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ABSTRACT. In this paper, some retarded nonlinear integral inequalities in two variables with
more than one distinct nonlinear term are established. Our results are also applied to show the
boundedness of the solutions of certain partial differential equations.
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1. INTRODUCTION

The Gronwall-Bellman integral inequality plays an important role in the qualitative analysis
of the solutions of differential and integral equations. During the past few years, many retarded
inequalities have been discovered (see In [1,2] 4] 5,16, 10, 11]). Lipovan [4] investigated the
following retarded inequality

b(t)
(1.1) u(t) <a+ (s)w(u(s))ds, to <t <ty
b(to)
and Agarwal et al.[[6] generalized (1.1) to a more general case as follows
n bi(t)
(1.2) u(t) < a(t) + Z/ f()wi(u(s))ds,  to<t<th.
i=1 Y bi(to)
Recently, many people such as Wang [10], Cheung [9] and Dragomir [8] established some new
integral inequalities involving functions of two independent variables and Zhao et al. [11] also
established advanced integral inequalities.

The purpose of this paper, motivated by the works of Agarwal [6], Cheung [9] and Zhao [11],

is to discuss more general integral inequalities withonlinear terms

n ai(z) poo

(1.3) u(z,y) < alx,y) + Z/.(O) » )fi(:c,y,s,t)wi(u(s,t))dtds
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and

o0 [e.9]

(14) u(x,y) < a(x,y) +Z/ fz(xvyaSat)wz(u(sat))dtds

i=1 a;(z) J Bi(y)
Our results can be used more effectively to study the boundedness and uniqueness of the solu-
tions of certain partial differential equations. Moreover, at the end of this paper, an example is
presented to show the applications of our results.

2. STATEMENT OF MAIN RESULTS

LetR = (—o0,00) andR, = [0,00). Dyz(z,y) andDyz(x, y) denote the first-order partial
derivatives of:(x, y) with respect tar andy respectively.

As in [6], definew; o« wy for wy,wy : A € R — R\{0} if w2 is hondecreasing oA.
w
Assume that '

(B1) w;(u) (i = 1,...,n) is a nonnegative, nondecreasing and continuous function for
R, with w;(u) > 0 for u > 0 such thatv, oc wy o - -+ o< wy,;

(Bs) a(z,y) is a nonnegative and continuous functionfoy € R ;

(Bs) fi(z,y,s,t) (i =1,...,n)isacontinuous and nonnegative functionfoy, s,t € R..

Take the notationV;(u) := ff —=_ for 4 > u;, whereu, > 0 is a given constant. Clearly,

1, wi(z)
W; is strictly increasing, so its inverd&; ' is well defined, continuous and increasing in its
corresponding domain.

Theorem 2.1. Under the assumptions3, ), (B,) and (Bs;), suppose:(x,y) and f;(z,y, s, t)
are bounded iny € R,. Letw;(z), B:(y) be nonnegative, continuously differentiable and
nondecreasing functions with (z) < z andf3;(y) > yonR, fori =1,2,... n. If u(z,y) is

a continuous and nonnegative function satisfyjng|(1.3), then

an(z) poo

(2.1) u(z,y) < W, ! [Wn(bn(l’,y)) +/
an(0) Br(y)

fn(a:, Y, S, t)dtds]

forall 0 <z <uzp,y; <y < oo, whereb,(z,y) is determined recursively by

bi(z,y) = sup sup a(T,u),
0<7<z y<pu<oo

ai(z) poo

a;(0) JBi(y)

(2.2) biyi(z,y) =W, * [I/Vl(bz(x,y)) +/ ﬁ(x,y,s,t)dtds] :

ﬁ-(az,y,s,t) = sup sup fi(7,u,s,t),
0<7<z y<pu<oo
W1(0) := 0, andz,y; € R, are chosen such that
* dz

w;(2)

(1) 00 B
(2.3) Wb (1, 1) + / / Fiy, s, )dtds < /
a;(0) i (Y1) w

fori=1,... n.

i

The proof of Theorerp 2|1 will be given in the next section.

