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The aim of this note is the study of an integer matrix whose determinant is related
to the Mdbius function. We derive a number-theoretic inequality involving sums
of a certain class of Mébius functions and obtain a sufficient condition for the
Riemann hypothesis depending on an integer triangular matrix. We also provide
an alternative proof of Redheffer’s theorem based upon a LU decomposition of
the Redheffer’'s matrix.
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1. Introduction

In what follows, [¢] is the integer part of and, for integers, j > 1, we setmod
(4,4) := g —alj/il.

1.1. Arithmetic motivation

In 1977, Redhefferq] introduced the matrixz,, = (r;;) € M, ({0, 1}) defined by

L ifdifjorj=1;
Y10, otherwise

and has shown that (see appendix)
det R, = M(n) := Z,u(k),

where 11 is the Mo6bius function and\/ is the Mertens function. This determi-
nant is clearly related to two of the most famous problems in number theory, the
Prime Number Theorem (PNT) and the Riemann Hypothesis (RH). Indeed, it is
well-known that

PNT <= M(n) =0(n) and RH<= M(n)= 0. (n1/2+5)
(for anye > 0). These estimations fqrlet R, | remain unproven, but Vaughaf][

showed that is an eigenvalue aR,, with (algebraic) multiplicityn — [fég] —1, that

R, has two "dominant" eigenvalues. such thati\.| < n!/2, and that the others
eigenvalues satisfy < (logn)%°.
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It should be mentioned that Hadamard'’s inequality, which states that

n
| det R, > < J]ILs13,
=1

wherelL; is theith row of R,, and||-||2 is the euclidean norm o@", gives

M | | n n—[n I I n n—In n+ [n/Z] Mbbius Functions
( (n))2 s <1 * [;]> =2 | /2]71 <1 + [;}> S 2 e ( n ’ Olivier Bordelles and Benoit Cloitre
1=2 =

|
=2 vol. 10, iss. 3, art. 62, 2009

which is very far from the trivial bound)/(n)| < n so that it seems likely that
general matrix analysis tools cannot be used to provide an elementary proof of the )
PNT. Title Page
In this work we study an integer matrix whose determinant is also related to the Contents
Mobius function. This will provide a new criteria for the PNT and the RH (see
Corollary 2.3 below). In an attempt to go further, we will prove an inequality for a « i
class of Mobius functions and deduce a sufficient condition for the PNT and the RH < >
in terms of the smallest singular value of a triangular matrix.
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Close
Lemma 1.1. For every real numbetr. > 1 we have
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Corollary 1.2. For every integeri > 1 we have

(i)
"~ (k) mod (j, k) .~ p(k)
; . — ]; e 1.
(ii)
ZJ: zk:M (mod (j,k + 1 d
I m 7, + ) mo (]7 k)) 1
k=1 \h=1
Proof.
(i) We have
Zu mod (J: k) :Zugf) (j—k {%D = @— pu(k) {ﬂ
k=1 k=1 k=1
and we conclude with Lemma 1.
(i) Using Abel summation we get
(- ()
Z (Z MT) (mod(j,k + 1) — mod(y, k))
k=1 \h=1
— %) Z (mod(j, k 4+ 1) — mod(j, k))
h=1 k=1
-1 [k+1 k k
. (Z@ Z’“‘ﬁf)Z (mod(j,m + 1) — mod(j, m))
k=1 \h=1 h=1 m=1
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[y

j_

p(k +1) mod (j, k + 1)
kE+1

p(k) mod (j, k)

and we conclude using (i).
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2. An Integer Matrix Related to the M6bius Function

We now consider the matrik,, = (v;;) defined by

mod(j,2) — 1, ifi=1 and 2<j<n;
~ Jmod(j,i4+1) —mod(j,7), if2<i<n—1 and 1<j<n;
LRt if (i, ) € {(1,1), (n, 1)};
0, otherwise.

The matrixI',, is almost upper triangular except the enfry = 1 which is nonzero.

