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boundedness of the solutions of certain partial differential equations.

Key words and phrases:Integral inequality, Nonlinear, Two variables, Retarded.

2000Mathematics Subject Classification.26D10, 26D15.

1. I NTRODUCTION

The Gronwall-Bellman integral inequality plays an important role in the qualitative analysis
of the solutions of differential and integral equations. During the past few years, many retarded
inequalities have been discovered (see in [1, 2, 4, 5, 6, 10, 11]). Lipovan [4] investigated the
following retarded inequality

(1.1) u(t) ≤ a +

∫ b(t)

b(t0)

f(s)w(u(s))ds, t0 ≤ t ≤ t1,

and Agarwal et al. [6] generalized (1.1) to a more general case as follows

(1.2) u(t) ≤ a(t) +
n∑

i=1

∫ bi(t)

bi(t0)

fi(s)wi(u(s))ds, t0 ≤ t ≤ t1.

Recently, many people such as Wang [10], Cheung [9] and Dragomir [8] established some new
integral inequalities involving functions of two independent variables and Zhao et al. [11] also
established advanced integral inequalities.

The purpose of this paper, motivated by the works of Agarwal [6], Cheung [9] and Zhao [11],
is to discuss more general integral inequalities withn nonlinear terms

(1.3) u(x, y) ≤ a(x, y) +
n∑

i=1

∫ αi(x)

αi(0)

∫ ∞

βi(y)

fi(x, y, s, t)wi(u(s, t))dtds
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and

(1.4) u(x, y) ≤ a(x, y) +
n∑

i=1

∫ ∞

αi(x)

∫ ∞

βi(y)

fi(x, y, s, t)wi(u(s, t))dtds.

Our results can be used more effectively to study the boundedness and uniqueness of the solu-
tions of certain partial differential equations. Moreover, at the end of this paper, an example is
presented to show the applications of our results.

2. STATEMENT OF M AIN RESULTS

Let R = (−∞,∞) andR+ = [0,∞). D1z(x, y) andD2z(x, y) denote the first-order partial
derivatives ofz(x, y) with respect tox andy respectively.

As in [6], definew1 ∝ w2 for w1, w2 : A ⊂ R → R\{0} if
w2

w1

is nondecreasing onA.

Assume that

(B1) wi(u) (i = 1, . . . , n) is a nonnegative, nondecreasing and continuous function foru ∈
R+ with wi(u) > 0 for u > 0 such thatw1 ∝ w2 ∝ · · · ∝ wn;

(B2) a(x, y) is a nonnegative and continuous function forx, y ∈ R+;
(B3) fi(x, y, s, t) (i = 1, . . . , n) is a continuous and nonnegative function forx, y, s, t ∈ R+.

Take the notationWi(u) :=
∫ u

ui

dz
wi(z)

for u ≥ ui, whereui > 0 is a given constant. Clearly,

Wi is strictly increasing, so its inverseW−1
i is well defined, continuous and increasing in its

corresponding domain.

Theorem 2.1. Under the assumptions(B1), (B2) and (B3), supposea(x, y) andfi(x, y, s, t)
are bounded iny ∈ R+. Let αi(x), βi(y) be nonnegative, continuously differentiable and
nondecreasing functions withαi(x) ≤ x andβi(y) ≥ y on R+ for i = 1, 2, . . . , n. If u(x, y) is
a continuous and nonnegative function satisfying (1.3), then

(2.1) u(x, y) ≤ W−1
n

[
Wn(bn(x, y)) +

∫ αn(x)

αn(0)

∫ ∞

βn(y)

f̃n(x, y, s, t)dtds

]
for all 0 ≤ x ≤ x1, y1 ≤ y < ∞, wherebn(x, y) is determined recursively by

b1(x, y) = sup
0≤τ≤x

sup
y≤µ<∞

a(τ, µ),

bi+1(x, y) = W−1
i

[
Wi(bi(x, y)) +

∫ αi(x)

αi(0)

∫ ∞

βi(y)

f̃i(x, y, s, t)dtds

]
,(2.2)

f̃i(x, y, s, t) = sup
0≤τ≤x

sup
y≤µ<∞

fi(τ, µ, s, t),

W1(0) := 0, andx1, y1 ∈ R+ are chosen such that

(2.3) Wi(bi(x1, y1)) +

∫ αi(x1)

αi(0)

∫ ∞

βi(y1)

f̃i(x, y, s, t)dtds ≤
∫ ∞

ui

dz

wi(z)

for i = 1, . . . , n.

