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ABSTRACT. By means of a certain extended derivative operator of Ruscheweyh type, the
authors introduce and investigate two new subclasses ofp-valently analytic functions of
complex order. The various results obtained here for each of these function classes include
coefficient inequalities and the consequent inclusion relationships involving the neighborhoods
of thep-valently analytic functions.
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1. I NTRODUCTION , DEFINITIONS AND PRELIMINARIES

LetAp(n) denote the class of functionsf(z) normalized by

(1.1) f(z) = zp −
∞∑

k=n+p

ak zk (ak = 0; n, p ∈ N := {1, 2, 3, ...}) ,

which are analytic andp-valent in the open unit disk

U = {z : z ∈ C and |z| < 1} .
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2 R.K. RAINA AND H.M. SRIVASTAVA

The Hadamard product (or convolution) of the functionf ∈ Ap(n) given by (1.1) and the
functiong ∈ Ap(n) given by

(1.2) g(z) = zp −
∞∑

k=n+p

bk zk (bk = 0; n, p ∈ N)

is defined (as usual) by

(1.3) (f ∗ g)(z) := zp +
∞∑

k=n+p

ak bk zk =: (g ∗ f)(z).

We introduce here an extended linear derivative operator of Ruscheweyh type:

Dλ,p : Ap → Ap

(
Ap := Ap(1)

)
,

which is defined by the following convolution:

(1.4) Dλ,pf(z) =
zp

(1− z)λ+p
∗ f(z) (λ > −p; f ∈ Ap) .

In terms of the binomial coefficients, we can rewrite (1.4) as follows:

(1.5) Dλ,pf(z) = zp −
∞∑

k=1+p

(
λ + k − 1

k − p

)
akz

k (λ > −p; f ∈ Ap) .

In particular, whenλ = n (n ∈ N), it is easily observed from (1.4) and (1.5) that

(1.6) Dn,pf(z) =
zp
(
zn−pf(z)

)(n)

n!
(n ∈ N0 := N ∪ {0}; p ∈ N) ,

so that

(1.7) D1,pf(z) = (1− p)f(z) + zf ′(z),

(1.8) D2,pf(z) =
(1− p)(2− p)

2!
f(z) + (2− p)zf ′(z) +

z2

2!
f ′′(z),

and so on.
By using the operator

Dλ,pf(z) (λ > −p; p ∈ N)

given by (1.5), we now introduce a new subclassHp
n,m(λ, b) of thep-valently analytic function

classAp(n), which includes functionsf(z) satisfying the following inequality:

(1.9)

∣∣∣∣∣1b
(

z
(
Dλ,pf(z)

)(m+1)(
Dλ,pf(z)

)(m)
− (p−m)

)∣∣∣∣∣ < 1

(z ∈ U; p ∈ N; m ∈ N0; λ ∈ R; p > max(m,−λ); b ∈ C \ {0}) .

Next, following the earlier investigations by Goodman [3], Ruscheweyh [5] and Altintaşet
al. [2] (see also [1], [4] and [6]), we define the(n, δ)-neighborhood of a functionf(z) ∈ An(p)
by (see, for details, [2, p. 1668])

(1.10) Nn,δ(f) :=

{
g ∈ Ap(n) : g(z) = zp −

∞∑
k=n+p

bk zk and
∞∑

k=n+p

k |ak − bk| 5 δ

}
.

It follows from (1.10) that, if

(1.11) h(z) = zp (p ∈ N),
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then

(1.12) Nn,δ(h) =

{
g ∈ Ap(n) : g(z) = zp −

∞∑
k=n+p

bk zk and
∞∑

k=n+p

k |bk| 5 δ

}
.

Finally, we denote byLp
n,m(λ, b; µ) the subclass ofAp(n) consisting of functionsf(z) which

satisfy the inequality (1.13) below:∣∣∣∣∣1b
(

p(1− µ)

(
Dλ,pf(z)

z

)(m)

+ µ
(
Dλ,pf(z)

)(m+1) − (p−m)

)∣∣∣∣∣ < p−m(1.13)

(z ∈ U; p ∈ N; m ∈ N0; λ ∈ R; p > max(m,−λ); µ = 0; b ∈ C \ {0}) .

The object of the present paper is to investigate the various properties and characteristics of
analyticp-valent functions belonging to the subclasses

Hp
n,m(λ, b) and Lp

n,m(λ, b; µ),

which we have introduced here. Apart from deriving a set of coefficient bounds for each
of these function classes, we establish several inclusion relationships involving the(n, δ)-
neighborhoods of analyticp-valent functions (with negativeandmissing coefficients) belonging
to these subclasses.

