(1.3) Az +y) = Az) + A(y) issn: 1443-575k
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forall x,y € X. We note that the equation () is equivalent to the Jensen equation

24 (”“" ; y) — A(z) + Aly)

forall z,y € X and A(0) = 0.

Now we consider a mapping : X — Y, which may be analogously called
Euler—Lagrange additivesatisfying the functional equation

(1.4) Alax + by) + A(bz + ay) + (a + b)[A(—2z) + A(—y)] =0

for all z,y € X, wherea,b € R are nonzero fixed reals witth+ b # 0. Next,
we consider a mapping : X — Y of Euler-Lagrange satisfying the functional
equation

(1.5) Alazx 4+ by) + A(ax — by) + 2aA(—x) =0

which is equivalent to the equation of Jensen type

A(z) + A(y) + 204 (-””;ay) —0
forall x,y € X, wherea,b € R are nonzero fixed reals. It is easy to see that if the
equation (.5) holds for allz, y € X andA(0) = 0, then equation(.3) holds for all
x,y € X. However, the converse does not hold. In fact, chagsg € R and an
additive mappingd : R — R such thatd(azy) # aA(zy). In this case, 1.3) holds
forall z,y € RandA(0) = 0. But we see that

Alazy + 0) + A(azg — 0) + 2aA(—x¢) = 2A(axy) — 2aA(axy) # 0,
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and thus (.5 does not hold. However we can show that if3) holds for all
z,y € X andA(ax) = aA(zx), then (.5 holds for allz,y € X. Alternatively,
we investigate the functional equation of Euler—Lagrange

(1.6) Alaz + by) — A(ax — by) + 2bA(—y) =0

forall x,y € X. We note that the equation.¢) is equivalent to

(1.7) A(z) — Ay) + 2bA (—x;by) =0

forall x,y € X, wherea, b € R are nonzero fixed reals. It follows that ¢) implies
(1.9). However we can show that if (3) holds for allz, y € X andA(bz) = bA(z),
then (L.5) holds for allz, y € X.
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2. Stability of Euler—Lagrange Additive Mappings

We will investigate the conditions under which it is possible to find a true Euler—
Lagrange additive mapping near an approximate Euler—-Lagrange additive mapping
with small error. We note that if = 1 in the next two theorems, then the mapping

1 Is identically zero by the convergence of series and thissitself the solution

of the equationX.4). Thus we may assume without loss of generality that 1 in

these theorems.

Theorem 2.1. Assume that there exists a mappipg: X? —
mappingf : X — Y satisfies the inequality

[f(az + by) + f(bx + ay) + (a + 0)[f (—2) + F(=p)]l < ¢1(2,y)

and the series

[0, 00) for which a

(2.1)

(2.2) ; Ao (55 ) < o

for all z,y € X, where\ := —(a + b) # 0. Then there exists a unique Euler—
Lagrange additive mapping : X — Y which satisfies the equation.¢) and the
inequality

1 = s —r —x
23) 170 = AW < 5373 W (5-5)

forall z € X.

J
|l\;|m

P
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Proof. Substitutingz for y in the functional inequality4.1), we obtain

(2.4) 2 f(=Az) = Af (=)l < pr(z, 2),
T 1 —r —x
_ = < Z I
Hf(x) )\f</\>H = 2%( D) )
for all z € X. Therefore from %) with ¥ in place ofz ( = 1,...,n — 1) and - _
iterating, one gets L Tt 16 e s
and John Michael Rassias
x R ; —-r - vol. 8, iss. 4, art. 120, 2007
25 50— ()] < 55 S0 (52,52 i
(2.5) fa)=xs () < gy o e (55
forall z € X and alln € N. By (2.5), for anyn > m > 0 we have Title Page
T T T Contents
i () =3 @) = s () =2 (|
H / A AT A” A A f AT <« >

R hm, r -
_AZ Al <)\z+m )\Hm) Y »

Page 8 of 35
which tends to zero by?(2) asm tends to infinity. Thus it follows that a sequence Go Back
{\"f(&)} is Cauchy inY” and it thus converges. Therefore we see that a mapping ©Bac
A X — Y defined by Full Screen