The proof of Theorem 2.1 will be given in the next section.

Remark 1. As in [6], different choices ofui in Wi do not affect our results. If allwi (i =
1, . . . , n) satisfy

∫∞
ui

dz
wi(z)

= ∞, then (2.1) is true for allx, y ∈ R+.
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Remark 2. As in [10], if wi(u) (i = 1, . . . , n) are continuous functions onR+ and positive
on (0,∞) but the sequence of{wi(u)} does not satisfyw1 ∝ w2 ∝ · · · ∝ wn, we can use a
technique of monotonization of the sequence of functionswi(u), calculated by

w̃1(u) := max
θ∈[0,u]

w1(θ),

w̃i+1(u) := max
θ∈[0,u]

{
wi+1(θ)

w̃i(θ)

}
w̃i(u), i = 1, . . . , n− 1.(2.4)

Clearly,w̃i(u) ≥ wi(u) (i = 1, . . . , n). (1.3) and (1.4) can also become

(2.5) u(x, y) ≤ a(x, y) +
n∑

i=1

∫ αi(x)

αi(0)

∫ ∞

βi(y)

fi(x, y, s, t)w̃i(u(s, t))dtds

and

(2.6) u(x, y) ≤ a(x, y) +
n∑

i=1

∫ ∞

αi(x)

∫ ∞

βi(y)

fi(x, y, s, t)w̃i(u(s, t))dtds,

where the function sequence{w̃i(u)} satisfies the assumption(B1).

Theorem 2.2. Under the assumptions(B1), (B2) and (B3), supposea(x, y) andfi(x, y, s, t)
are bounded inx, y ∈ R+. Let αi(x), βi(y) be nonnegative, continuously differentiable and
nondecreasing functions withαi(x) ≥ x andβi(y) ≥ y on R+ for i = 1, 2, . . . , n. If u(x, y) is
a continuous and nonnegative function satisfying (1.4), then

(2.7) u(x, y) ≤ W−1
n

[
Wn(bn(x, y)) +

∫ ∞

αn(x)

∫ ∞

βn(y)

f̂n(x, y, s, t)dtds

]
for all x̂1 ≤ x < ∞, ŷ1 ≤ y < ∞, wherebn(x, y) is determined recursively by

b1(x, y) = sup
x≤τ<∞

sup
y≤µ<∞

a(τ, µ),

bi+1(x, y) = W−1
i

[
Wi(bi(x, y)) +

∫ ∞

αi(x)

∫ ∞

βi(y)

f̂i(x, y, s, t)dtds

]
,

f̂i(x, y, s, t) = sup
x≤τ<∞

sup
y≤µ<∞

fi(τ, µ, s, t),(2.8)

W1(0) := 0, andx̂1, ŷ1 ∈ R+ are chosen such that

(2.9) Wi(bi(x̂1, ŷ1)) +

∫ ∞

αi(x̂1)

∫ ∞

βi(ŷ1)

f̂i(x, y, s, t)dtds ≤
∫ ∞

ui

dz

wi(z)

for i = 1, . . . , n.

The proof is similar to the argument in the proof of Theorem 2.1 with suitable modifications.
In the next section, we omit its proof.

3. PROOF OF THEOREM 2.1

From the assumptions, we know thatb1(x, y) and f̃i(x, y, s, t) are well defined. Moreover,
ã(x, y) andf̃i(x, y, s, t) are nonnegative, nondecreasing inx and nonincreasing iny and satisfy
b1(x, y) ≥ a(x, y) andf̃i(x, y, s, t) ≥ fi(x, y, s, t) for eachi = 1, . . . , n.

