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ABSTRACT. The aim of this note is the study of an integer matrix whose determinant is related to
the Möbius function. We derive a number-theoretic inequality involving sums of a certain class
of Möbius functions and obtain a sufficient condition for the Riemann hypothesis depending on
an integer triangular matrix. We also provide an alternative proof of Redheffer’s theorem based
upon a LU decomposition of the Redheffer’s matrix.
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1. I NTRODUCTION

In what follows, [t] is the integer part oft and, for integersi, j > 1, we setmod(j, i) :=
j − i[j/i].

1.1. Arithmetic motivation. In 1977, Redheffer [5] introduced the matrixRn = (rij) ∈
Mn({0, 1}) defined by

rij =

{
1, if i | j or j = 1;

0, otherwise

and has shown that (see appendix)

det Rn = M(n) :=
n∑

k=1

µ(k),

whereµ is the Möbius function andM is the Mertens function. This determinant is clearly
related to two of the most famous problems in number theory, the Prime Number Theorem
(PNT) and the Riemann Hypothesis (RH). Indeed, it is well-known that

PNT⇐⇒ M(n) = o(n) and RH⇐⇒ M(n) = Oε

(
n1/2+ε

)
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(for anyε > 0). These estimations for| det Rn| remain unproven, but Vaughan [6] showed that

1 is an eigenvalue ofRn with (algebraic) multiplicityn−
[

log n
log 2

]
−1, thatRn has two "dominant"

eigenvaluesλ± such that|λ±| � n1/2, and that the others eigenvalues satisfyλ � (log n)2/5.
It should be mentioned that Hadamard’s inequality, which states that

| det Rn|2 6
n∏

i=1

‖Li‖2
2,

whereLi is theith row ofRn and‖·‖2 is the euclidean norm onCn, gives

(M(n))2 6 n
n∏

i=2

(
1 +

[n
i

])
= 2n−[n/2]n

[n/2]∏
i=2

(
1 +

[n
i

])
6 2n−[n/2]

(
n + [n/2]

n

)
,

which is very far from the trivial bound|M(n)| 6 n so that it seems likely that general matrix
analysis tools cannot be used to provide an elementary proof of the PNT.

In this work we study an integer matrix whose determinant is also related to the Möbius
function. This will provide a new criteria for the PNT and the RH (see Corollary 2.3 below).
In an attempt to go further, we will prove an inequality for a class of Möbius functions and
deduce a sufficient condition for the PNT and the RH in terms of the smallest singular value of
a triangular matrix.

1.2. Convolution identities for the Möbius function. The functionµ, which plays an impor-
tant role in number theory, satisfies the following well-known convolution identity.

Lemma 1.1. For every real numberx > 1 we have∑
k6x

µ(k)
[x
k

]
=
∑
d6x

M
(x

d

)
= 1.

One can find a proof for example in [1]. The following corollary will be useful.

Corollary 1.2. For every integerj > 1 we have

(i)
j∑

k=1

µ(k) mod (j, k)

k
= j

j∑
k=1

µ(k)

k
− 1.

(ii)
j∑

k=1

(
k∑

h=1

µ(h)

h

)
(mod(j, k + 1)− mod(j, k)) = 1.

Proof.

(i) We have

j∑
k=1

µ(k) mod (j, k)

k
=

j∑
k=1

µ(k)

k

(
j − k

[
j

k

])
= j

j∑
k=1

µ(k)

k
−

j∑
k=1

µ(k)

[
j

k

]
and we conclude with Lemma 1.1.
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(ii) Using Abel summation we get

j∑
k=1

(
k∑

h=1

µ(h)

h

)
(mod(j, k + 1)− mod(j, k))

=

(
j∑

h=1

µ(h)

h

)
j∑

k=1

(mod(j, k + 1)− mod(j, k))

−
j−1∑
k=1

(
k+1∑
h=1

µ(h)

h
−

k∑
h=1

µ(h)

h

)
k∑

m=1

(mod(j, m + 1)− mod(j, m))

= j

j∑
k=1

µ(k)

k
−

j−1∑
k=1

µ(k + 1) mod (j, k + 1)

k + 1

= j

j∑
k=1

µ(k)

k
−

j∑
k=1

µ(k) mod (j, k)

k

and we conclude using (i).

