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1. Introduction

Let L? (1 < p < oo) [C] be the class of alkr—periodic real-valued functions
integrable in the Lebesgue sense witith power [continuous] ovef) = [—, 7|
and letX? = L? whenl < p < oo or X? = C whenp = co. Let us define the norm
of f € X?as

1

(J,,If )P dz)” when 1 <p < oo,

SUPzeq ‘f (‘CE)‘ when P =00,

1o = I1F Ol =
and consider its trigonometric Fourier series

Sf(x) = # + Z(a,,(f) cosvr + b,(f)sinvx)

with the partial sums;, f.
Let A := (anx) (k,n=0,1,2,...) be alower triangular infinite matrix of real
numbers and let thd —transforms of Sy, f) be given by

n

Zan,kskf (z) = f(x)

k=0

Toaf (x):= (n=0,1,2,...)

and

1
q

HY A f (7) = {Zamk\Skf(x)—f(x)\q} (¢g>0,n=0,1,2,...).

As a measure of approximation, by the above quantities we use the pointwise
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characteristic

w, (5 { / o (0 |pdt} ,

pa () i= fle+t)+ [z —1)—2f(2).
w, f(9)r» is constructed based on the definition of Lebesgue pdibts-points),
and the modulus of continuity fof in the spaceX? defined by the formula

where

wf(0)xp = sup |l (h)llx»-
0<[h|<d

We can observe that wifh > p, for f € X7, by the Minkowski inequality

lw - F(0)pll 5 < wF(0)xs -

The deviatioril}, 4 f was estimated by P. Chandda 2] in the norm off € C' and
for monotonic sequences = (a, ). These results were generalized by L. Leindler
[3] who considered the sequences of bounded variation instead of monotonic ones.
In this note we shall consider the strong meHﬁ;‘Af and the integrable functions.
We shall also give some results on norm approximation.

By K we shall designate either an absolute constant or a constant depending on
some parameters, not necessarily the same of each occurrence.
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2. Statement of the Results

Let us consider a functiom, of modulus of continuity type on the intervial, +o0),
i.e., a nondecreasing continuous function having the following propettie&)) =
0, w, (01 + d2) < w, (01) + w, (02) forany0 < §; < 09 < d; + d2 and let
LP (wy) = {f € L" : wo f (0)1p < wy (0)}-
Strong Approximation of

We can now formulate our main results. Integrable Functions
To start with, we formulate the results on pointwise approximation. Wiodzimierz tenski

Theorem 2.1. Leta,, = (a, ) satisfy the following conditions:

vol. 8, iss. 3, art. 70, 2007
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Supposev, is such that Full Screen
1
T (wy ()P p Close
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wo b journal of inequalities
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If f € L”(w,),then
HZ,Af (z) = O (annHy (ann))
with ¢ € (0,q] andg suchthatl < ¢(¢g—1) <p<gq.

Theorem 2.2.Let(2.1), (2.2) and(2.3) hold. If f € L? (w,) then

q o ™ m Strong Approximation of
Hn,A-f (.23) - O (wx (n T 1)) + O (ann T <n + 1)) Integrable Functions

Witodzimierz tenski

and if, in addition,(2.4) holds then vol. 8, iss. 3, art. 70, 2007
q _ T
Hn,Af (x)=0 (an,nHﬂc (n T 1)) Title Page
with ¢ € (0,¢] andg such thatl < ¢q(¢—1) <p <q. Contents
Theorem 2.3.Let(2.1), (2.3), (2.4) and 44 dd
0o < >
(2.5) Z g — njr1| < Kapm, Page 6 of 23
k=m
Go Back
where
m=0,1,...,n andn=0,1,2,... Full Screen
hold. If f € L? (w,) then Close
Af( ) = O (anoH, (any0)) journal of inequalities
_ in pure and applied
with ¢ € (0,¢] andg suchthatl < g(¢—1) < p < ¢. mathematics
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Theorem 2.4.Let us assume thap.1), (2.3) and(2.5) hold. If f € L? (w,), then

17,0 (@) =0 (w2)) +0 (ot (7).

