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ABSTRACT. The aim of this note is the study of an integer matrix whose determinant is related to

the Mobius function. We derive a number-theoretic inequality involving sums of a certain class

of Mdébius functions and obtain a sufficient condition for the Riemann hypothesis depending on
an integer triangular matrix. We also provide an alternative proof of Redheffer's theorem based
upon a LU decomposition of the Redheffer's matrix.

Key words and phrasesDeterminants, Dirichlet convolution, Mdbius functions, Singular values.

2000Mathematics Subject Classificat/oft5A15, 11A25, 15A18, 11C20.

1. INTRODUCTION
In what follows, [¢] is the integer part of and, for integers,; > 1, we setmod(j,i) :=
J—ili/il.
1.1. Arithmetic motivation. In 1977, Redheffer [5] introduced the matri, = (r;;) €
M.,,({0,1}) defined by

)L, ifdfjorj=1;
“ )0, otherwise

and has shown that (see appendix)

det R, = M(n) = p(k),

whereu is the Moébius function and/ is the Mertens function. This determinant is clearly
related to two of the most famous problems in number theory, the Prime Number Theorem
(PNT) and the Riemann Hypothesis (RH). Indeed, it is well-known that

PNT <= M(n) =0o(n) and RH<—= M(n)= O, (n1/2+5)
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(for anye > 0). These estimations foklet R,,| remain unproven, but Vaughan [6] showed that
. . . . . . . 10 n n . n
1is an eigenvalue ak,, with (algebraic) multiplicityn — [@] —1, thatR,, has two "dominant
eigenvalues\. such that).| < n'/?, and that the others eigenvalues satisf (logn)?/°.
It should be mentioned that Hadamard’s inequality, which states that

n
|det R, [* < TTIIZA3.
i=1

whereL; is theith row of R,, and||-||, is the euclidean norm o@", gives

(M(n))? < nﬁ (1+ [ﬂ) _ on-ln/2l, [ﬁ] (1+ m) < on-ln/2) <” +7£n/ 2])7

which is very far from the trivial boun@\/ (n)| < n so that it seems likely that general matrix
analysis tools cannot be used to provide an elementary proof of the PNT.

In this work we study an integer matrix whose determinant is also related to the Mdbius
function. This will provide a new criteria for the PNT and the RH (see Coroflary 2.3 below).
In an attempt to go further, we will prove an inequality for a class of Mdbius functions and
deduce a sufficient condition for the PNT and the RH in terms of the smallest singular value of
a triangular matrix.

1.2. Convolution identities for the Mobius function. The functiony, which plays an impor-
tant role in number theory, satisfies the following well-known convolution identity.

Lemma 1.1. For every real numbet > 1 we have
i T
o) [ =3 M (G) =
k<x d<z

One can find a proof for example in [1]. The following corollary will be useful.

Corollary 1.2. For every integerj > 1 we have

(i)
p(k) mod (j, k) = pu(k)
; L =J - T — 1.
(ii)
2L (- p(h) . ,
Z o (mod(j,k+ 1) — mod(j,k)) =1
k=1 \h=1
Proof.
(i) We have
’ ,u(k) mod (j, /{)) _ d ,U(k) j B J ,U/(k> j ;
2k &k G-+[3]) I T T ) i

and we conclude with Lemnia1.1.
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(i) Using Abel summation we get
Z (Z #) (mod (4, k 4+ 1) — mod(j, k))
< ] %) (mod(j, k + 1) — mod(y, k))

0520} 1)~ o)

=1

J Jj—1 .
B u(k) p(k +1) mod (j,k + 1)
=i Z Pii

and we conclude using (i).

2. AN INTEGER MATRIX RELATED TO THE M ®BIUS FUNCTION

We now consider the matrik,, = (v;;) defined by

mod(j,2) — 1, if@'zl and 2<j<n
_ Jmod(j,i+1) —mod(j,i), if2<i<n—-1 and 1<j<ny
LR £6.9) € (0,1, 00 D)
0, otherwise.

The matrixI',, is almost upper triangular except the entyy = 1 which is nonzero. Note that
it is easy to check thaty;;| < ¢ for everyl <i,j < nandthaty; = —1if [j/2] <i < j.
Example 2.1.

