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ABSTRACT. We investigate monotonicity and logarithmic convexity properties of one-parameter
family of means

Fy(r;a,b;x,y) = E(r,r + h;ax, by)/E(r,7 + h;a, b)
whereFE is the Stolarsky mean. Some inequalities between classic means are obtained.
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1. INTRODUCTION

Extended mean values of positive numherg introduced by Stolarsky in [6] are defined as

( s\ i
G=3 sr(s —1)(x —y) £0,

l nyCCT
r log y—log x

S 1=

T(Jf—y)#o, s =0,

(1.1) E(r,s;z,y) = Lo e
e r <?;7>y r=s, r(r—y) #0,
/Ty r=s=0,x—y#0,
L = T =1.

This mean is also called the Stolarsky mean.
In [9] the author extended the Stolarsky means to a four-parameter family of means by adding

positive weights, b:

1.2 F(r,s;a,b; = —".
(1.2) (r. 550, biry) = Zpi
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2 ALFRED WITKOWSKI

From the continuity ofZ it follows that F" is continuous ifR* x R3 x R2. Our goal in this
paper is to investigate the logarithmic convexity of

(1.3) Fy(ria,byz,y) = F(r,r + hia,bix,y).
In [1] Horst Alzer investigated the one-parameter mean
(1.4) J(r)=J(r;z,y) = E(r,r + L;z,y)

and proved that for # y, J is strictly log-convex forr < —1/2 and strictly log-concave for
r > —1/2. He also proved thaf(r)J(—r) < J?(0). In [2] he obtained a similar result for the
Lehmer means

x""‘l‘l +yT+1

xr _l_ yr

With an appropriate choice of parameters[in](1.2) one can obtain both the one-parameter
mean and the Lehmer mean. Namely,

J(ryz,y) = F(r,r+1;1, 1 2,y)

(1.5) L(r) = L(r;z,y) =

and
L(r,z,y) = F(r,r + Lz, y; 2, y).
Another example may be the mean created the same way from the Heronian mean
e Ty + yr+1
"+ /Ty YT
The following monotonicity properties of weighted Stolarsky means have been established
in [9]:

Property 1.1. F increases inc andy.

(1.6) N(rix,y) = F(ryr + 1;37/x, Jy; 2, y) =

Property 1.2. F increases in- ands if (z — y)(a*z — b*y) > 0 and decreases {fr — y)(a*z —
b’y) < 0.

Property 1.3. F increases inu if (x — y)(r + s) > 0 and decreases {fr — y)(r +s) < 0, F
decreases in if (x — y)(r + s) > 0 and increases ifz — y)(r + s) < 0.

Definition 1.1. A function f : R —R is said to be symmetrically convex (concave) with respect
to the pointr if f is convex (concave) ifry, co) and for everyt > 0 f(ro +¢) + f(ro — t) =
2f(7”0).

Definition 1.2. A function f : R — R, is said to be symmetrically log-convex (log-concave)
with respect to the point, if log f is symmetrically convex (concave) w.n,.

For symmetrically log-convex functions the symmetry condition redds + ¢) f(ro — t) =
f?(ro). We shall recall now two properties of convex functions.

Property 1.4. If f is convex (concave) then fér> 0 the functiong(t) = f(t + h) — f(t) is
increasing (decreasing). For < 0 the monotonicity of reverses.
For log-convexf the same holds fay(¢t) = f(t + h)/f(¥).

Property 1.5. If f is convex (concave) then for arbitramythe function h,.(t) = f(z — ) +
f(z + t) is increasing (decreasing) ifD, co). For log-convexf the same holds fok,(t) =

flx—=t)f(z+1).

The property 1.5 holds also for symmetrically convex (concave) functions:
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Lemma 1.6. Let f be symmetrically convex w.rity, and letx > r,. Then the function,,(t) =
f(z —1t)+ f(x +t) is increasing (decreasing) if0, oo). If = < o thenh,(¢) decreases.

For f symmetrically concave the monotonicitynfis reverse.