Remark 1. As in [6], different choices ofi; in WW; do not affect our results. If alb; (i =
1,...,n) satisfy [[¥ 245 = oo, then ) is true for alt, y € R,.
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Remark 2. As in [10], if w;(u) (i = 1,...,n) are continuous functions dR, and positive
on (0, c0) but the sequence dfw;(u)} does not satisfyr; < wy x --- x w,, We can use a
technique of monotonization of the sequence of functiosig), calculated by

w1 (u) == max wy(0),

0€[0,u]
~ w1 (0 ~ .
Clearly,w;(u) > w;(u) (i = 1,...,n). (1.3) and[(1.4) can also become
n ai(z) oo
(2.5) u(z,y) < a(z,y) + Z/ fi(z,y, s, 0)w;(u(s, t))dtds
i=1 a;(0) Bi(y)
and
(2.6) u(z,y) < a(z,y) + Z/ fi(z,y, s, 0)wi(u(s, t))dtds,
i=1 a;(z) J Bi(y)

where the function sequenée;(u)} satisfies the assumptid@, ).

Theorem 2.2. Under the assumptions3, ), (B,) and (Bs;), suppose:(x,y) and f;(z,y, s, t)
are bounded inc,y € R,. Leta;(x), 5;(y) be nonnegative, continuously differentiable and
nondecreasing functions with (z) > z and3;(y) > yonR, fori =1,2,... n. If u(z,y) is

a continuous and nonnegative function satisfyjng|(1.4), then

@.7) uleyy) < W [ann(x,y)) -/ ALY s,t>dtds]
an (T n y

forall #; <z < oo, <y < oo, Wwhereb,(z,y) is determined recursively by

(e 9] o0

bi(z,y) = sup sup a(r,p),

r<T<00 Yy pu<oo

bi+1(x7y) = Wiil |:sz(bl(‘r7y>> +/ / fi(x7y>57t)dtd5:| )
a;i(z) JBi(y)

~

(28) fi(may757t): sup sup fi(TnuaSat)a

r<T<00 y<pu<oo

W1(0) := 0, andi,9; € R, are chosen such that

2.9) Wb, 1)) + / / Fi(wy, s, t)dtds < /
a;(21) J Bi(91) w

fori=1,...,n.

< dz

w;(2)

i

The proof is similar to the argument in the proof of Theofen 2.1 with suitable modifications.
In the next section, we omit its proof.

3. PROOF OF THEOREM 2.1

From the assumptions, we know thatz, y) and f;(z, y, s, t) are well defined. Moreover,
a(z,y) andf;(z,y, s, t) are nonnegative, nondecreasing:iand nonincreasing in and satisfy
bi(x,y) > a(z,y) andﬂ-(x, y,s,t) > fi(x,y,s,t) foreachi =1,... n.

We first discuss the caséz,y) > 0 for all z,y € R... From(L.3), we have

ai(z) poo

(3.1) y) < bi(z,y) + filx,y, s, t)w;(u(s, t))dtds.
o) < o) + 3 /M)) [ Ry s )i
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Choose arbitrary;, 7; such that < z; < x1,y; < 71 < co. From(3.1]), we obtain
a;(x) oo
(3.2) u(z,y) < bi(T1,91) + Z/ fi(@1, 9, s, )wilu(s, t))dtds
i— i(0 Bi(y)

forallogazng;lle,y1§§1§y<oo.
We claim that

an(x)

(33) U(l',y) S ng [W (6 (xl yl,.flf y / fn xluth?t)dtdS]

n (0 /Bn

forall 0 <z < min{Z, x2}, max{g,y2} <y < oo, where

bi(Z1, 91,2, y) = b1(Z1,91),

Wi(bi(1, 51, 2,9)) +/

a;(0) ' Bi(y)

a;(z)  poo

(34) 6i+1(~%17g1ax7y) = Wi_l

fil@1, 3, s, t)dtds]

fori =1,...,n—1andzxs,y, € R, are chosen such that

*© dz

w;(2)

. ai(r2)  poo
(35) I/Vi(bi('%lvglax%yQ))—i_/ ) / fi<'%17g1757t)dtds < /
(&%) (Y2 Ui

fori=1,....,n

Note that we may take, = 21 andy, = y;. In fact, b;(&1, 1, x,y) and f;(z1, 41, z, y) are
nondecreasing ift; and nonincreasing ify for fixed z, y. Furthermore, it is easy to check that
Bi(:il, U1, T1,71) = bi(Z1,71) fori = 1,... n. If 25, andy, are replaced by, andy; on the left
side of [3.%) respectively, from (2.3) we have

a;(z1)

Wi(gi(i.hgl?xlvyl))_'_/ / ﬁ(:i‘l,gjl,s,t)dtds
@ i (Y1)

i(0)

