A MATRIX INEQUALITY FOR MÖBIUS FUNCTIONS

OLIVIER BORDELLÈS

2 allée de la combe

43000 AIGUILHE (France)

EMail: borde43@wanadoo.fr

BENOIT CLOITRE

19 rue Louise Michel

92300 LEVALLOIS-PERRET (France)

EMail: benoit7848c@orange.fr

Received: 24 November, 2008

Accepted: 27 March, 2009

Communicated by: L. Tóth

2000 AMS Sub. Class.: 15A15, 11A25, 15A18, 11C20.

Key words: Determinants, Dirichlet convolution, Möbius functions, Singular values.

Abstract: The aim of this note is the study of an integer matrix whose determinant is related

to the Möbius function. We derive a number-theoretic inequality involving sums of a certain class of Möbius functions and obtain a sufficient condition for the Riemann hypothesis depending on an integer triangular matrix. We also provide an alternative proof of Redheffer's theorem based upon a LU decomposition of

the Redheffer's matrix.

Möbius Functions

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

4

Page 1 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

1	Introduction		
	1.1	Arithmetic motivation	
	1.2	Convolution identities for the Möbius function	
2	An]	Integer Matrix Related to the Möbius Function	
	2.1	The determinant of Γ_n	
	2.2	A sufficient condition for the PNT and the RH	
		2.2.1 Computation of U_n^{-1}	

Möbius Functions

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

Page 2 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

1. Introduction

In what follows, [t] is the integer part of t and, for integers $i, j \ge 1$, we set mod (j, i) := j - i[j/i].

1.1. Arithmetic motivation

In 1977, Redheffer [5] introduced the matrix $R_n = (r_{ij}) \in \mathcal{M}_n(\{0,1\})$ defined by

$$r_{ij} = \begin{cases} 1, & \text{if } i \mid j \text{ or } j = 1; \\ 0, & \text{otherwise} \end{cases}$$

and has shown that (see appendix)

$$\det R_n = M(n) := \sum_{k=1}^n \mu(k),$$

where μ is the Möbius function and M is the Mertens function. This determinant is clearly related to two of the most famous problems in number theory, the Prime Number Theorem (PNT) and the Riemann Hypothesis (RH). Indeed, it is well-known that

$$\operatorname{PNT} \Longleftrightarrow M(n) = o(n) \quad \text{and} \quad \operatorname{RH} \Longleftrightarrow M(n) = O_{\varepsilon} \left(n^{1/2 + \varepsilon} \right)$$

(for any $\varepsilon>0$). These estimations for $|\det R_n|$ remain unproven, but Vaughan [6] showed that 1 is an eigenvalue of R_n with (algebraic) multiplicity $n-\left[\frac{\log n}{\log 2}\right]-1$, that R_n has two "dominant" eigenvalues λ_\pm such that $|\lambda_\pm| \asymp n^{1/2}$, and that the others eigenvalues satisfy $\lambda \ll (\log n)^{2/5}$.

Möbius Functions

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

44

Page 3 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

It should be mentioned that Hadamard's inequality, which states that

$$|\det R_n|^2 \leqslant \prod_{i=1}^n ||L_i||_2^2,$$

where L_i is the *i*th row of R_n and $\|\cdot\|_2$ is the euclidean norm on \mathbb{C}^n , gives

$$(M(n))^2 \leqslant n \prod_{i=2}^n \left(1 + \left[\frac{n}{i} \right] \right) = 2^{n - [n/2]} n \prod_{i=2}^{[n/2]} \left(1 + \left[\frac{n}{i} \right] \right) \leqslant 2^{n - [n/2]} \binom{n + [n/2]}{n},$$

which is very far from the trivial bound $|M(n)| \le n$ so that it seems likely that general matrix analysis tools cannot be used to provide an elementary proof of the PNT.

In this work we study an integer matrix whose determinant is also related to the Möbius function. This will provide a new criteria for the PNT and the RH (see Corollary 2.3 below). In an attempt to go further, we will prove an inequality for a class of Möbius functions and deduce a sufficient condition for the PNT and the RH in terms of the smallest singular value of a triangular matrix.

1.2. Convolution identities for the Möbius function

The function μ , which plays an important role in number theory, satisfies the following well-known convolution identity.