�

2. AN I NTEGER M ATRIX RELATED TO THE M ÖBIUS FUNCTION

We now consider the matrixΓn = (γij) defined by

γij =


mod(j, 2)− 1, if i = 1 and 2 6 j 6 n;

mod(j, i + 1)− mod(j, i), if 2 6 i 6 n− 1 and 1 6 j 6 n;

1, if (i, j) ∈ {(1, 1), (n, 1)};
0, otherwise.

The matrixΓn is almost upper triangular except the entryγn1 = 1 which is nonzero. Note that
it is easy to check that|γij| 6 i for every1 6 i, j 6 n and thatγij = −1 if [j/2] < i < j.

Example 2.1.

Γ8 =



1 −1 0 −1 0 −1 0 −1
0 2 −1 1 1 0 0 2
0 0 3 −1 −1 2 2 −2
0 0 0 4 −1 −1 −1 3
0 0 0 0 5 −1 −1 −1
0 0 0 0 0 6 −1 −1
0 0 0 0 0 0 7 −1
1 0 0 0 0 0 0 0


.

2.1. The determinant of Γn.

Theorem 2.1.Letn > 2 be an integer andΓn defined as above. Then we have

det Γn = n!
n∑

k=1

µ(k)

k
.
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A possible proof of Theorem 2.1 uses a LU decomposition of the matrixΓn. Let Ln = (lij)
andUn = (uij) be the matrices defined by

uij =


0, if (i, j) = (n, 1);

1, if (i, j) = (n, n);

γij, otherwise

and

lij =



1, if 1 6 i = j 6 n− 1;∑j
k=1

µ(k)
k

, if i = n and 1 6 j 6 n− 1;

n
∑n

k=1
µ(k)

k
, if (i, j) = (n, n);

0, otherwise.

The proof of Theorem 2.1 follows from the lemma below.

Lemma 2.2. We haveΓn = LnUn.

Proof. SetLnUn = (xij). Wheni = 1 we immediately obtainx1j = u1j = γ1j. We also have

xn1 =
n∑

k=1

lnkuk1 = ln1u11 = 1 = γn1.

Moreover, using Corollary 1.2 (ii) we get fori = n and2 6 j 6 n− 1

xnj =
n∑

k=1

lnkukj = ln1u1j +
n∑

k=2

lnkukj

= mod(j, 2)− 1 +

j∑
k=2

(
k∑

h=1

µ(h)

h

)
(mod(j, k + 1)− mod(j, k))

=

j∑
k=1

(
k∑

h=1

µ(h)

h

)
(mod(j, k + 1)− mod(j, k))− 1 = 0 = γnj

and, for(i, j) = (n, n), we have similarly

xnn =
n∑

k=1

lnkukn = ln1u1n +
n−1∑
k=2

lnkukn + lnnunn

= mod(n, 2)− 1 +
n−1∑
k=2

(
k∑

h=1

µ(h)

h

)
(mod(n, k + 1)− mod(n, k)) + n

n∑
k=1

µ(k)

k

=
n∑

k=1

(
k∑

h=1

µ(h)

h

)
(mod(n, k + 1)− mod(n, k))− 1 = 0 = γnn.

Finally, for 2 6 i 6 n− 1 and1 6 j 6 n, we get

xij =
n∑

k=1

likukj = liiuij = uij = γij.

�
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Example 2.2.

Γ8 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 1

2
1
6

1
6
− 1

30
2
15

− 1
105

− 8
105





1 −1 0 −1 0 −1 0 −1
0 2 −1 1 1 0 0 2
0 0 3 −1 −1 2 2 −2
0 0 0 4 −1 −1 −1 3
0 0 0 0 5 −1 −1 −1
0 0 0 0 0 6 −1 −1
0 0 0 0 0 0 7 −1
0 0 0 0 0 0 0 1


.