For the case wher¢g is symmetrically log-convex (log-concave)t) = f(x +t)f(z —t) is
monotone accordingly.

Proof. We shall prove the lemma fof symmetrically convex and > ry,. Forxz < ry or f
symmetrically convex the proofs are similar.
Consider two cases:
e 0<t<ux—ro Inthis case,(t) is increasing by Properfy 1.5.
ot >x—rg. NoWh,(t) = f(x +t)+ f(x —t) =2f(ro) + f(x +t) — f(t —x + 2r0)
increases by Propetty 1.4 becausex + 2ry > ro and(z +t) — (t — 2 + 2rg) > 0.
O

2. MAIN RESULT

It is obvious that the monotonicity of;, matches that of’. The main result consists of the
following theorem:

Theorem 2.1.If (z — y)(a?x — b*y) > 0 (resp. < 0) thenF}(r) is symmetrically log-concave
(resp. log-convex) with respect to the point/2).

To prove it we need the following

Lemma 2.2. Let Lo L
A'log®A  B'log" B
A B) = — .
g(t, ) ) (At . 1)2 (Bt _ 1)2

Then

(1) g(t, A, B) = g(£t, A, B,

(2) gisincreasing int on (0, co) if log? A —log® B > 0 and decreasing otherwise.
Proof. (1) becomes obvious when we write

log? A log® B
t,A,B) = — .
9(t, 4, B) At -2+ At Bt —24 Bt
From (1) if follows that replacing!, B with A~*, B~ if necessary we may assume thiatB >
1. In this casesgn(log” A — log® B) = sgn(A! — BY).
dg  AY(A'+1)log® A B'(B'+1)log’ B
ot (At —1)3 (Bt —1)3
1 1
— 5 (6(A") = 6(B") = — (A~ BY(©),
where¢ > 1 lies betweem! and B! and

) = u(u 4 1) log® u
¢( )_ (U—1>3

To complete the proof it is enough to show th&t:) < 0 for u > 1.
(P +du+1)log’u [ 3(u?—1)

¢ (u) = w—1)" u2+4u+1—10gu ,
so the sign of¢’ is the same as the sign ¢f(u) = 5;11;31 — logu. Butw(1l) = 0 and
P (u) = —(u—1)"/u(u® +4u+1)? < 0, s0¢p(u) < 0. O
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Proof of Theorer 2]1First of all note that

(12$

log? b——log b log log — 2y

and becausezn(x — y) = sgnlog £ = we see that
(2.1) sgn(z — y)(a’z — b’) = sgn <log b_ — log? Z)

LetA = i andB = 3. Suppose thatl, B # 1 (in other cases we use a standard continuity
argument).F;, () can be written as

Ath 1 ) AT 1\
Fh(r>:y Brth _ 1 BT —1 )

We show symmetry by performing simple calculations:
F(=h/2 —r)F}(=h/2 + 1)
on Ah/2—r -1 B—h/2—r -1 Ah/?-i—r -1 B—h/2+r -1
Bh/2—r _ 1 A-h/2—r _ 1 pBh/2tr _ 1 A-h/2tr _ ]
(2_2) on B~h AM2-T _1 1 — BM2+r  Ah/2+r _ 1 1 — Bh/2-T
Y A-h T phiz—r _ 1 1 _ Ab/2+r  Bh/2Ar — 1 1 — Ah/2—r

— (—) = (ay)! = F"(=h/2).

Y
Differentiating twice we obtain
d? r,A,B) —g(r+h,A, B
L 1og Fy(r) = 24 B) = o )
A, B)— h|, A, B

hence by Lemmpa 2.2 (2)

2
sg1— 5 log F(r) = sgn h(|r| — |r + h|)(log® A — log® B)

=sgn(r + h/2)(x — y)(a*z — b%y).