. x . x Close
A(z) :== lim \"f (—) = lim(—a—0)"f | ——
n—o0 An n—00 (—a — b)n . . -
journal of inequalities
exists for allz € X. In addition it is clear from Z.1) and @.2) that the following in pure and applied

mathematics
issn: 1443-575k
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inequality

|A(az + by) + A(bz + ay) + (a + b)[A(—x) + A(—y)]|
= lim [A"[[f(A"(az +by)) + F(A"(bz + ay)) + (a + O)[f(=A""2) + f(=A""y)]|
< lim A1 (A2, A7"y) = 0

holds for allz,y € X. Thus taking the limith — oo in (2.5), we find that the Euler-Lagrange Additive Mappings

. . . . . . . Hark-Mahn Kim, Kil-Woung Jun
mappingA is an Euler—Lagrange additive mapping satisfying the equatich &nd [ T
the inequality 2.3) near the approximate mappirfg X — Y. vol. 8, iss. 4, art. 120, 2007

To prove the afore-mentioned uniqueness, we assume now that there is another

Euler-Lagrange additive mappin: X — Y which satisfies the equatiof.¢) and

the inequality £.3). Then it follows easily that by setting:= x in (1.4) we get Title Page
AN'A(z) = A(N"z),  A"A(z) = A(\"z) Contents
forall x € X and alln € N. Thus from the last equality an@ () one proves that « "
: y < >
[A(z) — A(2)[| = [A]"[[AA"z) — A(A"2)]] A
« age Y 0
< |)\|” (JAA™2) = FO2)|| + || f(A"2) — A "2)|) ’
oo Go Back
Z /\|z+n A\ _)\—i—nx)
— Full Screen
for all z € X and alln € N. Therefore fronn — oo, one establishes Close
Alz) — A(m) —0 journal of inequalities
in pure and applied
for all z € X, completing the proof of uniqueness. O mathematics

issn: 1443-575k
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Theorem 2.2. Assume that there exists a mappipg: X2 — [0, c0) for which a
mappingf : X — Y satisfies the inequality

[f(az +by) + f(bx + ay) + (a + b)[f(—z) + fF(=)]l < p1(z,y)
and the series
- 901(/\1377)‘13/)
; T <

forall z,y € X, where\ := —(a + b). Then there exists a unique Euler—Lagrange
additive mappingd : X — Y which satisfies the equatiofn.{) and the inequality
R (R 2
1f(z) = Az)]| < :
2|l ; A’

forall x € X.

We obtain the following corollary concerning the stability for approximately
Euler—Lagrange additive mappings in terms of a product of powers of norms.

Corollary 2.3. If a mappingf : X — Y satisfies the functional inequality
1 f (az + by) + f(bx + ay) + (a + b)[f (=) + fF(=y)]]| < dll=[|*[ly]|”,

forall z,y € X (X \ {0} if o, 3 < 0) and for some fixedr, 3 € R, such that
p=a+0eRp#1,A:=—(a+b) #1andd > 0, then there exists a unique
Euler-Lagrange additive mapping : X — Y which satisfies the equationi ()
and the inequality

I f(z) — A(z)|| < ey M >Lp<l(A <1 p>1);
xTr) — €T < ) |
ey T =L > 1A <1 p<1)
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forall z € X (X \ {0} if p < 0). The mapping is defined by the formula
lim {72 it (A >1,p<1(N<1,p>1);

A" Y
( — n—oo

lim A"f (L), if [N >1p>1(M<1,p<l).

n
n—oo A

Now we are going to investigate the stability problem of the Euler—Lagrange
type equation 1.5, [23, 24, 25|, by using either Banach’s contraction principle or

Euler-Lagrange Additive Mappings

fixed points. For explicit later use, we state the following theor@tre(alternative Hark-Mahn Kim, Kil-Woung Jun
of fixed poin} [18, 32] : Suppose that we are given a complete generalized metric and John Michael Rassias
space((2, d) and a strictly contractive mappirig : Q — Q with Lipschitz constant Vieh EolSS, € Bl S22 20017
L. Then for each given € (), either
d(T"z, T" 'z) = 0o for all n >0, Title Page

or there exists a nonnegative integgrsuch that Contents

1. d(T"z, T"'z) < oo for all n > ny; <« >

2. the sequencgl™x) is convergent to a fixed point of 7T’ < >

3. y* is the unique fixed point df in the setA := {y € Q|d(T™z,y) < oo}; Page 11 of 35