Lemma 1.1. For every real number $x \ge 1$ we have

$$\sum_{k \leqslant x} \mu(k) \left[\frac{x}{k} \right] = \sum_{d \leqslant x} M \left(\frac{x}{d} \right) = 1.$$

One can find a proof for example in [1]. The following corollary will be useful.

Möbius Functions

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

44

>>

Page 4 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Corollary 1.2. For every integer $j \ge 1$ we have

(i)

$$\sum_{k=1}^{j} \frac{\mu(k) \bmod (j,k)}{k} = j \sum_{k=1}^{j} \frac{\mu(k)}{k} - 1.$$

(ii)

$$\sum_{k=1}^{j} \left(\sum_{h=1}^{k} \frac{\mu(h)}{h} \right) (\text{mod}(j, k+1) - \text{mod}(j, k)) = 1.$$

Proof.

(i) We have

$$\sum_{k=1}^{j} \frac{\mu(k) \bmod (j,k)}{k} = \sum_{k=1}^{j} \frac{\mu(k)}{k} \left(j - k \left[\frac{j}{k} \right] \right) = j \sum_{k=1}^{j} \frac{\mu(k)}{k} - \sum_{k=1}^{j} \mu(k) \left[\frac{j}{k} \right]$$
and we conclude with Lemma 1.1.

(ii) Using Abel summation we get

$$\sum_{k=1}^{j} \left(\sum_{h=1}^{k} \frac{\mu(h)}{h} \right) (\operatorname{mod}(j, k+1) - \operatorname{mod}(j, k))$$

$$= \left(\sum_{h=1}^{j} \frac{\mu(h)}{h} \right) \sum_{k=1}^{j} (\operatorname{mod}(j, k+1) - \operatorname{mod}(j, k))$$

$$- \sum_{k=1}^{j-1} \left(\sum_{h=1}^{k+1} \frac{\mu(h)}{h} - \sum_{h=1}^{k} \frac{\mu(h)}{h} \right) \sum_{m=1}^{k} (\operatorname{mod}(j, m+1) - \operatorname{mod}(j, m))$$

Möbius Functions

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

Page 5 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$= j \sum_{k=1}^{j} \frac{\mu(k)}{k} - \sum_{k=1}^{j-1} \frac{\mu(k+1) \bmod (j, k+1)}{k+1}$$
$$= j \sum_{k=1}^{j} \frac{\mu(k)}{k} - \sum_{k=1}^{j} \frac{\mu(k) \bmod (j, k)}{k}$$

and we conclude using (i).

Möbius Functions

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

44 >>

Page 6 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. An Integer Matrix Related to the Möbius Function

We now consider the matrix $\Gamma_n = (\gamma_{ij})$ defined by

$$\gamma_{ij} = \begin{cases} \bmod(j,2) - 1, & \text{if } i = 1 \text{ and } 2 \leqslant j \leqslant n; \\ \bmod(j,i+1) - \bmod(j,i), & \text{if } 2 \leqslant i \leqslant n-1 \text{ and } 1 \leqslant j \leqslant n; \\ 1, & \text{if } (i,j) \in \{(1,1),(n,1)\}; \\ 0, & \text{otherwise.} \end{cases}$$

The matrix Γ_n is almost upper triangular except the entry $\gamma_{n1} = 1$ which is nonzero. Note that it is easy to check that $|\gamma_{ij}| \leq i$ for every $1 \leq i, j \leq n$ and that $\gamma_{ij} = -1$ if [j/2] < i < j.

Example 2.1.

$$\Gamma_8 = \begin{pmatrix} 1 & -1 & 0 & -1 & 0 & -1 & 0 & -1 \\ 0 & 2 & -1 & 1 & 1 & 0 & 0 & 2 \\ 0 & 0 & 3 & -1 & -1 & 2 & 2 & -2 \\ 0 & 0 & 0 & 4 & -1 & -1 & -1 & 3 \\ 0 & 0 & 0 & 0 & 5 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 6 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 7 & -1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