We first discuss the casea(x, y) > 0 for all x, y ∈ R+. From(1.3), we have

(3.1) u(x, y) ≤ b1(x, y) +
n∑

i=1

∫ αi(x)

αi(0)

∫ ∞

βi(y)

f̃i(x, y, s, t)wi(u(s, t))dtds.
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Choose arbitrarỹx1, ỹ1 such that0 ≤ x̃1 ≤ x1, y1 ≤ ỹ1 < ∞. From(3.1), we obtain

(3.2) u(x, y) ≤ b1(x̃1, ỹ1) +
n∑

i=1

∫ αi(x)

αi(0)

∫ ∞

βi(y)

f̃i(x̃1, ỹ1, s, t)wi(u(s, t))dtds

for all 0 ≤ x ≤ x̃1 ≤ x1, y1 ≤ ỹ1 ≤ y < ∞.
We claim that

(3.3) u(x, y) ≤ W−1
n

[
Wn(b̃n(x̃1, ỹ1, x, y)) +

∫ αn(x)

αn(0)

∫ ∞

βn(y)

f̃n(x̃1, ỹ1, s, t)dtds

]

for all 0 ≤ x ≤ min{x̃1, x2}, max{ỹ1, y2} ≤ y < ∞, where

b̃1(x̃1, ỹ1, x, y) = b1(x̃1, ỹ1),

b̃i+1(x̃1, ỹ1, x, y) = W−1
i

[
Wi(b̃i(x̃1, ỹ1, x, y)) +

∫ αi(x)

αi(0)

∫ ∞

βi(y)

f̃i(x̃1, ỹ1, s, t)dtds

]
(3.4)

for i = 1, . . . , n− 1 andx2, y2 ∈ R+ are chosen such that

(3.5) Wi(b̃i(x̃1, ỹ1, x2, y2)) +

∫ αi(x2)

αi(0)

∫ ∞

βi(y2)

f̃i(x̃1, ỹ1, s, t)dtds ≤
∫ ∞

ui

dz

wi(z)

for i = 1, . . . , n.
Note that we may takex2 = x1 andy2 = y1. In fact, b̃i(x̃1, ỹ1, x, y) andf̃i(x̃1, ỹ1, x, y) are

nondecreasing iñx1 and nonincreasing iñy1 for fixedx, y. Furthermore, it is easy to check that
b̃i(x̃1, ỹ1, x̃1, ỹ1) = bi(x̃1, ỹ1) for i = 1, . . . , n. If x2 andy2 are replaced byx1 andy1 on the left
side of (3.5) respectively, from (2.3) we have

Wi(b̃i(x̃1,ỹ1, x1, y1)) +

∫ αi(x1)

αi(0)

∫ ∞

βi(y1)

f̃i(x̃1, ỹ1, s, t)dtds

≤ Wi(b̃i(x1, y1, x1, y1)) +

∫ αi(x1)

αi(0)

∫ ∞

βi(y1)

f̃i(x1, y1, s, t)dtds

= Wi(bi(x1, y1)) +

∫ αi(x1)

αi(0)

∫ ∞

βi(y1)

f̃i(x1, y1, s, t)dtds

≤
∫ ∞

ui

dz

wi(z)
.

Thus, we can takex2 = x1, y2 = y1.
In the following, we will use mathematical induction to prove (3.3).
Forn = 1, let

z(x, y) = b1(x̃1, ỹ1) +

∫ α1(x)

α1(0)

∫ ∞

β1(y)

f̃1(x̃1, ỹ1, s, t)w1(u(s, t))dtds.

Thenz(x, y) is differentiable, nonnegative, nondecreasing forx ∈ [0, x̃1] and nonincreasing for
y ∈ [ỹ1,∞] andz(0, y) = z(x,∞) = b1(x̃1, ỹ1). From(3.2), we have

(3.6) u(x, y) ≤ z(x, y).
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Consideringα1(x) ≤ x andα
′
1(x) ≥ 0 for x ∈ R+, we have

D1z(x, y) =

∫ ∞

β1(y)

f̃1(x̃1, ỹ1, α1(x), t)w1(u(α1(x), t))dtα
′

1(x)

≤
∫ ∞

β1(y)

f̃1(x̃1, ỹ1, α1(x), t)w1(z(α1(x), t))dtα
′

1(x)

≤ w1(z(x, y))

∫ ∞

β1(y)

f̃1(x̃1, ỹ1, α1(x), t)dtα
′

1(x).(3.7)

Sincew1 is nondecreasing andz(x, y) > 0, we get

(3.8)
D1(z(x, y))

w1(z(x, y))
≤

∫ ∞

β1(y)

f̃1(x̃1, ỹ1, α1(x), t)dtα
′

1(x).