4. d(y,y*) < 1=pd(y, Ty) forally € A. Go Back

The reader is referred to the book of D.H. Hyers, G. Isac and Th.M. Rassias
[10] for an extensive theory of fixed points with a large variety of applications. In
recent years, L. &dariu and V. Radu3, 4] applied the fixed point method to the Close
investigation of the Cauchy and Jensen functional equations. Using such an elegant : »
idea, they could present a short and simple proof for the stability of these equations = 1ounal of inequaliiies
[19, 19]. The reader can be referred to the referen@dsi2, 13, 14]. in pure Cm.d GRRICH

Utilizing the above mentioned fixed point alternative, we now obtain our main r,nath?rﬂii
stability result for the equation.(5). e

Full Screen
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Theorem 2.4. Suppose that a mappinf: X — Y with f(0) =
functional inequality

0 satisfies the

(2.6) If(az + by) + flax — by) + 2af (—z)|| < ¢2(z,y)
andy, : X% — [0, 00) is @ mapping satisfying
(2.7) nll_)IIOloT =0 (hm |A|" 2 ()\n An> =0, respectlvelg

forall z,y € X, where|\ :=
the mapping

—2a| # 1. If there exists a constart < 1 such that

T = Pa(x) == P2 <—§, —%>

has the property

(2.8) () < LMz (5)
(2.9 (wg(x) < L%, respectiveg

for all x € X, then there exists a unique additive mappiig X — Y of Euler-
Lagrange which satisfies the equatidnE() and the inequality

I£(@) A <
(nf(:c)—A(x)ns !

for all x € X. If, moreover,f is measurable orf(¢x) is continuous irt for each
fixedr € X thenA(tz) = tA(x) forall x € X andt € R.

Pa(z)

sz(x), respectiveg
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Proof. Consider the function space
Q:={g|g: X =Y, g(0) =0}
equipped with the generalized metiion (2,
d(g,h) := inf{K € [0,00] | |lg(x) — h(z)|| < Kipso(z), € X}.

It is easy to see thaf?, d) is complete generalized metric space.
Now we define an operatdr : 2 — Q by

Ty(z) = @ (Tg(a:) = \g (;) , respectivel9

for all z € X. Note that for allg, h € Q with d(g,h) < K, one has
lg(x) = h(@)]| < K¢po(x), 2 € X,
which implies by £.9)

g(A\z)  h(Az) Ks(Ax)
A AT A
Hence we see that for all constamtSe [0, co] with d(g, h) < K,
d(Tg,Th) < LK,
or d(Tg,Th) < Ld(g,h),

that is, T is a strictly self-mapping of2 with the Lipschitz constant.
Substituting(z, ) for (z,y) in the functional inequality 4.6) with the case
(2.9), we obtain by 2.9)

(220)  |If(2az) +2af(~2)| < g2 (v, 5x) |

b
Az)

|70 - 252 < oon (=) = o) < Lunte)

< LKy(z), =€ X.
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forallz € X. Thusd(f,Tf) < L < oc.
From (2.10 with the caseZ.9), one gets by4.9)

i axr

H)\f <§> - f(f)H < @2 <_X’ —a> = thy()
forallz € X, and sad(T'f, f) <1 < o0.

Now, it follows from the fixed point alternative in both cases that there exists a

unique fixed pointd of 7" in the setA = {g € Q|d(f,g) < oo} such that
lim f(X'z) (

n—oo A

(2.112) Ax) == A(z) := lim \"f (ﬁn) , respectivel;)

n—00 A

for all x € X since lim d(7™ f, A) = 0. According to the fixed point alternative,
is the unique fixed point df' in the setA such that

1 L
17(@) = Al < d(f, Aale) < ———d(f, Tha(e) < ()
1

1-L

1
(150) = A < T Tl <
Now it follows from (2.7) that

AT F (N (az +Dy)) + f(A"(az — by)) + 2af(=A"2)||
< AT pa (N, AMy),

(AP (az + by) + " (az = by)) + 2af (~A ")

< A" (A, A My), respectivel9

Pa(z), respectiveg .

from which we conclude by, — oo that the mappingd : X — Y satisfies the
equation (.5 and so it is additive.
The proof of the last assertion in our Theor&niis obvious by £0]. O