2.1. The determinant of Γ_n

Theorem 2.1. Let $n \ge 2$ be an integer and Γ_n defined as above. Then we have

$$\det \Gamma_n = n! \sum_{k=1}^n \frac{\mu(k)}{k}.$$

Möbius Functions

Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

44

>>

Page 7 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

A possible proof of Theorem 2.1 uses a LU decomposition of the matrix Γ_n . Let $L_n = (l_{ij})$ and $U_n = (u_{ij})$ be the matrices defined by

$$u_{ij} = \begin{cases} 0, & \text{if } (i,j) = (n,1); \\ 1, & \text{if } (i,j) = (n,n); \\ \gamma_{ij}, & \text{otherwise} \end{cases}$$

and

$$l_{ij} = \begin{cases} 1, & \text{if } 1 \leqslant i = j \leqslant n - 1; \\ \sum_{k=1}^{j} \frac{\mu(k)}{k}, & \text{if } i = n \text{ and } 1 \leqslant j \leqslant n - 1; \\ n \sum_{k=1}^{n} \frac{\mu(k)}{k}, & \text{if } (i, j) = (n, n); \\ 0, & \text{otherwise.} \end{cases}$$

The proof of Theorem 2.1 follows from the lemma below.

Lemma 2.2. We have $\Gamma_n = L_n U_n$.

Proof. Set $L_nU_n=(x_{ij})$. When i=1 we immediately obtain $x_{1j}=u_{1j}=\gamma_{1j}$. We also have

$$x_{n1} = \sum_{k=1}^{n} l_{nk} u_{k1} = l_{n1} u_{11} = 1 = \gamma_{n1}.$$

Moreover, using Corollary 1.2 (ii) we get for i = n and $2 \le j \le n - 1$

$$x_{nj} = \sum_{k=1}^{n} l_{nk} u_{kj} = l_{n1} u_{1j} + \sum_{k=2}^{n} l_{nk} u_{kj}$$

Möbius Functions

Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

44 >>

Page 8 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$= \operatorname{mod}(j, 2) - 1 + \sum_{k=2}^{j} \left(\sum_{h=1}^{k} \frac{\mu(h)}{h} \right) \left(\operatorname{mod}(j, k+1) - \operatorname{mod}(j, k) \right)$$
$$= \sum_{k=1}^{j} \left(\sum_{h=1}^{k} \frac{\mu(h)}{h} \right) \left(\operatorname{mod}(j, k+1) - \operatorname{mod}(j, k) \right) - 1 = 0 = \gamma_{nj}$$

and, for (i, j) = (n, n), we have similarly

$$x_{nn} = \sum_{k=1}^{n} l_{nk} u_{kn} = l_{n1} u_{1n} + \sum_{k=2}^{n-1} l_{nk} u_{kn} + l_{nn} u_{nn}$$

$$= \operatorname{mod}(n, 2) - 1 + \sum_{k=2}^{n-1} \left(\sum_{h=1}^{k} \frac{\mu(h)}{h} \right) (\operatorname{mod}(n, k+1) - \operatorname{mod}(n, k))$$

$$+ n \sum_{k=1}^{n} \frac{\mu(k)}{k}$$

$$= \sum_{k=1}^{n} \left(\sum_{h=1}^{k} \frac{\mu(h)}{h} \right) (\operatorname{mod}(n, k+1) - \operatorname{mod}(n, k)) - 1 = 0 = \gamma_{nn}.$$

Finally, for $2 \leqslant i \leqslant n-1$ and $1 \leqslant j \leqslant n$, we get

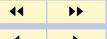
$$x_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj} = l_{ii} u_{ij} = u_{ij} = \gamma_{ij}.$$

Möbius Functions

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

Contents



Page 9 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Example 2.2.

$$\Gamma_8 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & \frac{1}{2} & \frac{1}{6} & \frac{1}{6} & -\frac{1}{30} & \frac{2}{15} & -\frac{1}{105} & -\frac{8}{105} \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & -1 & 0 & -1 & 0 & -1 \\ 0 & 2 & -1 & 1 & 1 & 0 & 0 & 2 \\ 0 & 0 & 3 & -1 & -1 & 2 & 2 & -2 \\ 0 & 0 & 3 & -1 & -1 & 2 & 2 & -2 \\ 0 & 0 & 0 & 4 & -1 & -1 & -1 & 3 \\ 0 & 0 & 0 & 0 & 5 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 6 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 7 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Theorem 2.1 now immediately follows from

$$\det \Gamma_n = \det L_n \det U_n = (n-1)! \det L_n = n! \sum_{k=1}^n \frac{\mu(k)}{k}.$$

We easily deduce the following criteria for the PNT and the RH.

