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A STABILITY VERSION OF HÖLDER’S INEQUALITY FOR 0 < p < 1
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ABSTRACT. We use a refinement of Hölder’s inequality for1 < p < ∞ to obtain the corre-
sponding refinement whenr ∈ (0, 1). This in turn allows us to sharpen the reverse triangle
inequality on the nonnegative functions inLr, for r ∈ (0, 1).
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By ‖F‖t :=
(∫
|F |t

)1/t
we do not mean to imply that this quantity is finite, nor do we assume

thatt > 0; in fact, in this note negative exponents are unavoidable.
It is well known that Hölder’s inequality can be extended to the range0 < r < 1, by an

argument that essentially amounts to a clever rewriting of the case1 < p < ∞, cf. [2, pg. 191].
We denote the conjugate exponent ofr by s := r/(r − 1), and the conjugate exponent ofp by
q := p/(p−1) (of course, to go from the range(0, 1) to (1,∞) and viceversa, one setsr = 1/p).
Hölder’s inequality for0 < r < 1 tells us that ifh andk are nonnegative functions inLr and
Ls respectively, then

∫
hk ≥

(∫
hr
)1/r (∫

ks
)1/s

. This entails that given functionsh,w ≥ 0 in
Lr, the reverse triangle inequality‖h + w‖r ≥ ‖h‖r + ‖w‖r holds. Nonnegativity is of course
crucial.

Here we extend to the range(0, 1) the following stability version of Hölder’s inequality,
which appears in [1]:

Let 1 < p < ∞ and letq = p/(p − 1) be its conjugate exponent. Iff ∈ Lp, g ∈ Lq are
nonnegative functions with‖f‖p, ‖g‖q > 0, and1 < p ≤ 2, then

(1) ‖f‖p‖g‖q

(
1− 1

p

∥∥∥∥ fp/2

‖fp/2‖2

− gq/2

‖gq/2‖2

∥∥∥∥2

2

)
+

≤ ‖fg‖1 ≤ ‖f‖p‖g‖q

(
1− 1

q

∥∥∥∥ fp/2

‖fp/2‖2

− gq/2

‖gq/2‖2

∥∥∥∥2

2

)
,
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while if 2 ≤ p < ∞, the terms1/p and1/q exchange their positions in the preceding inequali-
ties.

Inequality (1) essentially states that‖fg‖1 ≈ ‖f‖p‖g‖q if and only if the angle between the
L2 vectorsfp/2 andgq/2 is small (in this sense it is a stability result). To see that on the cone of
nonnegative functions (1) extends the parallelogram identity, rearrange the latter, for nonzerox
andy in a real Hilbert space, as follows (cf. [1, formula (2.0.2)]):

(2) (x, y) = ‖x‖‖y‖

(
1− 1

2

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)

.

Writing (2) as a two sided inequality, adequately replacing some of the Hilbert space norms byp
andq norms, and the terms1/2 by 1/p and1/q, we see that (1) indeed generalizes (2). Note also
that‖fp/2‖2 = ‖f‖p/2

p . Save in the case wherep = q = 2, the nonnegative functionsf ∈ Lp

andg ∈ Lq will in principle belong to different spaces, so to compare themL2 is retained in (1)
as the common measuring ground; to go fromLp andLq into L2 we use the Mazur map, which
for nonnegative functions of norm 1 inLp is simplyf 7→ fp/2 (cf. [1] for more details).

Next we extend inequality (1) to the range0 < r < 1, keeping the role ofL2. Unlike the case
of Hölder’s inequality for1 < p < ∞, here we assume thathk ∈ L1. In exchange, we do not
need to suppose a priori thath ∈ Lr; this will be part of the conclusion.

Theorem 1. Let 0 < r < 1, and lets = s/(s − 1) be its conjugate exponent. Ifk ∈ Ls,
hk ∈ L1, ‖h‖r, ‖k‖s > 0, and1/2 ≤ r < 1, then

(3a) ‖hk‖1

(
1− r

∥∥∥∥ h1/2k1/2

‖h1/2k1/2‖2

− ks/2

‖ks/2‖2

∥∥∥∥2

2

) 1
r

+

(3b) ≤ ‖h‖r‖k‖s ≤ ‖hk‖1

(
1− (1− r)

∥∥∥∥ h1/2k1/2

‖h1/2k1/2‖2

− ks/2

‖ks/2‖2

∥∥∥∥2

2

) 1
r

,

while if 0 < r ≤ 1/2, the termsr and1− r exchange their positions in the preceding inequali-
ties.