Euler-Lagrange Additive Mappings
Hark-Mahn Kim, Kil-Woung Jun

and John Michael Rassias

vol. 8, iss. 4, art. 120, 2007

Title Page
Contents
44 44
< >
Page 14 of 35
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

Corollary 2.5. If a mappingf : X — Y with f(0) = 0 satisfies the functional
inequality

|1 f (az + by) + flaz — by) + 2af (=)l < 8]l«[*[ly]”,
forall z,y € X (X \ {0} if o, < 0) and for some fixed, 3 € R, such that
p=a+pB R p#1,\:=—2a# 1landj > 0, then there exists a unique additive
mappingA : X — Y of Euler—Lagrange which satisfies the equatiarol and the
inequality

B P P .
jalollele ;WP

CECY=NDOE A>T, p<1, (Al <1, p> 1)

IF@) =A@l <" .
ECYE I i
forall z € X (X \ {0}if p <0).
We will investigate the conditions under which it is then possible to find a true
additive Euler—Lagrange mapping of Ed..€) near an approximate additive Euler—
Lagrange mapping of Eq1(6) with small error.

Theorem 2.6. Suppose that a mappinfj : X — Y with f(0) = 0 satisfies the
functional inequality

(2.12) 1f(az +by) — flaz —by) + 2bf (—y)|| < ps(2,y)
andysz : X% — [0, 00) is @ mapping satisfying

Al>1,p>1 (A <1, p<])

3N, Ahy) ( : n z i) _ i
(2.13) 7111}010 T 0 T}LIEOl)\| 3 ()\n’ i) = 0, respectlvelg
for all z,y € X, where|\ := —2b| # 1. If there exists a constarit < 1 such that
the mapping

b
v o Us(2) = s (—g,—g)
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has the property

(2.14) da(@) < LA () -

(¢3($) < L%)\’x), respectivel9

for all x € X, then there exists a unique additive mappiig X — Y of Euler-
Lagrange which satisfies the equation€) and the inequality

7(x) — A@)]| € —2r(x)

1
(1) - Aol < 2

for all z € X. If, moreover,f is measurable orf (tx) is continuous int for each
fixedx € X thenA(tz) = tA(x) forall x € X andt € R.

Proof. The proof of this theorem is similar to that of Theoré&mi. O

Y3(z), respectivel9

Corollary 2.7. If a mappingf : X — Y with f(0) = 0 satisfies the functional
inequality

1 (az + by) — f(az = by) + 2bf (=y)|| < dll=]|*[ly]l”,

forall z,y € X (X \ {0} if a,5 < 0) and for some fixed, 5 € R, such that
p:=a+0 R, p#£1,A:=-2b+# 1andd > 0, then there exists a unique additive
mappingA : X — Y of Euler-Lagrange which satisfies the equatiart) and the
inequality
i A > 1 p< 1 (N <1, p>1);
1f(x) = Alx)|| <

ble§||z||P .
m if (A >1,p>1(N<1, p<])
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forall z € X (X \ {0}if p <0).

Corollary 2.8. If a mappingf : X — Y with f(0) = 0 satisfies the functional
inequality

If(az + by) + flaz — by) + 2af (—z)|| <6, [A:=—2a #1
(Il f(ax + by) — f(ax —by) + 2bf(—y)|| < d, |X\:= —2b] # 1, respectively

for all z,y € X and for some fixed > 0, then there exists a unique additive
mappingA : X — Y of Euler-Lagrange which satisfies the equatiaro) ((1.6),
respectively) and the inequality

WL—l if |\ >1;
= i AI<1

1/ () = Al@)[| < {

—

forall z € X.
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3. (*-algebra Isomorphisms Between UnitalC"*-algebras

Throughout this section, assume thaand 53 are unitalC*-algebras. Let/(.A) be
the unitary group of4, A;, the set of invertible elements id, A, the set of self-
adjoint elements i, A, := {a € A| |a| = 1}, AT the set of positive elements in
A. As an application, we are going to investigate-algebra isomorphisms between
unital C*-algebras. We denote kY, the set of nonnegative integers.