-1 0 -1 0 -1 0 -1
-1 1 1 0 0 2

1
0 2
0 0 3 -1 -1 2 2 =2
r_]00 0 4 -1 -1-13
& 1o o 0o 0 5 —-1 -1 —1
00 0 0 0 6 -1 -1
o0 0 0 0 0 7 -1
1 0 0 0 O 0 0 O

2.1. The determinant of I[',,.

Theorem 2.1.Letn > 2 be an integer and’,, defined as above. Then we have

det T, = n! Z @
k=1
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A possible proof of Theore@.l uses a LU decomposition of the mBjrix et L,
andU,, = (u;;) be the matrices defined by

0, if (i,7) = (n,1);
w; =41, if (4,7) = (n,n);

vij, otherwise

and
(1, fl<i=j<n—1
T ME ifi=n and 1<j<n— 1
TN S i) = ()
L0, otherwise.

The proof of Theorerp 21 follows from the lemma below.

Lemma 2.2. We havd’,, = L, U,,.

Proof. SetL,U,, = (z;;). Wheni = 1 we immediately obtain,; = u;; = 7,;. We also have

Tn1 = E loktugs = lun =1 = Ynl-
k=1

Moreover, using Corollar’[I] 2 (i) we get fo=nand2 <j<n—1

k=1

= mod(j, 2 —1+Z ( #) (mod(j,k + 1) — mod(y, k))

k=2

=
D‘

J k (h
<Z )mod (j,k+1) —mod(j,k)) —1=0=1,;

k=1 h=1
and, for(i, j) = (n,n), we have similarly

n—1

Z lnkukn - lnluln + Z lnk:ukn + lnnunn

k=1 k=2

n—1 k n
= mod(n, 2) —1—|—Z < M(h)> (mod(n,k + 1) — mod(n, k)) +n @
k=1

Finally, for2 <i <n —1andl < j < n, we get

E llkuk] = nuz] = U5 = Yij-
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Example 2.2.
1000 0 O 0 0 1 -1 0 -1 0 -1 0 -1
0100 0 O 0 0 6o 2 -1 1 1 0 0 2
0010 0 O 0 0 o o0 3 -1 -1 2 2 =2
. — 0001 0 0 0 0 o o o0 4 -1 -1 -1 3
*“100 00 1 0 0 0 o o o 0 5 -1 -1 -1
0000 0 1 0 0 o 0 0 0 0 6 -1 -1
0000 0 0 1 0 o0 o o0 0 0 7 -1
1 1 ¢ ¢ % & - -/ \0 0 0 0 0 0 0 1
Theorenj 2.Jl now immediately follows from
— ik
detT',, = det L, det U,, = (n — 1)!det L,, = n! #

k=1
We easily deduce the following criteria for the PNT and the RH.

Corollary 2.3. For any real number > 0 we have
PNT <= det', = o(n!) and RH <= detl', = O.(n"'/*nl).
2.2. A sufficient condition for the PNT and the RH.

2.2.1. Computation ofU/, *. The inverse ofU, uses a Mobius-type function denoted py
which we define below.

Definition 2.1. Setu; = u the well-known Mdobius function and, for any integee> 2, we
define the Mobius functiop; by 1;(1) = 1 and, for any integem > 2, by

(,lL(@,), ifi|mand (i +1)fm;
i
—u(iTl), if (i +1)|m andi{m;
pi(m) ==
m m
my il 1
u(z) u(iH), if i(i +1) [ m
L0, otherwise.

The following result completes and generalizes Lenmp 1.1 and Corpllary 1.2.