Proof. Suppose1/2 ≤ r < 1. Setp = 1/r and useq ands to denote the conjugate exponents of
p andr respectively. Since1 < p ≤ 2, we can apply (1) to the functionsf := hrkr andg = k−r,
which belong toLp andLq respectively:

∫
fp =

∫
hk < ∞ and

∫
gq =

∫
ks < ∞. Now the

inequalities (3) immediately follow. If0 < r ≤ 1/2, then2 ≤ p < ∞, so just interchange the
terms1/p and1/q in (1). �

Note that from (3b), together with the hypothesis‖h‖r‖k‖s > 0, we get

(4) 0 < 1− (1− r)

∥∥∥∥ h1/2k1/2

‖h1/2k1/2‖2

− ks/2

‖ks/2‖2

∥∥∥∥2

2

for all r ∈ [1/2, 1) (for r ∈ (1/2, 1) this already follows from
∥∥∥ x
‖x‖2 −

y
‖y‖2

∥∥∥2

2
≤ 2, which is

immediate from (2) whenx, y ≥ 0). The analogous result, withr instead of1− r, holds when
0 < r ≤ 1/2. Thus, (3b) can be rewritten as

(5) ‖h‖r‖k‖s

(
1− (1− r)

∥∥∥∥ h1/2k1/2

‖h1/2k1/2‖2

− ks/2

‖ks/2‖2

∥∥∥∥2

2

)− 1
r

≤ ‖hk‖1
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when1/2 ≤ r < 1, while if 0 < r ≤ 1/2, the same formula holds but withr replacing1− r.
Now we are ready to obtain a sharpening of the reverse triangle inequality for nonnegative

functions.

Theorem 2. Let 0 < r < 1. Given nonnegative functionsh,w ∈ Lr with ‖h‖r, ‖w‖r > 0, set
k := (h + w)r−1/‖(h + w)r−1‖s. Then, if1/2 ≤ r < 1, we have

(6) ‖h + w‖r ≥ ‖h‖r

(
1− (1− r)

∥∥∥∥ h1/2k1/2

‖h1/2k1/2‖2

− ks/2

∥∥∥∥2

2

)− 1
r

+ ‖w‖r

(
1− (1− r)

∥∥∥∥ w1/2k1/2

‖w1/2k1/2‖2

− ks/2

∥∥∥∥2

2

)− 1
r

,

while if 0 < r ≤ 1/2, the same inequality holds but with1− r replaced byr.

Proof. Suppose1/2 ≤ r < 1, and note thatk is a unit vector inLs. Hence, so isks/2 in L2. By
the nonnegativity ofh andw we have

(7) ‖h + w‖r =

∫
(h + w)r−1

‖(h + w)r−1‖s

(h + w) =

∫
hk +

∫
wk.

Since the left hand side of the preceding equality is finite, so are both integrals on the right hand
side, and now the result follows by applying (4). If0 < r ≤ 1/2, we argue in the same way, but
with r replacing1− r in (4). �

Let us writeθ(x, y) :=
∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥. To conclude, we make some comments on the size

of θ(h1/2k1/2, ks/2), which also apply toθ(w1/2k1/2, ks/2). On a real Hilbert space,θ(x, y) is
comparable to the angle between the vectorsx andy. In particular,θ(h1/2k1/2, ks/2) is zero if
and only if there exists at > 0 such thath = tw, in which case‖h + w‖r = ‖h‖r + ‖w‖r.
Under any other circumstance, the inequality given by (6) is strictly better that the standard
reverse triangle inequality.

On the other hand, if we ask how small(
1− (1− r)

∥∥∥∥ h1/2k1/2

‖h1/2k1/2‖2

− ks/2

∥∥∥∥2

2

) 1
r

can be forr ∈ [1/2, 1), the obvious boundθ(h1/2k1/2, ks/2) ≤
√

2 is informative whenr is
close to 1, but useless ifr = 1/2. The analogous remark holds for(

1− r

∥∥∥∥ h1/2k1/2

‖h1/2k1/2‖2

− ks/2

∥∥∥∥2

2

) 1
r

when 0 < r ≤ 1/2. However, nontrivial bounds also hold near1/2, since for everyr ∈
(0, 1), ‖h + w‖r ≤ 21/r−1 (‖h‖r + ‖w‖r) (see for instance Exercise 13.25 a), [2, pg. 199]).
Thus,θ(h1/2k1/2, ks/2) andθ(w1/2k1/2, ks/2) cannot be simultaneously large. More precisely, if
1/2 ≤ r < 1, then either

θ2(h1/2k1/2, ks/2) ≤ 1− 2r−1

1− r
or

θ2(w1/2k1/2, ks/2) ≤ 1− 2r−1

1− r
,
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while if 0 < r ≤ 1/2, then either

θ2(h1/2k1/2, ks/2) ≤ 1− 2r−1

r
or

θ2(w1/2k1/2, ks/2) ≤ 1− 2r−1

r
.
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