Integrating both sides of the above inequality from0 to x, we obtain

W1(z(x, y)) ≤ W1(z(0, y)) +

∫ x

0

∫ ∞

β1(y)

f̃1(x̃1, ỹ1, α1(s), t)α
′

1(s)dtds

= W1(b1(x̃1, ỹ1)) +

∫ α1(x)

α1(0)

∫ ∞

β1(y)

f̃1(x̃1, ỹ1, s, t)dtds.(3.9)

Thus the monotonicity ofW−1
1 and (3.5) imply

u(x, y) ≤ z(x, y)

≤ W−1
1

[
W1(b1(x̃1, ỹ1)) +

∫ α1(x)

α1(0)

∫ ∞

β1(y)

f̃1(x̃1, ỹ1, s, t)dtds

]
,

namely, (3.3) is true forn = 1.
Assume that (3.3) is true forn = m. Consider

u(x, y) ≤ b1(x̃1, ỹ1) +
m+1∑
i=1

∫ αi(x)

αi(0)

∫ ∞

βi(y)

f̃i(x̃1, ỹ1, s, t)wi(u(s, t))dtds

for all 0 ≤ x ≤ x̃1, ỹ1 ≤ y < ∞. Let

z(x, y) = b1(x̃1, ỹ1) +
m+1∑
i=1

∫ αi(x)

αi(0)

∫ ∞

βi(y)

f̃i(x̃1, ỹ1, s, t)wi(u(s, t))dtds.

Thenz(x, y) is differentiable, nonnegative, nondecreasing forx ∈ [0, x̃1] and nonincreasing for
y ∈ [ỹ1,∞]. Obviously,z(0, y) = z(x, 0) = b1(x̃1, ỹ1) andu(x, y) ≤ z(x, y). Sincew1 is
nondecreasing andz(x, y) > 0, noting thatαi(x) ≤ x andα

′
i(x) ≥ 0 for x ∈ R+, we have

D1(z(x, y))

w1(z(x, y))
≤

∑m+1
i=1

∫∞
βi(y)

f̃i(x̃1, ỹ1, αi(x), t)wi(u(αi(x), t))dtα
′
i(x)

w1(z(x, y))

≤
∑m+1

i=1

∫∞
βi(y)

f̃i(x̃1, ỹ1, αi(x), t)wi(z(αi(x), t))dtα
′
i(x)

w1(z(x, y))
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≤
∫ ∞

β1(y)

f̃1(x̃1, ỹ1, α1(x), t)dtα
′

1(x)

+
m+1∑
i=2

∫ ∞

βi(y)

f̃i(x̃1, ỹ1, αi(x), t)φi(z(αi(x), t))dtα
′

i(x)

≤
∫ ∞

β1(y)

f̃1(x̃1, ỹ1, α1(x), t)dtα
′

1(x)

+
m∑

i=1

∫ ∞

βi+1(y)

f̃i+1(x̃1, ỹ1, αi+1(x), t)φi+1(z(αi+1(x), t))dtα
′

i+1(x),

whereφi+1(u) = wi+1(u)
w1(u)

, i = 1, . . . ,m. Integrating the above inequality from0 to x, we obtain

W1(z(x, y))

≤ W1(b1(x̃1, ỹ1)) +

∫ x

0

∫ ∞

β1(y)

f̃1(x̃1, ỹ1, α1(s), t)α
′

1(s)dtds

+
m∑

i=1

∫ x

0

∫ ∞

βi+1(y)

f̃i+1(x̃1, ỹ1, αi+1(s), t)φi+1(z(αi+1(s), t))α
′

i+1(s)dtds

≤ W1(b1(x̃1, ỹ1)) +

∫ α1(x)

α1(0)

∫ ∞

β1(y)

f̃1(x̃1, ỹ1, s, t)dtds

+
m∑

i=1

∫ αi+1(x)

αi+1(0)