If, in addition, (2.4) holds then

, T Strong Approximation of
HE,AJC (13) =0 an,on 1 Integrable Functions
n+ Witodzimierz tenski
with ¢ € (0,q] andg suchthatl < ¢(¢g—1) <p <gq. vol. 8, iss. 3, art. 70, 2007
Consequently, we formulate the results on norm approximation.
. . Title Page
Theorem 2.5. Let a, = (a,,) satisfy the conditiong2.1) and (2.2). Suppose
wf(+)xs Is such that Contents
1 <« >
(wf(t)x»)"
(2.6) {u /u T ———=——dt; =0 (uH (u)) as u— 0+ p >
holds, withl < p < gandp > p, where H (> 0) instead ofH, satisfies the SR U ez
condition(2.4). If f € XP? then Go Back
HHZ:AJC ()) =0 (Gn,nH (an,n)) Full Screen
. Close

with ¢’ < ¢ andp < psuchthatl <q(¢—1) <p<g.
Theorem 2.6.Let(2.1), (2.2) and(2.6) hold. If f € X? then

[ o] =
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If, in addition, H (> 0) instead ofH, satisfies the conditiofv.1) then

oot (7))
XPp 7 n"'l

with ¢’ < ¢ andp < psuchthatl <q(¢—1) <p<g.

[EEeEo]

Theorem 2.7.Let(2.1), (2.4) with a functionH (> 0) instead off,, (2.5) and(2.6) hold.

If f € XPthen

[ZESVEC]
with ¢’ < ¢ andp < psuchthatl <q(¢—1) <p<g.
Theorem 2.8.Let (2.1), (2.5) and(2.6) hold. If f € X? then

ot o (o (55),) o oo (59):

If, in addition, H (> 0) instead ofH, satisfies the conditiofv.1) , then

™
Lm0 (553

with ¢’ < ¢ andp < psuchthatl <q(¢—1) <p<g.

O (anoH (any))

XP

| a2 )
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3. Auxiliary Results

In tis section we denote hy a function of modulus of continuity type.

Lemma 3.1. If (2.3) with 0 < p < ¢ and(2.4) with functionsw and H (> 0)
instead ofw, and H,,, respectively, hold then

Integrable Functions

' t ron roximation o
(3.1) / CUT()dt =0 (uH (u)) (u — 0+). Strong Approximation of
0

Witodzimierz tenski

Proof. Integrating by parts in the above integral we obtain vol. 8, iss. 3, art. 70, 2007
) Title Page

] +/ (/ w ( ) dt Contents

0 0

/—w<t)dt:/ ti<
ot dt
“« »

< u/ w( ds + (/ w( ) < >
B T ow(s) w(s) Page 9 of 23
= U/; SHET—%CZS +/0 (\/t Wd8> dt

Go Back

1
2 [T w(s) NN CIONAY
= /u 31+p/qd8 +/0 t <tq /t sitp/a ds | dt, Full Screen

Close

sincel — § > 0. Using our assumptions we have
journal of inequalities
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Lemma 3.2 (B, Theorem 5.20 Il, Ch. XII]). Suppose that < ¢(q—1) <

gand{ =1/p+1/q—1.1f |t=¢g(t)| € L? then

(3.2) {'“" +i
k=0

91"+ (o) >}q <w{[ Irsoral

1

p <
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4. Proofs of the Results

SinceH} ,f is the monotonic function of we shall consider, in all our proofs, the
quantity ;! , f instead o Z:Af.

Proof of Theoren2.1. Let

u 1 (7 sin(k—l—l)t
= ke | — o (1) ———22— 4t
?) {kzzoa * 7T/0 #e () 2sin 1t

- 1 [onn sin (k4 3)t
< nk | — o (1) ———2—dt
_{;a’k W/O o (t) 2sin 1¢

=1 (ann) + J (ann)

and, by(2.1), integrating by parts, we obtain,

I {ann) < /‘“‘" lez ()] )

ann ] d
_ L (s)ds ) dt
/0 2t dt (/ [P (5)] 8)

Y fnn xf()l
_ /O |goz(t)|dt+/0 Wl Wy 4,

2055,

. 1 dmn wzf( )1
=3 (wxf (ann); + /0 Tdt)
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K

IA
=

<K

Since f € L? (w,)

n—

a/TLTL

k=

whence, by(2.2),

(J (an,n))q

Using inequality(3.