Theorem 2.1 now immediately follows from

det Γn = det Ln det Un = (n− 1)! det Ln = n!
n∑

k=1

µ(k)

k
.

We easily deduce the following criteria for the PNT and the RH.

Corollary 2.3. For any real numberε > 0 we have

PNT ⇐⇒ det Γn = o(n!) and RH ⇐⇒ det Γn = Oε(n
−1/2+εn!).

2.2. A sufficient condition for the PNT and the RH.

2.2.1. Computation ofU−1
n . The inverse ofUn uses a Möbius-type function denoted byµi

which we define below.

Definition 2.1. Setµ1 = µ the well-known Möbius function and, for any integeri > 2, we
define the Möbius functionµi by µi(1) = 1 and, for any integerm > 2, by

µi(m) :=



µ
(m

i

)
, if i | m and (i + 1) - m;

−µ

(
m

i + 1

)
, if (i + 1) | m and i - m;

µ
(m

i

)
− µ

(
m

i + 1

)
, if i(i + 1) | m;

0, otherwise.

The following result completes and generalizes Lemma 1.1 and Corollary 1.2.

Lemma 2.4. For all integersi, j > 2 we have
j∑

k=i

µi(k)

[
j

k

]
= δij,

j∑
k=i

µi(k) mod (j, k)

k
= j

j∑
k=i

µi(k)

k
− δij,

j∑
k=i

(
k∑

h=i

µi(h)

h

)
(mod(j, k + 1)− mod(j, k)) = δij,

whereδij is the Kronecker symbol.
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Proof. We only prove the first identity, the proof of the two others being strictly identical to the
identities of Corollary 1.2. Without loss of generality, one can suppose that2 6 i 6 j. If i = j
then we have

j∑
k=i

µi(k)

[
j

k

]
= µj(j)

[
j

j

]
= µ

(
j

j

)
= 1.

Now suppose that2 6 i < j. By Lemma 1.1, we have
j∑

k=i

µi(k)

[
j

k

]
=

j∑
k=i

i|k, (i+1)-k

µ

(
k

i

)[
j

k

]
−

j∑
k=i

(i+1)|k, i-k

µ

(
k

i + 1

)[
j

k

]

+

j∑
k=i

i(i+1)|k

(
µ

(
k

i

)
− µ

(
k

i + 1

))[
j

k

]

=

j∑
k=i
i|k

µ

(
k

i

)[
j

k

]
−

j∑
k=i

(i+1)|k

µ

(
k

i + 1

)[
j

k

]

=

[j/i]∑
h=1

µ(h)

[
[j/i]

h

]
−

[j/(i+1)]∑
h=1

µ(h)

[
[j/(i + 1)]

h

]
= 1− 1 = 0,

which concludes the proof. �

This result gives the inverse ofUn.

Corollary 2.5. SetU−1
n = (θij). Then we have

θij =

j∑
k=i

µi(k)

k
(1 6 i 6 j 6 n− 1)

θin = n
n∑

k=i

µi(k)

k
(1 6 i 6 n).

Proof. SinceU−1
n is upper triangular, it suffices to show that, for all integers1 6 i 6 j 6 n, we

have
j∑

k=i

θikukj = δij.

In what follows, we setSij as the sum on the left-hand side
We easily check thatSjj = 1 for every integer1 6 j 6 n. Now suppose that1 6 i < j 6

n− 1. By Corollary 1.2, we first have

S1j =

j∑
k=1

θ1kukj = θ11u1j +

j∑
k=2

θ1kukj

= mod(j, 2)− 1 +

j∑
k=2

(
k∑

h=1

µ(h)

h

)
(mod(j, k + 1)− mod(j, k))

=

j∑
k=1

(
k∑

h=1

µ(h)

h

)
(mod(j, k + 1)− mod(j, k))− 1 = 0
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and, if2 6 i < j 6 n− 1, then by Lemma 2.4, we have

Sij =

j∑
k=i

(
k∑

h=1

µi(h)

h

)
(mod(j, k + 1)− mod(j, k)) = δij = 0.