Note that it is easy to check that;;| < i for everyl < 4,j < n and thaty;; = —1
if [j/2] <i<j.
Example2.1
1 -1 0 -1 0 -1 0 -1
0o 2 -1 1 1 0 0 2
0 0 3 -1 -1 2 2 =2
|00 0 4 -1 -1 -1 3
*®* 10 0 0 0 5 -1 -1 -1
o o0 o0 o o0 6 -1 -1
o o0 o0 o o o 7T -1
1 0 0 o 0 0 0 O

2.1. The determinant of I,

Theorem 2.1.Letn > 2 be an integer and’,, defined as above. Then we have

det T, = n! Z %’g)
k=1
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A possible proof of Theorer.1 uses a LU decomposition of the matiix. Let
L, = (l;;) andU,, = (u;;) be the matrices defined by

0, if (4,7) = (n,1);
u; =41, if (4,7) = (n,n);

vij, otherwise

and
(1, fl1<i=j<n—1;
I M ifi=n and 1<j<n—1;
YTV S ) = ()
L0, otherwise.

The proof of Theoren. 1 follows from the lemma below.

Lemma 2.2. We havd’,, = L, U,,.

Proof. SetL, U, = (z;;). When: = 1 we immediately obtain; = u;; = v;. We
also have

n
Tpl = g Lupugy = lauyy =1 = Tnl-
k=1

Moreover, using Corollary.2 (i) we getfori =nand2 < j <n—1

n n
Tnj = E lokug; = lpiugj + E lnkug;
k=1 k=2
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n n—1
Tpn = E lppUn = lpity, + g InkUkn + lnnUnn
k=1 k=2

= mod(n,2) — 1+ Y (Z Mh)) (mod(n, k + 1) — mod(n, k))

k
n k
( %) (mod(n,k + 1) — mod(n, k) — 1 =0 = Y.
k=1 \h=1

Finally, for2 <i <n —1andl < j < n, we get

n
Tij = E lisug; = lLijuig = wij = 5.
k=1
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Example2.2

1000 0 O 0 0 1 -1 0 -1 0 -1 0 -1
0100 0 O 0 0 0o 2 -1 1 1 0 0 2
0010 0 O 0 0 o 0o 3 -1 -1 2 2 =2
r 0001 0 O 0 0 o o o0 4 -1 -1 -1 3
*“l1o0000 1 0 O 0 o0 0 0 5 -1 -1 -1
0000 0 1 0 0 o o o 0 0 6 -1 -1 BT (R E s
O 0 0 0 O 0 1 0 O O O 0 O 0 7 —1 Olivier Bordellés and Benoit Cloitre
1 % % % _% % _ﬁ _1;35 0 0 0 0 0 0 0 1 vol. 10, iss. 3, art. 62, 2009
Theorem?.1 now immediately follows from
Title Page
" pu(k
detT',, = det L,, det U,, = (n — 1)!det L,, = n! # Contents
=t «“ b
We easily deduce the following criteria for the PNT and the RH. p R

Corollary 2.3. For any real numbee > 0 we have
Page 10 of 17

PNT <= detI', = o(n!) and RH <= detl', = O.(n"*n!).
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i > 2, we define the Mobius functign by 1;(1) = 1 and, for any integern > 2, by
(1 (2), if i |mand (i +1) { m;
—,u(i%), if (i +1)|m andif{m;
p(®) —p (), ifii+1)[m

L0, otherwise.

pi(m) =

The following result completes and generalizes Lenmimiaand Corollaryl.2.
Lemma 2.5. For all integersi, j >

) H — s,

> 2 we have

i( Zm

) (mod (j, k + 1) — mod(j, k)) = dy;,

whered;; is the Kronecker symbol.

Proof. We only prove the first identity, the proof of the two others being strictly iden-
tical to the identities of Corollary.2. Without loss of generality, one can suppose
that2 < i < j. If i = j then we have

>t [2] = ) [ < (1) -
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Now suppose that < i < j. By Lemmal.1, we have

sl = = o[- £ ()L

G (i 1)k, i
=3 () ()
i(i+1)|k
ORI
ilk (i+D)]k
) %:u {[J—}/f]] ) W(il)]u(h) {[j/(ih—i- 1)]}
= 1 —1=0, -

which concludes the proof.
This result gives the inverse 6f,.