Y
( / wxf
<p/q/ (w. f (¢

)and(2.4

t

ldt—l—/ o Mdt)
0

La) o

t1+p/q )

) holds, Lemma&3.1and(2

( ann wxf Lpdt)

I (an,n> - O (an,nHz (an,n)) .
The Abel transformation shows that

1 k . 1 g
1 [T sin(v—+3)t
an,k - an,k+1) - / Pz (t) 2(—1t2)dt
- = Jan., sin
"1 /7 sin(u—i—l)t
+an, - L (1) ——22t
a’zﬂ/a eo (1) 2sin 1¢
=0 n,n 2
n . q
1 /™ sm(u—i—l)t
< (K +1)a,, it o (1) ——22t
<K Do 312 [ )50

v=0

2), we obtain

J(an,n) <K (an,n)

Q=

T e (O
u ti+p/a

B dt)

3) give

2 sin %t

1
dt} |

q
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Integrating by parts, we have

™

Q=

T () < K (an,) { o (0 (0,07

t=ann

-

p\ [T (wof (1)) |
+(1+5> / th/qL dt}

flwcs s [ L0 )

[

Q=

S K (an,n) t1+p/q

Since f € L? (w,), by (2.3),

Q=

J(anyp) < K (any)

{(wx (7r))+/7r (lgﬁ—f/)fdt}p
gK{(an,n)Z/W “;]ﬁ—(pt)fdt}p

=0 (an,on (an,n)) .
Thus our result is proved.

Proof of Theoren?.2. Let, as before,

q e T
=1 (155) -9 ()

1 [net
()= /“!mndt:wm T
n+1 T Jo n+1);,

and
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In the estimate off (?) we again use the Abel transformation gnd2). Thus

g : 1
l/ o, (t) Sin (1/+ 2)tdt

(J (nL))q < (K+1)an,n§n: .

q

1
e 2sin 3t
and, by inequality3.2),
» % Strong Approximation of
e 1 4 |gpx ({;)| Integrable Functions
J (TL + 1) = K (an’n)q {/ﬂ tl+p/q dt ’ Wiodzimierz tenski
it vol. 8, iss. 3, art. 70, 2007
Integrating(2.3) by parts, with the assumptiohe L? (w,) , we obtain
1
- P Title Page
m 1 T \¢ (we ()" |
< - ATEANYT
1(;75) < K@ D) {(H ) /n 2 (), e
n+
=0 ((n—i—l)ann)% T H, T « »
’ n+1 n+1 p N

as in the previous proof, with’5 instead ofa, .

Finally, arguing as in3, p.110], we can see that, for=0,1,...,n — 1, Page 14 of 23

n—1 n—1 Go Back
|@n,j = @npl < Z (@np — Anget1)| < Z |n g = angpr1]| < Kapgp Full Screen
k=j k=0
Close
whence
nj < (K +1)any journal of inequalities
and therefore in pure and applied
n mathematics
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This inequality implies that

() =0 (et (7))

and the proof of the first part of our statement is complete.
To prove of the second part of our assertion we have to estimate the {effy)
once more.

Proceeding analogously to the proof of Theorem with a,, ,, replaced by-*,

we obtain
(2 )=o(2—p, (-~ .
n+1 n+1 n+1

By the inequality from the first part of our proof, the relation+ 1)"" = O (a,.,)
holds, whence the second statement follows. O

Proof of Theoren?.3. As usual, let
HY ,f (2) < 1 (ano) + J (anp) -

Since f € L? (w,) ,by the same method as in the proof of Theoram Lemma3.1
and(2.3) yield

I (an,O) =0 (an,OHz (an,(])) .
By the Abel transformation

q

™ : 1
l/ o, (t) sin (l/+ 2) tdt
7

n—1 k
(J (ano)? <> tnk = Gnpir] Y
k=0 v=0

ano 2sin%t
q
"1 [T sin (1/+l)t
an, VZZO 7r/an’080 (> 2sm%t
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(e 9]

00
S (Z |an,k - an,k+1| + an,n) Z
k=0

v=0

2 sin %t

Arguing as in B, p.110], by(2.5), we have

n—1 [e's)
|an,n - an,0| S Z |an,k - an,k+1| S Z |an,k - an,k+l| S Kan,07
k=0 k=0

whenceua,,,, < (K + 1) a,, o and therefore

Z |an,k: - an,k+1| + Qpon S (2K + 1) Qn,0
k=0

and
q

T : 1
l/ o, (t) sin (1/+ 2) tdt
T

1
an.0 2sin 5t

(J (an0))" < 2K + 1) app »

Finally, by (3.2),

T e @]
J (ano) < K (an0) {/ ti+p/a dt
an,0

J (an,O) =0 (an,OHx (an,O)) .
This completes of our proof.

and, by(2.3),

Proof of Theoren2.4. We start as usual with the simple transformation

Hiﬁ(x)ff(m)“(nﬂ)-

T : 1
l/ - (t) sin (1/+ 2) td
T Jano

t

q
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Similarly, as in the previous proofs, By.1) we have

](nil) =l (n+1)