Lemma 2.4. For all mtegersZ j = 2 we have

Sl

Z]:m mod (j, k :jzj:uzl(f: iy
k=i

k=1

Z(Zm > (mod(j, k+ 1) — mod(j, k)) = d;j,

whered;; is the Kronecker symbol.
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Proof. We only prove the first identity, the proof of the two others being strictly identical to the
identities of Corollary 1]2. Without loss of generality, one can supposetiat < j. If i = j

then we have )
%;W%W%}:MU)B}:M(?>ZL

J
Now suppose that < i < j. By Lemmd 1L, we have

;;ux@ %}== ;: /L(§>{%]_ ;: /L<ifl)[%1

ilk, (i+1)fk (i+1)|k, itk
/ k k j
-3 () )
i)k

J k j J k j
(] - 2 () 3

ilk (i+1)|k

[4/4] [3/(i+1)]

7 1+ 1

h=1 h=1

=1-1=0,
which concludes the proof. O

This result gives the inverse 6f,.
Corollary 2.5. SetU,;! = (6,;). Then we have

! pi(k)
0= — (1<i<j<n-1)
k=i

Qin—nzmé ) (1 <i<n).
k=i

Proof. SinceU, ! is upper triangular, it suffices to show that, for all integeks i < j < n, we

have
J
Z Oikur; = 0ij-
k=i

In what follows, we seb;; as the sum on the left-hand side
We easily check thaf;; = 1 for every integerl < j < n. Now suppose that < i < j <
n — 1. By Corollary[1.2, we first have

J J
Sij = E Orxur; = Ohiugj + E 01Uk
k=1 k=2

o (el . o
= mod(7,2) 1+Z - (mod(7, k4 1) — mod(j, k))
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and, if2 <i < j < n — 1, then by Lemma 2]4, we have

= Z (Z ) (mod(j, k + 1) — mod(j,k)) = 6;; = 0.

J
k=i \h

Now suppose that = n. By Corollary 1.2, we first have

k=1
n—1 k (h
= Oyu1, + Z (Z MT) (mod(n,k + 1) — mod(n, k)) + O1,unn,
k=2 \h=

k

n—1 k n
=mod(n,2) — 1+ (Z Mh)) (mod(n,k + 1) — mod(n, k)) +n (k)
k=1

— Z@) (mod(n,k +1) — mod(n,k)) —1=0

n—1 k
i(h
S, = Z’u}(l) (mod(n, k4 1) — mod(n, k)) + Ointiny,
k=i h=i
n—1 k
zh 7
:Z Zué) (mod(n, k + 1) — mod(n, k)) Zu
k=i h=i
- “’h (mod(n, k + 1) — mod(n, k)) = di = 0
k=i h=1
which completes the proof.
For example, we get
1+ 11 2 1L _ 38
2 6 6 30 15 105 105
o {21 1 _1 1 1 2
2 6 12 12 12 12 3
0035 %5 % — ~1 3
000 § % % = 3
Us' = 1 4
8 00 0 O = = = i
000 0 0 ¢ 5 &
000 O 0 0 z z
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2.2.2. A sufficient condition for the PNT and the RH.

Corollary 2.6. For all integersi > 1 andn > 2 we have

uz

nan

whereo,, is the smallest singular value b?fn. Thus any estimate of the form
Op > n e,

wheres > 0 is any real number, is sufficient to prove the PNT. Similarly, any estimate of the
form

Op > n e
wherees > 0 is any real number, is sufficient to prove the RH.
Proof. The result follows at once from the well-known inequalities

1U 2 > max (6] = [6:n]

1\7\

(seel[8]), wherd|- | is the spectral norm, and the fact that= || U !|/;". O

Smallest singular values of triangular matrices have been studied by many authors. For ex-
ample (see [2,/4]), it is known that, #,, = (a;;) is an invertible upper triangular matrix such
that|a;;| > |a;;| fori < j, then we have

min |a;;|

n = on—1
but, applied here, such a bound is still very far from the PNT.
APPENDIX : A PROOF OF REDHEFFER'S THEOREM
Let S, = (s;;) andT,, = (t;;) be the matrices defined by
1, ifd|g;
Sij = and tij: 1 1f22j22,

0, otherwise 7
0, otherwise.

Proposition 2.7. We haveR,, = S, T,. In particular, det R,, = M (n).
Proof. SetS,, T, = (z;;). If j = 1, by Lemmg 1.]L, we have

tn =3 st = ZM() ZM(%/Z):l:rﬂ.

k=1 d<n/i

If j > 2, thent;; = 0 and thus
n 1, ifilj
Tij = Siklk; = Sij = =Ty
’ ; ’ ’ {O, otherwise ’
which is the desired result. The second assertion follows at once from
det R, = det S, det T,, = det T,, = M (n).

The proof is complete. O
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