Theorem 3.1.Leth : A — B be a bijective mapping with(0) = 0 for which there
exist mappings : A% — RT := [0, co) satisfying

)\’x )\Z
(3.1) Z“) S <%

P Ax A— RT, andy : A — R* such that

(3.2) Ih(apx + buy) + h(apz — buy) + 2aph(—2)|| < ¢(z,y),
(3.3) [h(A"uz) — h(A"u)h(z)|| < P1(A"u, 2),
(3.4) 17 (A" u") = h (A"u)"[| < o (A"u)

forall pe St :={pueC||ul =1} alueU(A),allz,y € Aandalln € N,

where) := —2a # 1. Assume that

(3.5) lim A" (\"u,2) =0 for all we U(A),z € A,
(3.6) lim A" (A"u) =0 for all € U(A),

(3.7) lim A7"h (A"w) € B;, for some wuy € A.

n—oo

Then the bijective mapping: .A — B is in fact aC*-algebra isomorphism.
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Proof. Substituting(z, y) for (z
we obtain

(3.8)

,%x) in the functional inequality3.2) with p = 1,

a
< —
|h(2azx) +2ah( )| < (:L’, bx) :

< e
— ‘)\l(p Y b )

forall x € X. From (3.9), one gets

N, ——)J )

MH

(3.9)

1=0
forall x € X and alln € N. Thus it follows from @.1) and 3.9) that a sequence
{)\—”h()\":p)} is Cauchy inY” and it thus converges. Therefore we see that there

exists a unique mapping : A — B, defined byH (z) := lim, ., A™"h (A\"z),
satisfyingH (0) = 0, the equation.5) and the inequality

i N, ——)\Z )

for all x € A. We claim that the mapping is C-linear. For this, putting: := 0 and

y := 0 separately in1.5) one gets that/ is odd andH (ax) = aH () forall x € A.
Now replacingy by % in (1.5) we getH (az + ay) + H(ax — ay) = 2aH (x) and so
H(z+y)+ H(x—y) = 2H(z), which means that/ is additive. On the other hand,
we obtain from 8.1) and @.2) that H (aux + buy) + H (apx — buy) — 2apH (x) = 0
forall z,y € Aand so

(3.10) 1h(z) —

(3.11)

H(px) — pH(z) =0
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forallz € Aandally € S* = U(C). Now, letn be a nonzero elementifandK a
positive integer greater thaifyy|. Then we havélL| < ; <1 — 2. By [15, Theorem
1], there exist three elemenis, 1o, 13 € S* such thaBt = iy + 1o + p13. Thus we
calculate by £.11)

H(nz) = H (g : S%x)

K
= (3) H(pnz + pox + p3)

_ (g) (H(,ulx) + H(p2z) + H(uw))

_ (g) (p1 + po + p3) H ()

_ (g) -3%g(m) = nH(z)

foralln € C (n # 0) and allx € A. So the unique mapping : A — Bis C-linear,
as desired.
By (3.4) and (3.6), we have

(3.12) H(u*) = lim A~ (\"u®)
= lim A\™"h (\"u)”
= (lim A~ (/\"u)>* — H(u)*

forallu € U(A). Since each: € Ais afinite linear combination of unitary elements

Euler-Lagrange Additive Mappings
Hark-Mahn Kim, Kil-Woung Jun

and John Michael Rassias

vol. 8, iss. 4, art. 120, 2007

Title Page
Contents
44 44
< >
Page 20 of 35
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

([16, Theorem 4.1.7]), i.ex = > ", cju; (¢; € C,u; € U(A)), we get by §.19)

H(z*)=H (Z c]uj> = Z@H(uj) = Z@H(uj)*

j=1 7j=1 7j=1
= (Z CJH<UJ)> = H( Cj“j) = H(z)"
j=1 Jj=1

for all z € A. So the mappind{ is preserved by involution.
Using the relationsy.3) and (3.5), we get
(3.13) H(uz) = lim A™"h (\"ux)
= lim A™"h (A"u)h(x) = H(u)h(zx)

forallu € U(A) and allx € A. Now, letz € A be an arbitrary element. Then
z= " cu; (¢; € Couy € U(A)), and it follows from §.13 that

j=1

(3.14) H(zx)=H (Z cjujzv> = chH(ujx) = chH(uj)h(x)

—H (Z cjuj> h(z) = H(z)h(z)

j=1
forall z,x € A.
On the other hand, it follows fron8(13) and the linearity of that the equation
H(uz) = X"H (\N"uz) = \""H (u\"x)
= AN"H(u)h (\"z) = H(u)A\""h (\"x)
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holds for allu € U(A) and allz € A. Taking the limit asn — oo in the last
equation, we obtain