- 1 _
< Wi(bi(z1,y1, 21, y1)) +/ / fiz1,y1, s,t)dtds
(677 3 yl

a;(z1) 00 5
= VV@(@(mly yl)) + / / fi(xl,yl, s,t)dtds
i(0) i (Y1)

</°° dz
- u; 'UJZ<Z)

Thus, we can take, = x1, 1y = ;1.
In the following, we will use mathematical induction to proje [3.3).
Forn =1, let

(33 y) = bl whyl / f1 T1, 1,8, t)wl( (s,t))dtds.
B1(y)

Thenz(z, y) is differentiable, nonnegative, nondecreasingifar [0, z,| and nonincreasing for
y € [71,00] andz(0,y) = z(x, 00) = by (Z1, 71). From(3.2), we have

(3.6) w(z,y) < 2(2,y).

J. Inequal. Pure and Appl. Matt9(2) (2008), Art. 57, 11 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

RETARDED NONLINEAR INTEGRAL INEQUALITIES 5

Consideringy, (z) < x anda;(z) > 0 for z € R, we have

o0

Dyz(z,y) = ﬁ()fl(i’l,?Jhal(fc),t)wl(U(al( z),1))dta; (2)

e}

< fl(flaﬂl,Oél(x)7t)w1(z(a1( ), ))dtoﬁ( )
B1(y)

e}

(3.7) < wi(z(z,y)) » )fl(‘%lagla o (z), t)dtay (z).

Sincew, is nondecreasing andz, y) > 0, we get

Di@y) ™ 7 G aa(a), Odial (2,

(3.8) wy(2(x,y)) Bi(y)

Integrating both sides of the above inequality froro x, we obtain

o0

Wi(z(z,y)) < Wi(2(0,y)) +/ Fi(@1, 31, ou(s), )y (s)dtds
0 JBi(y)
a1 (x) oo
(3.9) Wby (@1, ) + / Fi (s, s, t)dtds.
a1(0) JBi(y)

Thus the monotonicity of;* and (3.5) imply
u(z,y) < z(v,y)

<w;! [W1(b1(57173?1>) "‘/

ai1(0) JBi(y)

ai(x) 5
fl(jla gla S, t)dtd[ﬁ] 9

namely, [(3.B) is true fon = 1.
Assume that (3]3) is true for = m. Consider

m+1l  nqi(z) poo

u(r,y) < bi(Z1,41) + Z/ fi®1, G, s, twi(us, 1)) dtds
i=1 Oéz‘(o) ﬁz(y)

forall0 <x < 7,51 <y < oo. Let

m+1

2(x,y) = bi(ZT1,791) + Z/ fl T1, 71, S, t)w;(u(s, t))dtds.

Thenz(z, y) is differentiable, nonnegative, nondecreasingifar [0, z,] and nonincreasing for
y € |41, 00]. Obviously,z(0,y) = z(x,0) = by (Z1,71) andu(x,y) < z(x,y). Sincew; is
nondecreasing andz,y) > 0, noting thato; (z) < = anda;(z) > 0 for x € R+, we have

Dy(2(z,y) _ St Sy Jol@n g au(e), hwi(u(as(x), 1)) dteg(x)
wi (=) wi(z(z,y))
S o fil@n g ai(@), Hhwi(z (i), 1)ty (@)
- wi(2(2,y))
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[e.o]

< Fi(@1, 51, aa(2), t)dtay (z)
B1(y)
m+1
3 / FiEr, i, a(@), D), 1)t ()
< fl(ilaglaal<x)at)dt&ll($)
B1(y)
+Z/ﬁ Fort (@1, 51, i (2), ) dis (2(aiga (2), 1)) dbayy (),
2+1
whereg; 1 (u) = wirl(W) 1,...,m. Integrating the above inequality froorto =, we obtain
+ w1 (u)
Wl(Z(x,y))
S Wl<b1(i'1>gl)) _'_/ fl(i)l?gh&l(s)?t)&/l(s)dtds
0 JBi(y)

+Z/ /ﬁm fz+1 (Z1, 71, a1 (), t)gbz’-&-l(Z(Oéi_,'_l(S),t))a;+1(s)dtd8

< Wi (bi(Z1,71)) —|—/ fl(il,y}, s, t)dtds
a1(0)  JBi(y)
m O41+1
"’Z/ / fz+1(371 U1, S, t)pir1(2(s, t))dtds,
a;+1(0) Biv+1(y)

or

£, y) < ei(e.y) + / /ﬁ o oo, D00 (97 €, )

1+1(0

for0 <z <7y, 91 <y < oc. Thisis the same &s (3.3) far= m, where¢(z, y) = Wi(z(z,y))
and

) B
cr(z,y) = Wi(by(Z1,71)) +/ » )fl(:il,ﬂl,s,t)dtds.