Our definitions of the function classes

Hp
n,m(λ, b) and Lp

n,m(λ, b; µ)

are motivated essentially by two earlier investigations [1] and [4], in each of which further
details and references to other closely-related subclasses can be found. In particular, in our
definition of the function classLp

n,m(λ, b; µ) involving the inequality (1.13), we have relaxed
the parametric constraint0 5 µ 5 1, which was imposed earlier by Murugusundaramoorthy
and Srivastava [4, p. 3, Equation (1.14)] (see also Remark 3 below).

2. A SET OF COEFFICIENT BOUNDS

In this section, we prove the following results which yield the coefficient inequalities for
functions in the subclasses

Hp
n,m(λ, b) and Lp

n,m(λ, b; µ).

Theorem 1. Letf(z) ∈ Ap(n) be given by(1.1). Thenf(z) ∈ Hp
n,m(λ, b) if and only if

(2.1)
∞∑

k=n+p

(
λ + k − 1

k − p

)(
k

m

)
(k + |b| − p) ak 5 |b|

(
p

m

)
.

Proof. Let a functionf(z) of the form (1.1) belong to the classHp
n,m(λ, b). Then, in view of

(1.5), (1.9) yields the following inequality:

(2.2) <

(∑∞
k=n+p

(
λ+k−1

k−p

)(
k
m

)
(p− k)zk−p(

p
m

)
−
∑∞

k=n+p

(
λ+k−1

k−p

)(
k
m

)
zk−p

)
> − |b| (z ∈ U) .

Puttingz = r (0 5 r < 1) in (2.2), we observe that the expression in the denominator on the
left-hand side of (2.2) is positive forr = 0 and also for allr (0 < r < 1). Thus, by letting
r → 1− throughreal values, (2.2) leads us to the desired assertion (2.1) of Theorem 1.
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Conversely, by applying (2.1) and setting|z| = 1, we find by using (1.5) that∣∣∣∣∣z
(
Dλ,pf(z)

)(m+1)

(Dλ,pf(z))(m)
− (p−m)

∣∣∣∣∣
=

∣∣∣∣∣
∑∞

k=n+p

(
λ+k−1

k−p

)(
k
m

)
(p− k)zk−m(

p
m

)
zp−m −

∑∞
k=n+p

(
λ+k−1

k−p

)(
k
m

)
zk−m

∣∣∣∣∣
5
|b|
[(

p
m

)
−
∑∞

k=n+p

(
λ+k−1

k−p

)(
k
m

)
ak

]
(

p
m

)
−
∑∞

k=n+p

(
λ+k−1

k−p

)(
k
m

)
ak

= |b| .

Hence, by the maximum modulus principle, we infer thatf(z) ∈ Hp
n,m(λ, b), which completes

the proof of Theorem 1. �

Remark 1. In the special case when

(2.3) m = 0, p = 1, and b = βγ (0 < β 5 1; γ ∈ C \ {0}) ,

Theorem1 corresponds to a result given earlier by Murugusundaramoorthy and Srivastava [4,
p. 3, Lemma 1].

By using the same arguments as in the proof of Theorem 1, we can establish Theorem 2
below.

Theorem 2. Letf(z) ∈ Ap(n) be given by(1.1). Thenf(z) ∈ Lp
n,m(λ, b; µ) if and only if

(2.4)
∞∑

k=n+p

(
λ + k − 1

k − p

)(
k − 1

m

)
[µ (k − 1) + 1] ak 5 (p−m)

[
|b| − 1

m!
+

(
p

m

)]
.

Remark 2. Making use of the same parametric substitutions as mentioned above in(2.3),
Theorem 2 yields another known result due to Murugusundaramoorthy and Srivastava
[4, p. 4, Lemma 2].

3. I NCLUSION RELATIONSHIPS I NVOLVING (n, δ)-NEIGHBORHOODS

In this section, we establish several inclusion relationships for the function classes

Hp
n,m(λ, b) and Lp

n,m(λ, b; µ)

involving the(n, δ)-neighborhood defined by (1.12).

Theorem 3. If

(3.1) δ =
(n + p) |b|

(
p
m

)
(n + |b|)

(
λ+n+p−1

n

)(
n+p
m

) (p > |b|) ,

then

(3.2) Hp
n,m(λ, b) ⊂ Nn,δ(h).