(3.15) H(ux) = H(u)H (x)

forall u € U(A) and allz € A. Using the same argument &s14), we see from
(3.19 that

(3.16) H(zx)=H (Z cjujx> = Z c;H(ujx) = chH(uj)H(x)

=H (Z cjuj> H(z)=H(z)H(x)

forall z,z € A. Hence the mapping/ is multiplicative.
Finally, it follows from (3.14) and (3.16) that

H(up)H (z) = H(upx) = H(up)h(z)

for all x € A. SinceH (ug) = lim,,_... A~"h (\"ug) is invertible for somey, € A
by (3.7), we see that{(x) = h(x) for all x € A. Hence the bijective mapping
h : A — Bisinfact aC*-algebra isomorphism, as desired. O

Theorem 3.2.Leth : A — B be a bijective mapping with(0) = 0 for which there
exist mappings : A% — R* := [0, co) satisfying

o

Z IN (A", A y) < oo,

i=1
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Y : Ax A— Rt andy : A — R* such that
Ih(apx + buy) + h(apz — buy) + 2aph(—z)|| < ¢(z,y),
[A(A™ " uz) = (A" u)h(z)]| < (A", 2),
A (A ) = h (A7) || < ¥ (A ")

forall ye S':={peC||ul=1},aluecU(A),al z,y € Aand alln € Ny,
where) := —2a # 1. Assume that

lim A"y (A"u,z) =0 for all we U(A),z € A,
lim A"y (A "u) =0 for all we U(A),

lim A"h (A\"ug) € B;, for some uy € A.

n—oo

Then the bijective mapping: A4 — B is in fact aC*-algebra isomorphism.
Proof. The proof is similar to that of Theorefnh L O

As an application we shall derive a stability result for the equatios) (vhich is
very connected with thé-homogeneity of the norm oR-spaces.

Corollary 3.3. Suppose thafr is an F’-space andF a $-homogeneoug’-space,
0 < p <1 Leth: G — FE beamapping withh(0) = 0 for which there exist
constanty;, ; > 0 andé > 0 such that

|h(az + by) + hax —by) + 2ah(=2)|| <6 + x||z[|"" + eofly[/”

forall z,y € G, where|\ := —2a| # 1. Then there exists a unique additive mapping
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A : G — FE of Euler—Lagrange which satisfies the equatiarb( and the inequality
[h(x) — A(z)]|
(o e1lx|P a|Bpy _2lz(P? i C
a1 T o T e nme if A >1,8p < 1forall i =1,2,
(IN| < 1,8p; > 1and § = 0);

IN

z||P a x||P H .
1:5\A| + ‘;QLI”_;M + [¢]oP2 ‘;“",Jz‘,z”_fw if A <1,06p; <1forall i=1,2,
(IA| > 1,8p; > 1and 6 = 0)

\
forall x € G.
Proof. Takingp(x,y) := 0 + &1 ||z[|"* + e2||y||”> and applying §.10) and the corre-

sponding part of Theore®.1 and Theorens.2, respectively, we obtain the desired
results in all cases. O]

Theorem 3.4.Leth : A — B be a bijective mapping satisfying0) = 0 and (3.7)
for which there exists a mapping: A% — R satisfying £.1), and mapping$,, ¢
such that

Ih(apx + bpy) + h(apz — buy) + 2aph(—2)|| < (z,y),
(3.17) |1h(A"uz) — h(N"u)h(z)|| < 1 (A"u, z),
(3.18) 17 (A" ") = h (A"u)"[| < 4 (N"u)

foral ye S':={ueC||u=1},alue A" andallz,y € Aand alln € Ny,
where) := —2a # 1. Assume that

(3.19) lim A"y (\"u,z) =0 for all uwe A", allz e A,
(3.20) lim A" (\Mu) =0 for all we A+,

Then the bijective mapping: A — B is in fact aC*-algebra isomorphism.
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Proof. By the same reasoning as in the proof of Theofizfn there exists a unique
C-linear mappingHd : A — B, defined byH (z) := lim,, .., A""h (\"x) , satisfying
H(0) = 0, the equation.5) and the functional inequality3(10).