From the assumptions, ), eachy; 1 (W, ' (u)) (i = 1,...,m) is continuous and nondecreas-
ing for u. Moreover,g, (W) oc p3(W; 1) o - -+ oc ¢pyr (Wi H). By the inductive assumption,
we have

O4’m+1

(310) f(l‘, y) S (D;z{i-l [(Dm-i-l(cm (ZE, y)) + / / fm-‘rl(xlv Y1, S, t)dtdS]
o Brm1(y

erl(O)
forall0 < z < min{i‘l,xg},max{gjl,yg} <y < oo, Whereq)iﬂ(u) = fﬁu-ﬂ m,

(3 7 1 z
u >0, 4 = Wiluig), @) is the inverse ofb, 1,0 = 1,...,m,

az+1

Ci+1(x7y) = q);11 [(DZJrl Cl T Z/ / /ﬂ fl+1<xlay1757t)dtd8] ) L= 17 L
o 2+1

2+1
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andzs, y3 € R, are chosen such that

ait1(z3 N
(3.11) iy1(ci(ws, y3)) +/ / fiv1(Z1, 91, 5, 1)dtds
Qi1 Bi+1(y3

Wi(e0) dz
< / T
iyt b1 (W1 (2))

fori=1,...,m.
Note that

Wi g
:/ “ :WiOWI_I(u)7 7/227,m+1

From (3.10), we have
u(z,y)
< z(2,y) = Wi ' (¢(2,p))
Ocm+1
(3.12) < Wn;_lH [WmH(Wl Cm(z,y)) / / me 1,71, S, t)dtds]
am+1(0 Bm+1(y
forall 0 <z < min{Z, z3}, max{y;,ys3} <y < 0. Letéi(x,y) = W, (ci(z,y)). Then,
az,y) = Wit (a(z,y))
= Wfl lwl(bl(fb%)) +/

ai1(0) JpBi(y)

ai(x) _
f1(Z1, 71, 8, t)dtds]

= ba(T1, 71, 2, ).
Moreover, with the assumption tha, (z, y) = b1 (Z1, 51, ¢, y), we have

Em+1 (I, y)

= Wl_l [q):nh_l(@m-&-l(cm(m?y)) +/

O4'm+1

/ fm+1($1,yl7 S t)dtdS)]
ﬂm+1

m+1

am+1
= W%_l;'_l Wm—‘,—l(W Cm X y / /[8 fm_i,_l(xl, Y1, S, t)dtds]
[e% m+1

m+1(0)

O4'm+1

= W&-ls-l Wm-l—l(ém(fa y)) + / /ﬁ fm+1(l'1, Y1, S t)dtd8]
a i1 (Y

m+1

am+1()
= W7;—1&—1 Werl(berl(xl»ylax v)) / / me T1, 91, S, t)dtds]
m+1 /gm+1

= Bm+2(951:?/17$71/)-
This proves that
Ci(w,y) = biy1 (1,91, 7, y), 1=1,...,m.
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Therefore,[(3.1]1) becomes

B aj+1(x3) 00 5
Wit (biv1(T1,51, 23, ¥3)) +/ / fi+1(Z1, 71, s, t)dtds
a;+1(0) Bi+1(y3)

Wi(e0) dz
< / T
i1 Gir1 (W1 (2))

< dz ,
= —_—, t=1,....m.
Ui41 ler]_(Z)

The above inequalities and (B.5) imply that we may take- x5, y, = y3. From [3.12) we get

am+1(z

. ) [0 _
u(z,y) < Wi [Wm+1(bm+1(j1,?§17%y)) +/ / fm+1(517?§1757t)dtd3]
e} 5m+1(y)

m+1(0)
forall0 <z <Z; < x9,y2 <71 <y < oo. This proves|(3]3) by mathematical induction.
Takingz = 21,y = 71, x2 = 1 andy, = y;, we have

on (%1

. ) oo
(313) u(‘%h?jl) < anl [Wn(bn(jlﬂglajl>gl)) +/ / fn(‘%laglasat>dtd$]
Q@ 7 (31)

n(0)

for0 <y <z, < 71 < 0. Itis easy to verify thaﬂn(:il,gjl,izl,gl) = b,(Z1,71). Thus,
(3.13) can be written as

an(Z1) 00 5
u(ilagl) < erl [Wn(bn<i'lag1)> +/ / fn(jlvglasat)dtd‘g] :
an(0) n (§1)