∫ ∞

βi+1(y)

f̃i+1(x̃1, ỹ1, s, t)φi+1(z(s, t))dtds,

or

ξ(x, y) ≤ c1(x, y) +
m∑

i=1

∫ αi+1(x)

αi+1(0)

∫ ∞

βi+1(y)

f̃i+1(x̃1, ỹ1, s, t)φi+1(W
−1
1 (ξ(s, t)))dtds

for 0 ≤ x ≤ x̃1, ỹ1 ≤ y < ∞. This is the same as (3.3) forn = m, whereξ(x, y) = W1(z(x, y))
and

c1(x, y) = W1(b1(x̃1, ỹ1)) +

∫ α1(x)

α1(0)

∫ ∞

β1(y)

f̃1(x̃1, ỹ1, s, t)dtds.

From the assumption (B1), eachφi+1(W
−1
1 (u)) (i = 1, . . . ,m) is continuous and nondecreas-

ing foru. Moreover,φ2(W
−1
1 ) ∝ φ3(W

−1
1 ) ∝ · · · ∝ φm+1(W

−1
1 ). By the inductive assumption,

we have

(3.10) ξ(x, y) ≤ Φ−1
m+1

[
Φm+1(cm(x, y)) +

∫ αm+1(x)

αm+1(0)

∫ ∞

βm+1(y)

f̃m+1(x̃1, ỹ1, s, t)dtds

]

for all 0 ≤ x ≤ min{x̃1, x3}, max{ỹ1, y3} ≤ y < ∞, whereΦi+1(u) =
∫ u

ũi+1

dz
φi+1(W−1

1 (z))
,

u > 0, ũi+1 = W1(ui+1), Φ−1
i+1 is the inverse ofΦi+1, i = 1, . . . ,m,

ci+1(x, y) = Φ−1
i+1

[
Φi+1(ci(x, y)) +

∫ αi+1(x)

αi+1(0)

∫ ∞

βi+1(y)

f̃i+1(x̃1, ỹ1, s, t)dtds

]
, i = 1, . . . ,m,
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andx3, y3 ∈ R+ are chosen such that

(3.11) Φi+1(ci(x3, y3)) +

∫ αi+1(x3)

αi+1(0)

∫ ∞

βi+1(y3)

f̃i+1(x̃1, ỹ1, s, t)dtds

≤
∫ W1(∞)

ũi+1

dz

φi+1(W
−1
1 (z))

for i = 1, . . . ,m.
Note that

Φi(u) =

∫ u

ũi

dz

φi(W
−1
1 (z))

=

∫ u

W1(ui)

w1(W
−1
1 (z))dz

wi(W
−1
1 (z))

=

∫ W−1
1 (u)

ui

dz

wi(z)
= Wi ◦W−1

1 (u), i = 2, . . . ,m + 1.

From (3.10), we have

u(x, y)

≤ z(x, y) = W−1
1 (ξ(x, y))

≤ W−1
m+1

[
Wm+1(W

−1
1 (cm(x, y))) +

∫ αm+1(x)

αm+1(0)

∫ ∞)

βm+1(y)

f̃m+1(x̃1, ỹ1, s, t)dtds

]
(3.12)

for all 0 ≤ x ≤ min{x̃1, x3}, max{ỹ1, y3} ≤ y < ∞. Let c̃i(x, y) = W−1
1 (ci(x, y)). Then,

c̃1(x, y) = W−1
1 (c1(x, y))

= W−1
1

[
W1(b1(x̃1, ỹ1)) +

∫ α1(x)

α1(0)

∫ ∞

β1(y)

f̃1(x̃1, ỹ1, s, t)dtds

]
= b̃2(x̃1, ỹ1, x, y).