By (3.19 and (3.20), we haveH (u*) = H(u)* forallu € A;*, and so

(1ot g) = i (35) = Lot ()| =

for all nonzerov € A*. Now, for any element € A, v = vy + ivy, Wherev,, vy €
Asq; furthermorep = v —vy +ivy —iv, , wherev;", vy, v5 andv, are all positive
elements (se€2] Lemma 38.8]). Sincél is C-linear, we figure out by3.21)

(321) H®) =

H(v*) = H ((vf — vy +ivy —ivy)")
) = H(vy") + H((ivg)") — H((iv3)")
"= H(vp)" —iH(vy)" +iH (vy)"

= [H(v] — vy +ivg —ivy)]" = H(v)*
forallv € A.

Using 3.17) and @.19 we getH (ux) = H(u)h(x) for all u € A;" and all
x € A, and soH (vx) = H(v)h(z) forall v € A" and allz € A because

(3.22) H(vz) = H (ym% : a:) — [o|H (i : a:)

\nyf(’ |> h(z) = H(v)h(z), Yve AT,

Now, for any element € A, v = v — vy + vy — vy, wherev] vy, vy andv,
are positive elements (se2, [Lemma 38.8]). Thus we calculate by.22 and the
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linearity of H

(3.23) H(vx) = T — v X+ vy T — z’v;:c)

(vix) — H(vyx) +iH(vyz) —iH (vy x)
= (H(vf) = Hp) +iH (o)) = il (v3) ) h(x)
= H(v)h(z)

forall v,z € A. By (3.23 and the linearity off, one has

H(vx) = X"H (\'vz) = A"H (vA"x)
=AX"H@)h(A\"z) = Hw)A"h (\'x),

which yields by taking the limit ag — oo

(3.24) H(vx) = H(v)H (z)

forallv,z € A.
It follows from (3.23 and (3.24) that for a givenu, subject to £.7)

H(uo)H(z) = H(upz) = H(uo)h()

forallz € A. SinceH (up) = lim, oo A™"h (A\"ug) € B;,, we see thatf (z) = h(z)
forall z € A. Hence the bijective mapping: A — Bis aC*-algebra isomorphism,
as desired. O

Theorem 3.5.Leth : A — B be a bijective mapping with(0) = 0 satisfying 8.1),
(3.9 and (3.4) such that

(3.25) [h(apx + buy) + h(apz — bupy) + 2aph(—2)|| < (2, y)
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holds forp = 1,:i. Assume that the condition3.§), (3.6) and (3.7) are satisfied,
and thath is measurable oh(tx) is continuous it € R for each fixed: € A. Then
the bijective mapping : A — Bis aC*-algebra isomorphism.

Proof. Fix 1 = 1 in (3.25. By the same reasoning as in the proof of Theorem

3.1, there exists a unique additive mappifg: A — B satisfyingH(0) = 0, the
equation (.5 and the inequalityd.10).

By the assumption thdt is measurable ok(¢z) is continuous int € R for each
fixedx € A, the mappingH : A — B is R-linear, that is,H (tx) = tH(x) for all

t € Randallx € A[20, 31]. Puty = iin (3.25. Then applying the same argument

to (3.11) as in the proof of Theorem.1, we obtain that
H(iz) = 1H(x),
andsoforany, = s+ it € C
H(px) = H(sx + itx) = H(sx) + H(itz)
= sH(x) 4+ itH(z) = (s +it)H(x) = pH(x)

for all x € A. Hence the mapping/ : A — Bis C-linear.
The rest of the proof is similar to the corresponding part of Thedieln O

Theorem 3.6.Leth : A — B be a bijective mapping with(0) = 0 satisfying 8.1),
(3.7, (3.17) and (3.19 such that

(3.26) 1h(apx + buy) + h(apx — buy) + 2aph(—2)|| < (2, y)

holds fory = 1,:. Assume that the equations .19, (3.20 are satisfied, and that
h is measurable oh(tz) is continuous it € R for each fixedr € A. Then the
bijective mapping: : A — Bis aC*-algebra isomorphism.

Proof. The proof is similar to that of Theoref5. ]
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4. Derivations Mapping into the Radicals of Banach Algebras

Throughout this section, assume this a complex Banach algebra with nofjm|.

As an application, we are going to investigate the stability of derivations on Banach

algebras and consider the range of derivations on Banach algebras.