Now suppose thatj = n. By Corollary 1.2, we first have

S1n =
n∑

k=1

θ1kukn

= θ11u1n +
n−1∑
k=2

(
k∑

h=1

µ(h)

h

)
(mod(n, k + 1)− mod(n, k)) + θ1nunn

= mod(n, 2)− 1 +
n−1∑
k=2

(
k∑

h=1

µ(h)

h

)
(mod(n, k + 1)− mod(n, k)) + n

n∑
k=1

µ(k)

k

=
n∑

k=1

(
k∑

h=1

µ(h)

h

)
(mod(n, k + 1)− mod(n, k))− 1 = 0

and, if2 6 i 6 n− 1, we have

Sin =
n−1∑
k=i

(
k∑

h=i

µi(h)

h

)
(mod(n, k + 1)− mod(n, k)) + θinunn

=
n−1∑
k=i

(
k∑

h=i

µi(h)

h

)
(mod(n, k + 1)− mod(n, k)) + n

n∑
k=i

µi(k)

k

=
n∑

k=i

(
k∑

h=i

µi(h)

h

)
(mod(n, k + 1)− mod(n, k)) = δin = 0

which completes the proof. �

For example, we get

U−1
8 =



1 1
2

1
6

1
6

− 1
30

2
15

− 1
105

− 8
105

0 1
2

1
6
− 1

12
− 1

12
− 1

12
− 1

12
−2

3

0 0 1
3

1
12

1
12

− 1
12

− 1
12

1
3

0 0 0 1
4

1
20

1
20

1
20

−3
5

0 0 0 0 1
5

1
30

1
30

4
15

0 0 0 0 0 1
6

1
42

4
21

0 0 0 0 0 0 1
7

1
7

0 0 0 0 0 0 0 1



.
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2.2.2. A sufficient condition for the PNT and the RH.

Corollary 2.6. For all integersi > 1 andn > 2 we have∣∣∣∣∣
n∑

k=i

µi(k)

k

∣∣∣∣∣ 6 1

nσn

,

whereσn is the smallest singular value ofUn. Thus any estimate of the form

σn �ε n−1+ε,

whereε > 0 is any real number, is sufficient to prove the PNT. Similarly, any estimate of the
form

σn �ε n−1/2−ε

whereε > 0 is any real number, is sufficient to prove the RH.

Proof. The result follows at once from the well-known inequalities

‖U−1
n ‖2 > max

16i,j6n
|θij| > |θin|

(see [3]), where‖·‖2 is the spectral norm, and the fact thatσn = ‖U−1
n ‖−1

2 . �

Smallest singular values of triangular matrices have been studied by many authors. For ex-
ample (see [2, 4]), it is known that, ifAn = (aij) is an invertible upper triangular matrix such
that|aii| > |aij| for i < j, then we have

σn >
min |aii|

2n−1

but, applied here, such a bound is still very far from the PNT.

APPENDIX : A PROOF OF REDHEFFER ’ S THEOREM

Let Sn = (sij) andTn = (tij) be the matrices defined by

sij =

{
1, if i | j;

0, otherwise
and tij =


M(n/i), if j = 1;

1, if i = j > 2;

0, otherwise.

Proposition 2.7. We haveRn = SnTn. In particular, det Rn = M(n).

Proof. SetSnTn = (xij). If j = 1, by Lemma 1.1, we have

xi1 =
n∑

k=1

siktk1 =
∑
k6n
i|k

M
(n

k

)
=
∑

d6n/i

M

(
n/i

d

)
= 1 = ri1.

If j > 2, thent1j = 0 and thus

xij =
n∑

k=2

siktkj = sij =

{
1, if i | j

0, otherwise
= rij

which is the desired result. The second assertion follows at once from

det Rn = det Sn det Tn = det Tn = M(n).

The proof is complete. �
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