Corollary 2.6. SetU, ' = (6,;). Then we have

J
91-3:2“() (1<i<j<n—1)

M@obius Functions
Olivier Bordellés and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page
Contents
44 44
< 14
Page 12 of 17
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

Proof. SinceU, ! is upper triangular, it suffices to show that, for all integers <

j < n,we have
j
Z Hikukj = 51]
k=i

In what follows, we seb;; as the sum on the left-hand side
We easily check that;; = 1 for every integerl < j < n. Now suppose that
1<i<j<n-—1.ByCorollaryl. 2 we first have

Z Orpur; = Ohiugj + Z O

=mod(j,2) =1+ ) < @) (mod (j, k + 1) — mod(j, k))

=1

- <Z %) (mod(j,k +1) — mod(j,k)) —1=0
—1

and, if2 < , then by Lemma&.5, we have

Sy=Y < “Z’}(lh)> (mod(j, k + 1) — mod(j, k)) = 6,; = 0.

k=t h=1
Now suppose that = n. By Corollary1. 2, we first have

Sin = Z Oritpn = O11U1p + i (

= mod(n, 2) _1+"Z< h)) mod(n,k—l—l)—mOd(n,/{))—i—ni@

k=2 h=1 k=1

) (mod(n,k + 1) — mod(n, k)) + 01,Uns,

=1
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n k
Sl
h
k=1 \h=1
and, if2 <i<n—1,
n—1 k
Sin =
k=1 h=i
n—1 k
k=1 h=1
n k
k=1 h=i

which completes the proof.

For example, we get

Ug!

oS O O o o o o =
o O O O O O we N

(h)> (mod(n,k+1) — mod(n,k)) —1=0

we have

Mz‘}(lh) (mod(n, k 4+ 1) — mod(n, k)) + Ointnn

Ni(h) o Nz(k)
. (mod(n,kr-l-l)—mOd(”ak))+”;T

Hil(lh) (mod(n,k + 1) — mod(n,k)) = d;, =0

0

101 1 2 1 .8
6 30 15 105 105
1.1 1 1 1 _2
6 12 12 12 12 3
101 1 1 _1 1
3 12 12 12 12 3
o L 1 1 1 _3
4 20 20 20 5

1 1 1 4

0 0 5 3% 3 T
1 1 4

o o o 1 L 4
1 1

0 0 0 0 L 1
0O 0 0 0 0 1
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2.2.2. A sufficient condition for the PNT and the RH

Corollary 2.7. For all integers: > 1 andn > 2 we have

. Mz(@
2

k=t

1

)
noy,

<

whereg,, is the smallest singular value 6f,. Thus any estimate of the form
O >en” T

wheres > 0is any real number, is sufficient to prove the PNT. Similarly, any estimate
of the form
on >>€ n*l/Q*E

wheres > 0 is any real number, is sufficient to prove the RH.

Proof. The result follows at once from the well-known inequalities

U > max 161 > 1o

(see B]), where||-||; is the spectral norm, and the fact that= ||U |5 . O

Smallest singular values of triangular matrices have been studied by many au-
thors. For example (se@,[4]), it is known that, ifA,, = (a;;) is an invertible upper
triangular matrix such that;;| > |a;;| for i < j, then we have
min ‘a“’

2n71
but, applied here, such a bound is still very far from the PNT.

n =
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Appendix : A Proof of Redheffer’'s Theorem
Let S, = (s;;) andT,, = (¢;;) be the matrices defined by

1, ifid |y
Sij = and tij =41, if 4 =73 =2
0, otherwise
0, otherwise.

Proposition 2.8. We haver,, = S,,T,,. In particular, det R,, = M (n).
Proof. SetS, T, = (z;;). If j = 1, by Lemmal.1, we have
i1 — Zsiktkl = ZM <E> = ZM (7) =1= Ti1-
k=1 k<n d<n/i
ilk
If j > 2, thent,; = 0 and thus
n 1, ifilj
Tij = ) Siklkj = Sij = =Tij
’ % ’ ’ {O, otherwise ’
which is the desired result. The second assertion follows at once from
det R, = det S, det T,, = det T,, = M (n).

The proof is complete.
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