Moreover, with the assumption thatc̃m(x, y) = b̃m+1(x̃1, ỹ1, x, y), we have

c̃m+1(x, y)

= W−1
1

[
Φ−1

m+1(Φm+1(cm(x, y)) +

∫ αm+1(x)

αm+1(0)

∫ ∞

βm+1(y)

f̃m+1(x̃1, ỹ1, s, t)dtds)

]

= W−1
m+1

[
Wm+1(W

−1
1 (cm(x, y))) +

∫ αm+1(x)

αm+1(0)

∫ ∞

βm+1(y)

f̃m+1(x̃1, ỹ1, s, t)dtds

]

= W−1
m+1

[
Wm+1(c̃m(x, y)) +

∫ αm+1(x)

αm+1(0)

∫ ∞

βm+1(y)

f̃m+1(x̃1, ỹ1, s, t)dtds

]

= W−1
m+1

[
Wm+1(b̃m+1(x̃1, ỹ1, x, y)) +

∫ αm+1(x)

αm+1(0)

∫ ∞

βm+1(y)

f̃m+1(x̃1, ỹ1, s, t)dtds

]
= b̃m+2(x̃1, ỹ1, x, y).

This proves that
c̃i(x, y) = b̃i+1(x̃1, ỹ1, x, y), i = 1, . . . ,m.
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Therefore, (3.11) becomes

Wi+1(b̃i+1(x̃1,ỹ1, x3, y3)) +

∫ αi+1(x3)

αi+1(0)

∫ ∞

βi+1(y3)

f̃i+1(x̃1, ỹ1, s, t)dtds

≤
∫ W1(∞)

ũi+1

dz

φi+1(W
−1
1 (z))

=

∫ ∞

ui+1

dz

wi+1(z)
, i = 1, . . . ,m.

The above inequalities and (3.5) imply that we may takex2 = x3, y2 = y3. From (3.12) we get

u(x, y) ≤ W−1
m+1

[
Wm+1(b̃m+1(x̃1, ỹ1, x, y)) +

∫ αm+1(x)

αm+1(0)

∫ ∞

βm+1(y)

f̃m+1(x̃1, ỹ1, s, t)dtds

]
for all 0 ≤ x ≤ x̃1 ≤ x2, y2 ≤ ỹ1 ≤ y < ∞. This proves (3.3) by mathematical induction.

Takingx = x̃1, y = ỹ1, x2 = x1 andy2 = y1, we have

(3.13) u(x̃1, ỹ1) ≤ W−1
n

[
Wn(b̃n(x̃1, ỹ1, x̃1, ỹ1)) +

∫ αn(x̃1)

αn(0)

∫ ∞

βn(ỹ1)

f̃n(x̃1, ỹ1, s, t)dtds

]
for 0 ≤ x̃1 ≤ x1, y1 ≤ ỹ1 < ∞. It is easy to verify that̃bn(x̃1, ỹ1, x̃1, ỹ1) = bn(x̃1, ỹ1). Thus,
(3.13) can be written as

u(x̃1, ỹ1) ≤ W−1
n

[
Wn(bn(x̃1, ỹ1)) +

∫ αn(x̃1)

αn(0)

∫ ∞

βn(ỹ1)

f̃n(x̃1, ỹ1, s, t)dtds

]
.

Sincex̃1, ỹ1 are arbitrary, replacẽx1 andỹ1 by x andy respectively and we have

u(x, y) ≤ W−1
n

[
Wn(bn(x, y)) +

∫ αn(x)

αn(0)

∫ ∞

βn(y)

f̃n(x, y, s, t)dtds

]
for all 0 ≤ x ≤ x1, y1 ≤ y < ∞.

In casea(x, y) = 0 for somex, y ∈ R+. Let b1,ε(x, y) := b1(x, y) + ε for all x, y ∈ R+,
whereε > 0 is arbitrary, and thenb1,ε(x, y) > 0. Using the same arguments as above, where
b1(x, y) is replaced withb1,ε(x, y) > 0, we get

u(x, y) ≤ W−1
n

[
Wn(bn,ε(x, y)) +

∫ αn(x)

αn(0)

∫ ∞

βn(y)

d̃n(x, y, s, t)dtds

]
.