Proof. Let f(z) ∈ Hp
n,m(λ, b). Then, in view of the assertion (2.1) of Theorem 1, we have

(3.3) (n + |b|)
(

λ + n + p− 1

n

)(
n + p

m

) ∞∑
k=n+p

ak 5 |b|
(

p

m

)
.
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This yields

(3.4)
∞∑

k=n+p

ak 5
|b|
(

p
m

)
(n + |b|)

(
λ+n+p−1

n

)(
n+p
m

) .
Applying the assertion (2.1) of Theorem 1 again, in conjunction with (3.4), we obtain(

λ + n + p− 1

n

)(
n + p

m

) ∞∑
k=n+p

kak

5 |b|
(

p

m

)
+ (p− |b|)

(
λ + n + p− 1

n

)(
n + p

m

) ∞∑
k=n+p

ak

5 |b|
(

p

m

)
+ (p− |b|)

(
λ + n + p− 1

n

)(
n + p

m

)
·

|b|
(

p
m

)
(n + |b|)

(
λ+n+p−1

n

)(
n+p
m

)
= |b|

(
p

m

)(
n + p

n + |b|

)
.

Hence

(3.5)
∞∑

k=n+p

kak 5
|b| (n + p)

(
p
m

)
(n + |b|)

(
λ+n+p−1

n

)(
n+p
m

) =: δ (p > |b|),

which, by virtue of (1.12), establishes the inclusion relation (3.2) of Theorem 3. �

In an analogous manner, by applying the assertion (2.4) of Theorem 2 instead of the assertion
(2.1) of Theorem 1 to functions in the classLp

n,m(λ, b; µ), we can prove the following inclusion
relationship.

Theorem 4. If

(3.6) δ =
(p−m)(n + p)

[
|b|−1
m!

+
(

p
m

)]
[µ (n + p− 1) + 1]

(
λ+n+p−1

n

)(
n+p
m

) (µ > 1),

then

Lp
n,m(λ, b; µ) ⊂ Nn,δ(h).

Remark 3. Applying the parametric substitutions listed in (2.3), Theorems 3 and 4 would yield
the known results due to Murugusundaramoorthy and Srivastava [4, p. 4, Theorem 1; p. 5,
Theorem 2]. Incidentally, just as we indicated in Section 2 above, the conditionµ > 1 is needed
in the proof of one of these known results [4, p. 5, Theorem 2]. This implies that the constraint
0 5 µ 5 1 in [4, p. 3, Equation (1.14)] should be replaced by the less stringent constraint
µ = 0.

4. FURTHER NEIGHBORHOOD PROPERTIES

In this last section, we determine the neighborhood properties for each of the following
(slightly modified) function classes:

Hp,α
n,m(λ, b) and Lp,α

n,m(λ, b; µ).

J. Inequal. Pure and Appl. Math., 7(1) Art. 5, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


6 R.K. RAINA AND H.M. SRIVASTAVA

Here the classHp,α
n,m(λ, b) consists of functionsf(z) ∈ Ap(n) for which there exists another

functiong(z) ∈ Hp
n,m(λ, b) such that

(4.1)

∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < p− α (z ∈ U; 0 5 α < p) .

Analogously, the classLp,α
n,m(λ, b; µ) consists of functionsf(z) ∈ Ap(n) for which there exists

another functiong(z) ∈ Lp
n,m(λ, b; µ) satisfying the inequality (4.1).

The proofs of the following results involving the neighborhood properties for the classes

Hp,α
n,m(λ, b) and Lp,α

n,m(λ, b; µ)

are similar to those given in [1] and [4]. We, therefore, skip their proofs here.

Theorem 5. Letg(z) ∈ Hp
n,m(λ, b). Suppose also that

(4.2) α = p−
δ (n + |b|)

(
λ+n+p−1

n

) (
n+p
m

)
(n + p)

[
(n + |b|)

(
λ+n+p−1

n+p

) (
n+p
m

)
− |b|

(
p
m

)] .
Then

(4.3) Nn,δ(g) ⊂ Hp,α
n,m(λ, b).

Theorem 6. Letg(z) ∈ Lp
n,m(λ, b; µ). Suppose also that

(4.4) α = p−
δ [µ (n + p− 1) + 1]

(
λ+n+p−1

n

) (
n+p−1

m

)
(n + p)

[
[µ (n + p− 1) + 1]

(
λ+n+p−1

n

) (
n+p−1

m

)
− (p−m)

{
|b|−1
m!

+
(

p
m

)}] .
Then

(4.5) Nn,δ(g) ⊂ Lp,α
n,m(λ, b; µ).
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[1] O. ALTINTAŞ, Ö. ÖZKAN AND H.M. SRIVASTAVA, Neighborhoods of a class of analytic
functions with negative coefficients,Appl. Math. Lett.,13(3) (2000), 63–67.
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