The last equation follows fronji (2.1) and from the fact that the inequpljty: | + &| is valid
if and only ifr > —h/2 andh > 0 orr < —h/2 andh < 0. O

The following theorem is an immediate consequence of Theprgm 2.1 and Lenjma 1.6.
Theorem 2.3.1f (x — y)(a?z — b?y)(ro + h/2) > 0 then the function
O(t) = Fr(ro —t) Fp(ro + 1)
is decreasing in0, oo). In particular for every reak
(2.3) Fi(ro — t)Fi(ro + 1) < Fi(ro).

If (z — y)(a®z — b*y)(ro + h/2) < 0 thend(¢) is increasing in(0, oo). In particular for every
real ¢

(24) Fh(TO - t)Fh(T'() + t) Z F,?(T’g)

The following corollaries are immediate consequences of Thedreins 2/1 &nd 2.3:
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Corollary 2.4. For x # y the one-parameter meai(r) defined by(1.4) is log-convex for
r < —1/2 and log-concave for > —1/2. If rq > —1/2thenfor all realt, J(rq—t)J(ro+t) <
J?(rg). Forry < —1/2 the inequality reverses.

Proof. J(r;z,y) = Fi(r;1,1;2,y). -

Corollary 2.5. For x # y the Lehmer meat(r) defined by(1.5)is log-convex for < —1/2
and log-concave for > —1/2. If ry > —1/2 then for all realt, L(rq — t)L(ro + t) < L*(ro).
For ry < —1/2 the inequality reverses.

Proof. L(r;x,y) = Fi(r;x,y; z,y). -

Corollary 2.6. For x # y the meanN(r) defined by(L.8) is log-convex forr < —1/2 and
log-concave for > —1/2. If r, > —1/2 then for all realt, N(ro — t)N(ro +t) < N?(ry). For
ro < —1/2 the inequality reverses.

Proof. N(r;z,y) = Fi(r; V,\/y; 2, y). O
3. APPLICATION

In this section we show some inequalities between classic means:

1
Power means A, = A,.(z,y) = (x Yy ) :

2
Harmonicmean H =A_(z,y)= xziyy,
Geometric mean G = Ay(z,y) = /zy,
Logarithmic mean L = L(z,y) = ﬁ,

_ + /Ty +
Heronianmean N = N(z,y) = #7

Arithmetic mean A = A (z,y) = x ;r y’
. 2 r? 2
Centroidalmean 7T =T(z,y) = _w’
3 r+y
.CEQ + y2
Root-mean-square R = Ay(z,y) = o
2 2
Contrharmonic mean  C = C(x,y) = ~—— "
r+y

Corollary 3.1 (Tung-Po Lin inequality[4])
L <Ay
Proof. By Theorenj 2.3
Fis(0;1,1,52,9) Fiys(2/3;1, 1 m,y) < Frg(1/3;1, 152, y)

() (o) (5

or

logz —logy) \3Va2— /2] ~\2 Vao—y
Simplifying we obtain
L (2, y) < AYjs(@,y).
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Inequalities in the table below can be shown the same way as above by an appropriate choice
of parameters irf (2} 3) and (2.4).

No Inequality h To t a b
1 [2>GN  1/2 0 1 1 1
2 L?> HT 1 0 2 1 1
3 Af/Q > AG 1/2 0 1/2 x Y
4 A,>LN 12 12 12 1 1
5 N? > AL 1 /2 12 1 1
6 A2 > LT 1 1 1 1 1
7 A2>CH 1 0 1 x y
8 LN > AG  1/2  1/2 1 1 1
9 GN > HT 1 -1 1/2 x Yy
10 AN>TG  1/2 0 1 x y
11 LT > HC 1 1 2 1 1
12 TA>NR 1 1/2 1/2 x Yy
13 L3> AG? 1 0 1 1 1
14 [}>GA%, 12 12 12 1 1
15 N*>AAZ, 12 1 12 1 1
16 T3 > AR 1 2 1 1 1
17  LN>>G?T 1 1/2  3/2 1 1

Note that 4 is stronger than 3 (due to inequality 8), 14 is stronger than 13 (due to 3). Also, 1
is stronger than 2 because of 9.
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