Lemma4.1l.Leth : A — Abe a mapping satisfyinfg(0) = 0 for which there exists
a mappingy : A? — R* satisfying 8.1) and a mapping) : A?> — R satisfying

(N, Aty)
(4.2) nh_)rgo ML =0
forall z,y € X, where) := —2a # 1, such that
(4.2) Ih(apx + bpy) + h(apz — buy) + 2aph(—2)|| < (z,y),
(4.3) [h(zy) — h(z)y — zh(y)]| < ¥(z,y)

forall 4 € S* .= {u € C| |u| = 1} and allz,y € A. Then there exists a unique
C-linear derivationH : A — A which satisfies the inequality

N, ——)\Z )
M=y 2 Z

(4.4) [h(z) —

forall z € A.

Proof. By the same reasoning as in the proof of Theofef there exists a unique
C-linear mappingd : A — A, defined byH (z) := lim,,_... A™"h (A\"z) , satisfying
H(0) = 0, the equation.5) and the functional inequality}(4).

Replacingz andy in (4.2) by A™x and A"y, respectively, and dividing the result
by |\|*", we obtain

Hh()\2”a7y) _h()\”x)y h(A”y)H Szb(A%’,X“Ly)

AP - \n |)\|2n
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forall x,y € A. Taking the limit in the last inequality, one obtains that
H(zy) — H(zx)y —xH(y) =0

for all 2,y € A becauséim,,_. % = 0 andlim,, . w = H(xy).

Thus the mappind? : A — A is a uniqueC-linear derivation satisfying the func-
tional inequality {.4). O]

Lemma4.2.Leth : A — Abe a mapping satisfyinfy(0) = 0 for which there exists
a mappingy : A> — R satisfying

o

(4.5) }:My(: ;) 50

=1

and a mapping) : A?> — R* satisfying

(4.6) 1muM%¢( y) 0

n—oo >\n

forall z,y € X, where) := —2a # 1, such that

(4.7) [h(apz + buy) + hapz — buy) + 2aph(—2)| < ¢(z,y),
[h(zy) — h(z)y — zh(y)]| < P(z,y)

forall y € S' .= {u € C||u| =1} and allz,y € A. Then there exists a unique
C-linear derivationH : A — A which satisfies the inequality

7)] < WZMW(—— -25)

(4.8) 1) —

forall x € A.
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Corollary 4.3. Let|\ := —2a| # 1. Assume thak : A — A is a mapping satisfying
h(0) = 0 for which there exist nonnegative constanyts:z,, such that

Ih(apz + buy) + h(apz — buy) + 2aph(—z)| < e,
1h(zy) — h(z)y — zh(y)|| < &2

forall 4 € S*:= {u € C| |u| =1} and allz,y € A. Then there exists a unique
C-linear derivationH : A — A which satisfies the inequality

€1

1Al =1

1A (z) = H(z)] <

forall z € A.

Lemma 4.4.Leth : A — A be alinear mapping for which there exists a mapping
Y A2 — RT satisfying either

@9 Jim S =0 on tim AP (555) =0
forall z,y € X, where) := —2a is a nonzero real number with # 1, such that

(4.10) [h(zy) — h(z)y — zh(y)|| < P(z,y)
forall =,y € A. Then the mapping is in fact a derivation onA.

Proof. Takingp(z,y) := 0 in the previous two lemmas, we have the desired result.

]

Theorem 4.5. Let A be a commutative Banach algebra. ket A — A be a given
linear mapping and an approximate derivation with differer¢g bounded by,
that is, there exists a mapping: A x A — R such that

(4.11) |Dh(z,y) == h(zy) — h(z)y — xh(y)|| < ¢(z,y)
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for all x,y € A. Assume that there exists a nonzero real numbetrth A # 1 such
that the limit

W =0 (nh_)rgo PAREY (% Y ) =0, respectivelg

4.12) 1l -
(4.12) lim L

n—oo

for all z,y € A. Then the mapping is in fact a linear derivation which maps the
algebra into its radical.

Proof. By Lemma4.4, the mapping is in fact a linear derivation which maps the
algebra into its radical by Thomas’ resus. O

It is well-known that all linear derivations on commutative semi-simple Banach
algebras are zer@B]. We remark that every linear mappirkigon a commutative
semi-simple Banach algebra, which is an approximate derivation satis#ing (
and (.12, is also zero.
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