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Holder’s inequality, Reverse triangle inequality.

We use a refinement of Holder’s inequality for< p < oo to obtain the cor-
responding refinement whene (0,1). This in turn allows us to sharpen the
reverse triangle inequality on the nonnegative functions’infor r € (0, 1).
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By | Fl: == ([ !F\t)l/t we do not mean to imply that this quantity is finite, nor

do we assume that> 0; in fact, in this note negative exponents are unavoidable.

It is well known that Holder’s inequality can be extended to the ranger < 1,
by an argument that essentially amounts to a clever rewriting of thelcage< oo,
cf. [2, pg. 191]. We denote the conjugate exponent by s := r/(r — 1), and the
conjugate exponent gf by ¢ := p/(p — 1) (of course, to go from the randé, 1)
to (1,00) and viceversa, one sets= 1/p). Holder's inequality for0 < r < 1
tells us that ifh and £ are nonnegative functions ih” and L® respectively, then
[hk > ([p)"" ([ k)", This entails that given functions w > 0 in L', the
reverse triangle inequalityh + w||, > |||, + ||w]/- holds. Nonnegativity is of
course crucial.

Here we extend to the rande, 1) the following stability version of Hdlder's
inequality, which appears iri]:

Letl < p < oo and letg = p/(p — 1) be its conjugate exponent. ff ¢ L7,
g € L% are nonnegative functions witf¥||,, ||¢gll; > 0, and1 < p < 2, then

2)
2/ 4

1
<ol < 1l llglls (1 - H H

fp/2 gq/2
o2l (g2l
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2

while if2 < p < oo, the termd /p and1/q exchange their positions in the preceding

inequalities.

Inequality (L) essentially states thdtfg||, ~ | f||,llgll, if and only if the angle
between thd.? vectorsf?/? andg?/? is small (in this sense it is a stability result). To
see that on the cone of nonnegative functior)sktends the parallelogram identity,
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rearrange the latter, for nonzercandy in a real Hilbert space, as follows (cfl,[
formula (2.0.2)]):
2)

1’ x Y
2 | lll vl

() (@, y) = llzllllyll (1 -

Writing (2) as a two sided inequality, adequately replacing some of the Hilbert space

norms byp andq norms, and the termi/2 by 1/p and1/q, we see thatl) indeed

generalizesZ). Note also thafl f7/2||, = || f||%/*. Save in the case whepe= ¢ = 2,
the nonnegative functiong € L? andg € L? will in principle belong to different
spaces, so to compare théris retained in {) as the common measuring ground; to
go from L? and L¢ into L? we use the Mazur map, which for nonnegative functions
of norm 1inL? is simply f — f7/? (cf. [1] for more details).

Next we extend inequalitylj to the range) < r < 1, keeping the role of 2.
Unlike the case of Holder's inequality far< p < oo, here we assume thak < L'.
In exchange, we do not need to suppose a priorithatL”; this will be part of the
conclusion.

Theorem 1. Let0 < r < 1, and lets = s/(s — 1) be its conjugate exponent. If
ke L*, hk € L', | A, ||k]ls > 0,and1/2 < r < 1, then

1
2>r
2/

h1/2k1/2 ks/?
1A2RY2 ]y [[Re/2]]

hl/Qk,l/Q ks/2
IRy (ko722

(3a) ||hk]1 (1 —r

1
2\ r
2) ’
while if0 < r < 1/2, the termg- and 1 — r exchange their positions in the preceding
inequalities.

(3b) < ([Pl K]l < [[Pk]l (1 — (1=
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Proof. Supposd /2 < r < 1. Setp = 1/r and use; ands to denote the conjugate
exponents op andr respectively. Sincé < p < 2, we can applyJ) to the functions
f:=h"k" andg = k", which belong taL” and L? respectively:[ 7 = [ hk < oo
and[ ¢? = [ k* < co. Now the inequalitiesy) immediately follow. If0 < r < 1/2,
then2 < p < oo, so just interchange the termgp and1/q in (1). O

Note that from 8b), together with the hypothesjig||,||%||s > 0, we get

BL/21/2 Es/2 |2

4 1—(1- _
4) 0 <1=0=")|| e, ~ e,

2

2
T

<2,

forall r € [1/2,1) (for r € (1/2,1) this already follows frorﬁ . T , S
which is immediate from%) whenz,y > 0). The analogous result, withinstead

of 1 — r, holds wher) < r < 1/2. Thus, ¢b) can be rewritten as

2~
) < [kl
2

when1/2 < r < 1, while if 0 < r < 1/2, the same formula holds but with
replacingl — r.

Now we are ready to obtain a sharpening of the reverse triangle inequality for
nonnegative functions.

h1/2k1/2 k5/2
’IIh”Qk”QHz IR

(5) [1Poll %]l <1— (1—=7)
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Theorem 2. Let0 < r < 1. Given nonnegative functionsw € L” with || A||,, ||w]], >
0, setk := (h +w)"'/||(h +w) . Then, ifl/2 < r < 1, we have

R1/2):1/2 o 2\
6) [1n+wl|, = (Al (1 [ 2K2), ! ,
_1
wl/2k1/2 2\
. i YoM s/2
+ [[wll- (1 (1=r) w2172 k ) ’

while if 0 < r < 1/2, the same inequality holds but with- r replaced byr.

Proof. Supposd /2 < r < 1, and note that is a unit vector inL*. Hence, so i%*/?
in L?. By the nonnegativity of. andw we have

h+ r 1
) Ih + wll, /” “’r T h+w):/hk+/wk.

Since the left hand side of the preceding equality is finite, so are both integrals on
the right hand side, and now the result follows by applyifig f 0 < » < 1/2, we
argue in the same way, but wittreplacingl — r in (4). O

xT

Let us writef(x,y) := Tl — ”y” ’ To conclude, we make some comments on

the size of)(h'/2k'/2, k/?), which also apply td(w'/2k'/2, k*/?). On a real Hilbert
spacef(x,y) is comparable to the angle between the vec:iomsdy. In particular,
0(n'/?kM2 k*/?) is zero if and only if there existsta> 0 such that, = tw, in which
case||h + w||, = ||h]|- + ||w||,. Under any other circumstance, the inequality given
by (6) is strictly better that the standard reverse triangle inequality.
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On the other hand, if we ask how small

(1—(1—7‘) 2>T

can be forr € [1/2,1), the obvious bound(h'/?k'/? k*/?) < /2 is informative
whenr is close to 1, but uselessif= 1/2. The analogous remark holds for

2\ r
1—r
2

when0 < r < 1/2. However, nontrivial bounds also hold neéa®, since for every

€ (0,1), [[h+wl, <2V (||All, + ||w].) (see for instance Exercise 13.25 &), [
pg. 199]). Thusp(h'/2k'/? k*/?) and(w'/?k'/?, k*/?) cannot be simultaneously
large. More precisely, if /2 < r < 1, then either

h1/2]{51/2

e kS/Q
||hl/2kl/2||2

h1/2]€1/2

e v ]{35/2
||h1/2k1/2||2

2(1,1/27.1/2 2 1- 2T_1
02 (W22 13/ < — = —
- 1=
or
02 (w212 k%) < -2
) — 1 —r Y
while if 0 < r < 1/2, then either
r—1
02(h1/2k1/2,k8/2) < 1-2
o T
or
2 1/271.1/2 2 1— 2T_1
02 (w2 EM? k2 < ———.
r
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