We estimate the ternf in the following way

q
SlIl (V + %) t Strong Approximation of
(J (n +1 ) ) Z ’an k— dn k+1’ Z / 2sin lt dt Integrable Functions
2 q Wiodzimierz tenski
"1 [ sin (I/ + l) t vol. 8, iss. 3, art. 70, 2007
’ Z’/T/w(p() 2sin 1t
v=0 n+1 2
e’} 00 . q .
1 [ sin (V T ) t Title Page
S an - an + an n - x .
(kzzo‘ g el 7 ) ; TJ #z (1) 2sin 1t Contents
From the assumptiof®.5), arguing as before, we can see that « 44
a\ i < >
T 1 [7 sin (1/ + %) t a
J(n+1) SK( ;/WSOz(t) 2sin ¢ dt Page 17 of 23
=0 n+1 2
and, by(3.2), Go Back
1 Full Screen
U 1 o O |7
J(n+1) <K(an )q {/7r t1+p/q ——dt . Close
n+1
From(2.5) , it follows thata,, , < (K + 1) a, for anyk < n, and therefore ethellel e te lul:
' in pure and applied
n mathematics
(K+1)(n+1) a0 > Z an i =1, issn: 1443-5750
k=0
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whence

Q=

J< T > < K ((n+1)ano)

n+1

1
% T p P
{( ™ ) / x (8) dt} |
n+1 - titp/a
n+1

1
T\ [T e OF 7
S K (n + 1) Qn0 { (n——i-l) /11 t1+p/q dt . Strong Approximation of

Integrable Functions
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Sincef € L? (w,), integrating by parts we obtain

™ ™ ™
<K 1)any, H,
J(n—i—l)_ (n+ )a’0n+1 <n—|—1>

vol. 8, iss. 3, art. 70, 2007

Title Page
s
< Kan,OH:c ( T 1) Contents
n
4 44

and the proof of the first part of our statement is complete.
To prove the second part, we have to estimate the Ie(rﬁ—l) once more. < 4

Proceeding analogously to the proof of Theoramwe obtain Page 18 of 23

I 4 =0 & H @ ) Go Back
n+1 n+1 "\n+1

Full Screen
From the start of our proof we have + 1)*1 = O (anp) , Wwhence the second as- .
sertion also follows. H
Proof of Theoren?.5. We begin with the inequality journal of inequalities
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By (2.1), Lemma3.1gives

As in the proof of Theorera.1,

1 T e @
HJ<an,n)Hxﬁ < K (apn)e ||{/a H1p/q dt

o e OIF
<K (CLn,n)q {/a tl+—p/qxdt

n,n

1 T owf(t)xs
< K(Gn,n)q {/a tH_—p/th

whence, by(2.6) ,
||J(an,n)||xﬁ =0 (an,nH (an,n>>

holds and our result follows.

Proof of Theoren?.6. Itis clear that

o, <[ (G5)| b (s

Strong Approximation of
Integrable Functions

Witodzimierz tenski

vol. 8, iss. 3, art. 70, 2007

Title Page
Contents
44 44
< >
Page 19 of 23
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:W.Lenski@wmie.uz.zgora.pl
http://jipam.vu.edu.au

and immediately

PG =l ),

m
<wf ()
xP TL—|—1 Xp

and
1
e 1 4 || ¥ (t) ||;D 5 v Strong Approximation of
HJ (Tl T 1) H S K (a'n,n)q {/7r tlJr—p/qXPdt Integrable Functions
xP nt1 ) Wiodzimierz tenski
) - T wf( )XP P vol. 8, iss. 3, art. 70, 2007
< K((n+1)ay,) {n+ . / e dt}
Lo A T Title Page
<K 1) an,,)a H
< K((n+ )a7 )qn—|-1 (n—i—l) Contents
<Kn+1)ap,——H(—= «“ »
n+1 n+1
. < 4
_O(a”” (n+1))' Page 20 of 23
Thus our first statement holds. The second one follows on using a similar process to Go Back
that in the proof of Theorerﬁ 1. We have to only use the estimates obtained in the
proof of Theoren?.5, with = instead ofu,, ,,and the relation el
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and
1 (ano)ll , = O (anoH (anp)) -
Also, from the proof of Theorerfi.3,
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< K (an )7 {/ 0 Wdt}
and, by(2.6) ,
17 (ano)ll , = O (anoH (anp)) -
Thus our result is proved. O

Proof of Theoren?.8. We recall, as in the previous proof, that
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XP
We apply a similar method as that used in the proof of Theorehio obtain an
estimate for the quantity. (=)
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Thus the proof of the first part of our statement is complete.

and, by(2.6),

To prove of the second part, we follow the line of the proof of Theorein [
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