Letting ε → 0+, we obtain(2.1) by the continuity ofb1,ε in ε and the continuity ofWi andW−1
i

under the notationW1(0) := 0. �

4. APPLICATIONS

Consider the retarded partial differential equation

D1D2v(x, y) =
1

(x + 1)2(y + 1)2
+ exp (−x) exp (−y)

√
|v(x, y)|

+
3

4
x exp

(
−x

2

)
exp (−3y)v

(x

2
, 3y

)
,(4.1)

v(x,∞) = σ(x), v(0, y) = τ(y), v(0,∞) = k,(4.2)
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for x, y ∈ R+, whereσ, τ ∈ C(R+, R), σ(x) is nondecreasing inx, τ(y) is nonincreasing iny,
andk is a real constant. Integrating (4.1) with respect tox andy and using the initial conditions
(4.2), we get

v(x, y) = σ(x) + τ(y)− k − x

(x + 1)(y + 1)

−
∫ x

0

∫ ∞

y

exp (−s) exp (−t)
√
|v(s, t)|dtds

− 3

4

∫ x

0

∫ ∞

y

s exp
(
−s

2

)
exp (−3t)v(

s

2
, 3t)dtds

= σ(x) + τ(y)− k − x

(x + 1)(y + 1)

−
∫ x

0

∫ ∞

y

exp (−s) exp (−t)
√
|v(s, t)|dtds

−
∫ x

2

0

∫ ∞

3y

s exp (−s) exp (−t)v(s, t)dtds.

Thus,

|v(x, y)| ≤ |σ(x) + τ(y)− k|+ x

(x + 1)(y + 1)

+

∫ x

0

∫ ∞

y

exp (−s) exp (−t)
√
|v(s, t)|dtds

+

∫ x
2

0

∫ ∞

3y

s exp (−s) exp (−t)|v(s, t)|dtds.

Lettingu(x, y) = |v(x, y)|, we have

u(x, y) ≤ a(x, y) +

∫ α1(x)

α1(0)

∫ ∞

β1(y)

f1(x, y, s, t)w1(u)dtds

+

∫ α2(x)

α2(0)

∫ ∞

β2(y)

f2(x, y, s, t)w2(u)dtds,

where

a(x, y) = |σ(x) + τ(y)− k|+ x

(x + 1)(y + 1)
,

α1(x) = x, β1(y) = y, α2(x) =
x

2
, β2(y) = 3y, w1(u) =

√
u, w2(u) = u,

f1(x, y, s, t) = exp (−s) exp (−t), f2(x, y, s, t) = s exp (−s) exp (−t).

Clearly, w2(u)
w1(u)

= u√
u

=
√

u is nondecreasing foru > 0, that is,w1 ∝ w2. Then foru1, u2 > 0

b1(x, y) = a(x, y), f̃1(x, y, s, t) = f1(x, y, s, t), f̃2(x, y, s, t) = f2(x, y, s, t),

W1(u) =

∫ u

u1

dz√
z

= 2
(√

u−
√

u1

)
, W−1

1 (u) =
(u

2
+
√

u1

)2

,

W2(u) =

∫ u

u2

dz

z
= ln

u

u2

, W−1
2 (u) = u2exp(u),
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b2(x, y) = W−1
1

[
W1(b1(x, y)) +

∫ x

0

∫ ∞

y

f̃1(x, y, s, t)dtds

]
= W−1

1

[
2
(√

b1(x, y)−
√

u1

)
+ (1− exp (−x)) exp (−y)

]
=

[√
b1(x, y) +

1

2
(1− exp (−x)) exp (−y)

]2

.

By Theorem 2.1, we have

|v(x, y)| ≤ W−1
2

[
W2(b2(x, y)) +

∫ x
2

0

∫ ∞

3y

d̃2(x, y, s, t)dtds

]

= W−1
2

[
ln

b2(x, y)

u2

+
(
1−

(x

2
+ 1

)
exp

(
−x

2

))
exp (−3y)

]
= u2 exp

[
ln

b2(x, y)

u2

+
(
1−

(x

2
+ 1

)
exp

(
−x

2

))
exp (−3y)

]
= b2(x, y) exp

[(
1−

(x

2
+ 1

)
exp

(
−x

2

))
exp (−3y)

]
=

(√
|σ(x) + τ(y)− k|+ x

(x + 1)(y + 1)
+

1

2
(1− exp (−x)) exp (−y)

)2

× exp
[(

1−
(x

2
+ 1

)
exp

(
−x

2

))
exp (−3y)

]
.

This implies that the solution of (4.1) is bounded forx, y ∈ R+ provided thatσ(x) + τ(y)− k
is bounded for allx, y ∈ R+.
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