Sincez,, y; are arbitrary, replacé, andy;, by = andy respectively and we have

an(z) poo

u(z,y) < W, [Wn(bn(%y)) +/ fn(x,y,s,t)dtdS]

n(0) Bn(y)

forall0 <z < z,y1 <y < oc.

In casea(z,y) = 0 for somez,y € R;. Letb (x,y) := by(x,y) +eforall z,y € Ry,
wheree > 0 is arbitrary, and then, .(z,y) > 0. Using the same arguments as above, where
bi(z,y) is replaced with, .(z,y) > 0, we get

ap(x) poo
u(@,y) < W, [Wn(bn,e(:r,y)) +/ / dn(%y,s,t)dtdS] :
an(0) n (v)

Lettinge — 0*, we obtain(?2.1) by the continuity of, . in ¢ and the continuity of¥; and ;™
under the notatiof; (0) := 0. O

4. APPLICATIONS

Consider the retarded partial differential equation

1
Dy Dyv(z,y) = CESNEOEIE + exp (=) exp (—=y)V/|v(z,y)]
(4.1) + %:1:‘ exp <—g> exp (—3y)v (g, 3y> ,
(4.2) U(‘T? OO) = U(I)7 U(an) = T(y),v(o, OO) =k,
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for z,y € Ry, wheres, 7 € C(R,R), o(x) is nondecreasing im, 7(y) iS nonincreasing imy,
andk is a real constant. Integrating (#.1) with respect endy and using the initial conditions

(4.2), we get

v(z,y) = o(z) +7(y) =k — &

(z+1)(y+1)

// exp (—s)exp (—t)\/|v(s, t)|dtds

Thus,

o, )| < o) +7(y) - k‘l+m

// exp (—s) exp (—t)\/|v(s, t)|dtds

+/2/ sexp (—s)exp (—t)|v(s,t)|dtds.
0 3y

Lettingu(z,y) = |v(z,y)|, we have

ay(z) 00

U(l‘,y) < a(x,y) +/ fl(xvya Svt)wl(u)dtds
ai1(0) JpBi(y)

as(z) poo
+/ f2<$,y, Sat)w2<U>dtdS7
a2(0)  J B2(y)

where

a(r,y) = lo(z) +7(y) — k| + m,

, Baly) =3y, wi(u)= vV, ws(u) = u,
)y, fo(x,y,s,t) = sexp(—s)exp (—t).

Clearly, zjgzg = \/La = /u is nondecreasing far > 0, that is,w; o w,. Then foru;, us > 0

( ) ( ) fl(ajay?S?t):fl(xayaSat)? fg(x,y,s,t):fz(x,y,s,t),

@) =z, Ay =y ) =3
fi(z,y,s,t) = exp (—s)exp (—t

Wi = [ =2y, W = (G vn)
Wa(u) = 5 ciz In u% Wyt (u) = ugexp(u),

J. Inequal. Pure and Appl. Matt9(2) (2008), Art. 57, 11 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

10

By Theoren 2.1, we have
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by(x,y) = Wit [Wl(bl(x,y)) + /I /OO filz,y, s,t)dtds]
=Wt [ (\/m ) (1—exp (- ))eXp(—y)}

= { bi(z,y) + %(1 —exp (—x)) exp (—y)-

|U(l’,y)| S W2_1 [WQ(b2(‘T7y)) +/ / J2($»y737t)dtd3
0 3y ]

— ! {m balvy) | (1-(5+1)exp(-5)) exp (—3y)}

U9 2

= Ug €Xp {ln %2,3;) + <1 - <g + 1) exp (-g)) exp (—3y)}
= by(x,y) exp [(1 — (g + 1) exp (—%)) exp (—Sy)}

T 1 2
<\/| Y+T1(y) — k| + ——— CERIOES) +§(1—exp (—x))exp (—y))

e [(1 (&) e (<2)) e (3]

This implies that the solution of (4.1) is bounded foy € R, provided thav (z) + 7(y) — &k
is bounded for alk:, y € R,..
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