Corollary 2.3. *For any real number* $\varepsilon > 0$ *we have*

PNT
$$\iff$$
 det $\Gamma_n = o(n!)$ and RH \iff det $\Gamma_n = O_{\varepsilon}(n^{-1/2 + \varepsilon}n!)$.

2.2. A sufficient condition for the PNT and the RH

2.2.1. Computation of U_n^{-1}

The inverse of U_n uses a Möbius-type function denoted by μ_i which we define below.

Definition 2.4. Set $\mu_1 = \mu$ the well-known Möbius function and, for any integer

Möbius Functions

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

Page 10 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

 $i \geqslant 2$, we define the Möbius function μ_i by $\mu_i(1) = 1$ and, for any integer $m \geqslant 2$, by

$$\mu_{i}(m) := \begin{cases} \mu\left(\frac{m}{i}\right), & \text{if } i \mid m \text{ and } (i+1) \nmid m; \\ -\mu\left(\frac{m}{i+1}\right), & \text{if } (i+1) \mid m \text{ and } i \nmid m; \\ \mu\left(\frac{m}{i}\right) - \mu\left(\frac{m}{i+1}\right), & \text{if } i(i+1) \mid m; \\ 0, & \text{otherwise.} \end{cases}$$

The following result completes and generalizes Lemma 1.1 and Corollary 1.2.

Lemma 2.5. For all integers $i, j \ge 2$ we have

$$\sum_{k=i}^{j} \mu_i(k) \left[\frac{j}{k} \right] = \delta_{ij},$$

$$\sum_{k=i}^{j} \frac{\mu_i(k) \mod (j,k)}{k} = j \sum_{k=i}^{j} \frac{\mu_i(k)}{k} - \delta_{ij},$$

$$\sum_{k=i}^{j} \left(\sum_{k=i}^{k} \frac{\mu_i(k)}{k} \right) (\mod(j,k+1) - \mod(j,k)) = \delta_{ij},$$

where δ_{ij} is the Kronecker symbol.

Proof. We only prove the first identity, the proof of the two others being strictly identical to the identities of Corollary 1.2. Without loss of generality, one can suppose that $2 \le i \le j$. If i = j then we have

$$\sum_{k=j}^{j} \mu_i(k) \left[\frac{j}{k} \right] = \mu_j(j) \left[\frac{j}{j} \right] = \mu \left(\frac{j}{j} \right) = 1.$$

Möbius Functions

Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

Page 11 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Now suppose that $2 \le i < j$. By Lemma 1.1, we have

$$\begin{split} \sum_{k=i}^{j} \mu_i(k) \left[\frac{j}{k} \right] &= \sum_{\substack{k=i \\ i \mid k, \, (i+1) \nmid k}}^{j} \mu\left(\frac{k}{i}\right) \left[\frac{j}{k} \right] - \sum_{\substack{k=i \\ (i+1) \mid k, \, i \nmid k}}^{j} \mu\left(\frac{k}{i+1}\right) \left[\frac{j}{k} \right] \\ &+ \sum_{\substack{k=i \\ i(i+1) \mid k}}^{j} \left(\mu\left(\frac{k}{i}\right) - \mu\left(\frac{k}{i+1}\right) \right) \left[\frac{j}{k} \right] \\ &= \sum_{\substack{k=i \\ i \mid k}}^{j} \mu\left(\frac{k}{i}\right) \left[\frac{j}{k} \right] - \sum_{\substack{k=i \\ (i+1) \mid k}}^{j} \mu\left(\frac{k}{i+1}\right) \left[\frac{j}{k} \right] \\ &= \sum_{h=1}^{[j/i]} \mu(h) \left[\frac{[j/i]}{h} \right] - \sum_{h=1}^{[j/(i+1)]} \mu(h) \left[\frac{[j/(i+1)]}{h} \right] \\ &= 1 - 1 = 0. \end{split}$$

which concludes the proof.

This result gives the inverse of U_n .

