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ABSTRACT. Another proof of some inequality from [5] is given. It is based on the spline ap-
proximation of convex functions of higher order.
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1. I NTRODUCTION

Recall that a real functionf defined on a real intervalI is n–convex (n ∈ N), if its divided
differences involvingn + 2 points are nonnegative, i.e.

[x1, . . . , xn+2; f ] ≥ 0

for anyn+2 distinct pointsx1, . . . , xn+2 ∈ I (cf. [3]). Then 1–convexity reduces to an ordinary
convexity.

In the recent paper [5] we established the order structure of a set of some six quadrature
operators in the class of 3–convex functions mapping[−1, 1] into R. In this setting we have
proved among others the inequality
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between a three–point Chebyshev quadrature operator (on the left–hand side) and a four–point
Lobatto quadrature operator (on the right–hand side). The proof was rather complicated. In
its main part we needed to determine the inverse of a4 × 4 matrix with entries all of the form
a+b
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10. This was done using computer software. The only thing done precisely

was the computation of the determinant to be sure the inverse does exist.
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Now we would like to propose an easy to verify proof of (1.1), without the use of any com-
puter software, based on the spline approximation of convex functions of higher order. In the
paper [4] one can find the following result (as a quotation from [1]).

Theorem 1.1. Everyn–convex function mapping[a, b] into R can be uniformly approximated
on [a, b] by spline functions of the form

x 7→ p(x) +
m∑

i=1

ai(x− ci)
n
+,

wherep is a polynomial of degree at mostn, ai > 0, ci ∈ [a, b] (i = 1, . . . ,m) and y+ :=
max{y, 0}, y ∈ R.

Observe that all spline functions of the above form are alson–convex. Indeed, ifx1, . . . , xn+2 ∈
[a, b] are distinct, then by the properties of divided differences we have[x1, . . . , xn+2; p] = 0. If
c ∈ R, then

B(c) := [x1, . . . , xn+2; (· − c)n
+]

is a value at the pointc of the B–spline on the knotsx1, . . . , xn+2. HenceB(c) ≥ 0 (cf. [2]) and
the function(· − c)n

+ is n–convex. Obviously, the conical combination ofn–convex functions
is n–convex by linearity of the divided differences.

2. A NEW PROOF OF THE I NEQUALITY (1.1)

Theorem 2.1. If f : [−1, 1] → R is 3–convex then(1.1)holds.

Proof. By Theorem 1.1 it is enough to prove (1.1) only for polynomials of degree at most 3 and
for any function of the formx 7→ (x− c)3

+, c ∈ R.
To show that (1.1) holds for polynomials of degree at most 3 (even with the equality), we

check it for the monomials1, x, x2, x3 and use linearity.
Now let c ∈ R. Rearranging (1.1) we have to prove that
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Obviouslyϕ(c) = 0 for c 6∈ [−1, 1]. We compute
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Then we can see thatϕ is an even function and it is enough to check thatϕ(c) ≥ 0 only for
0 ≤ c ≤ 1. We have
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which proves thatϕ ≥ 0 on [0, 1] and finishes the proof. �
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