Corollary 2.6. Set $U_n^{-1} = (\theta_{ij})$. Then we have

$$\theta_{ij} = \sum_{k=i}^{j} \frac{\mu_i(k)}{k} \quad (1 \leqslant i \leqslant j \leqslant n-1)$$

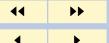
$$\theta_{in} = n \sum_{k=i}^{n} \frac{\mu_i(k)}{k} \quad (1 \leqslant i \leqslant n).$$

Möbius Functions

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

Contents



Page 12 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proof. Since U_n^{-1} is upper triangular, it suffices to show that, for all integers $1 \le i \le j \le n$, we have

$$\sum_{k=i}^{J} \theta_{ik} u_{kj} = \delta_{ij}.$$

In what follows, we set S_{ij} as the sum on the left-hand side

We easily check that $S_{jj} = 1$ for every integer $1 \le j \le n$. Now suppose that $1 \le i < j \le n - 1$. By Corollary 1.2, we first have

$$S_{1j} = \sum_{k=1}^{j} \theta_{1k} u_{kj} = \theta_{11} u_{1j} + \sum_{k=2}^{j} \theta_{1k} u_{kj}$$

$$= \operatorname{mod}(j, 2) - 1 + \sum_{k=2}^{j} \left(\sum_{h=1}^{k} \frac{\mu(h)}{h} \right) \left(\operatorname{mod}(j, k+1) - \operatorname{mod}(j, k) \right)$$

$$= \sum_{k=1}^{j} \left(\sum_{h=1}^{k} \frac{\mu(h)}{h} \right) \left(\operatorname{mod}(j, k+1) - \operatorname{mod}(j, k) \right) - 1 = 0$$

and, if $2 \le i < j \le n - 1$, then by Lemma 2.5, we have

$$S_{ij} = \sum_{k=i}^{j} \left(\sum_{h=1}^{k} \frac{\mu_i(h)}{h} \right) (\text{mod}(j, k+1) - \text{mod}(j, k)) = \delta_{ij} = 0.$$

Now suppose that j = n. By Corollary 1.2, we first have

$$S_{1n} = \sum_{k=1}^{n} \theta_{1k} u_{kn} = \theta_{11} u_{1n} + \sum_{k=2}^{n-1} \left(\sum_{h=1}^{k} \frac{\mu(h)}{h} \right) (\operatorname{mod}(n, k+1) - \operatorname{mod}(n, k)) + \theta_{1n} u_{nn}$$

$$= \operatorname{mod}(n, 2) - 1 + \sum_{k=2}^{n-1} \left(\sum_{h=1}^{k} \frac{\mu(h)}{h} \right) (\operatorname{mod}(n, k+1) - \operatorname{mod}(n, k)) + n \sum_{k=2}^{n} \frac{\mu(k)}{k}$$

Möbius Functions

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

Page 13 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$= \sum_{k=1}^{n} \left(\sum_{h=1}^{k} \frac{\mu(h)}{h} \right) (\operatorname{mod}(n, k+1) - \operatorname{mod}(n, k)) - 1 = 0$$

and, if $2 \le i \le n-1$, we have

$$S_{in} = \sum_{k=i}^{n-1} \left(\sum_{h=i}^{k} \frac{\mu_i(h)}{h} \right) (\operatorname{mod}(n, k+1) - \operatorname{mod}(n, k)) + \theta_{in} u_{nn}$$

$$= \sum_{k=i}^{n-1} \left(\sum_{h=i}^{k} \frac{\mu_i(h)}{h} \right) (\operatorname{mod}(n, k+1) - \operatorname{mod}(n, k)) + n \sum_{k=i}^{n} \frac{\mu_i(k)}{k}$$

$$= \sum_{k=i}^{n} \left(\sum_{h=i}^{k} \frac{\mu_i(h)}{h} \right) (\operatorname{mod}(n, k+1) - \operatorname{mod}(n, k)) = \delta_{in} = 0$$

which completes the proof.

For example, we get

$$U_8^{-1} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{6} & \frac{1}{6} & -\frac{1}{30} & \frac{2}{15} & -\frac{1}{105} & -\frac{8}{105} \\ 0 & \frac{1}{2} & \frac{1}{6} & -\frac{1}{12} & -\frac{1}{12} & -\frac{1}{12} & -\frac{1}{12} & -\frac{2}{3} \\ 0 & 0 & \frac{1}{3} & \frac{1}{12} & \frac{1}{12} & -\frac{1}{12} & -\frac{1}{12} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4} & \frac{1}{20} & \frac{1}{20} & \frac{1}{20} & -\frac{3}{5} \\ 0 & 0 & 0 & 0 & \frac{1}{5} & \frac{1}{30} & \frac{1}{30} & \frac{4}{15} \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{6} & \frac{1}{42} & \frac{4}{21} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Möbius Functions

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

44 >>

Page 14 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2.2.2. A sufficient condition for the PNT and the RH

Corollary 2.7. For all integers $i \ge 1$ and $n \ge 2$ we have

$$\left| \sum_{k=i}^{n} \frac{\mu_i(k)}{k} \right| \leqslant \frac{1}{n\sigma_n},$$

where σ_n is the smallest singular value of U_n . Thus any estimate of the form

$$\sigma_n \gg_{\varepsilon} n^{-1+\varepsilon},$$

where $\varepsilon > 0$ is any real number, is sufficient to prove the PNT. Similarly, any estimate of the form

$$\sigma_n \gg_{\varepsilon} n^{-1/2-\varepsilon}$$

where $\varepsilon > 0$ is any real number, is sufficient to prove the RH.

Proof. The result follows at once from the well-known inequalities

$$||U_n^{-1}||_2 \geqslant \max_{1 \leqslant i,j \leqslant n} |\theta_{ij}| \geqslant |\theta_{in}|$$

(see [3]), where $\|\cdot\|_2$ is the spectral norm, and the fact that $\sigma_n = \|U_n^{-1}\|_2^{-1}$.

Smallest singular values of triangular matrices have been studied by many authors. For example (see [2, 4]), it is known that, if $A_n = (a_{ij})$ is an invertible upper triangular matrix such that $|a_{ii}| \ge |a_{ij}|$ for i < j, then we have

$$\sigma_n \geqslant \frac{\min|a_{ii}|}{2^{n-1}}$$

but, applied here, such a bound is still very far from the PNT.

Möbius Functions

Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Appendix: A Proof of Redheffer's Theorem

Let $S_n = (s_{ij})$ and $T_n = (t_{ij})$ be the matrices defined by

$$s_{ij} = \begin{cases} 1, & \text{if } i \mid j; \\ 0, & \text{otherwise} \end{cases} \quad \text{and} \quad t_{ij} = \begin{cases} M(n/i), & \text{if } j = 1; \\ 1, & \text{if } i = j \geqslant 2; \\ 0, & \text{otherwise.} \end{cases}$$

Proposition 2.8. We have $R_n = S_n T_n$. In particular, $\det R_n = M(n)$.

Proof. Set $S_nT_n=(x_{ij})$. If j=1, by Lemma 1.1, we have

$$x_{i1} = \sum_{k=1}^{n} s_{ik} t_{k1} = \sum_{\substack{k \le n \ i \mid k}} M\left(\frac{n}{k}\right) = \sum_{d \le n/i} M\left(\frac{n/i}{d}\right) = 1 = r_{i1}.$$

If $j \geqslant 2$, then $t_{1j} = 0$ and thus

$$x_{ij} = \sum_{k=2}^{n} s_{ik} t_{kj} = s_{ij} = \begin{cases} 1, & \text{if } i \mid j \\ 0, & \text{otherwise} \end{cases} = r_{ij}$$

which is the desired result. The second assertion follows at once from

$$\det R_n = \det S_n \det T_n = \det T_n = M(n).$$

The proof is complete.

Möbius Functions

Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

Page 16 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

- [1] O. BORDELLÈS, Thèmes d'arithmétique, Editions Ellipses, 2006.
- [2] N.J. HIGHAM, A survey of condition number for triangular matrices, *Soc. Ind. Appl. Math.*, **29** (1987), 575–596.
- [3] R.A. HORN AND C.R. JOHNSON, *Matrix Analysis*, Cambridge University Press, 1985.
- [4] F. LEMEIRE, Bounds for condition number of triangular and trapezoid matrices, *BIT*, **15** (1975), 58–64.
- [5] R.M. REDHEFFER, Eine explizit lösbare Optimierungsaufgabe, *Internat. Schiftenreihe Numer. Math.*, **36** (1977), 213–216.
- [6] R.C. VAUGHAN, On the eigenvalues of Redheffer's matrix I, in: *Number Theory with an Emphasis on the Markoff Spectrum* (Provo, Utah, 1991), 283–296, Lecture Notes in Pure and Appl. Math., **147**, Dekker, New-York, 1993.

Möbius Functions

Olivier Bordellès and Benoit Cloitre

vol. 10, iss. 3, art. 62, 2009

Title Page

Contents

Page 17 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756