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ABSTRACT. A new inequality is presented, which is used to obtain a complement of recently
obtained inequality concerning the difference of two integral means. Some applications for pdfs
are also given.
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1. INTRODUCTION
In 1938, Ostrowski proved the following inequalityi [5].

Theorem 1.1.Let f : [a,b] — R be continuous orja, b] and differentiable on(a,b) with
|f' (z)| < M forall z € (a,b), then,

L)
(1.1) ) x) b—a/f dt' = ](b—a)M,

forall z € [a,b]. The constant is the best possible.

In[3] N.S. Barnett, P. Cerone, S.S. Dragomir and A.M. Fink obtained the following inequality
for the difference of two integral means:

Theorem 1. 2 Let f : [a,b] — R be an absolutely continuous mapping with the property that
f' € Ly [a,b], thenfora < c < d <b,

1
1.2 \—/ roa- - [ rwa| < Fore-a-air.,
the constant being the best possible.
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2 A.l. KECHRINIOTIS AND N.D. ASSIMAKIS

Forc = d = z this can be seen as a generalizatioflof]) .

In recent papers$ 1], [2]/ [4]/[6] some generalizations of inequdlity) are given. Note that
estimations of the difference of two integral means are obtained also in the casexwhere
b < d (seel[1], [2]), while in the case whe(e, b) N (¢, d) = &, there is no corresponding result.

In this paper we present a new inequality which is used to obtain some estimations for the
difference of two integral means in the case wheté) N (¢, d) = @, which in limiting cases
reduces to a complement of Ostrowski's inequalftyl). Inequalities for pdfs (Probability
density functions) related to some resultslin [3, p. 245-246] are also given.

2. SOME | NEQUALITIES

The key result of the present paper is the following inequality:

Theorem 2.1.Let f, g be two continuously differentiable functions [enb] and twice differen-
tiable on(a, b) with the properties that,

(2.1) g >0

on (a,b), and that the functiorzfg# is bounded or(a,b). Fora < ¢ < d < b the following
estimation holds,

" f)—f(d) _ fle)—f(a) "
(2.2) inf 7) < b =2 _ < sup / (3:)
ze(ab) g" () (bz fl(d) g(e)— 9( ) ve(at) 9" (z)

Proof. Let s be any number such that< s < ¢ < d < b. Consider the mappings, ¢; :
[d,b] — R defined as:
23) fil@)=f(@)—f(s)=(x=9)f(s), qu(x)=g(x)—g(s)—(x—35)g (s).

Clearly fi, g; are continuous ofi, b] and differentiable orid, b) . Further, for anyr € [d, b],
by applying the mean value Theorem,

g (@) =g () —g'(s) = (x = 5) g" (0)

for somes € (s,z), which, combined with2.1)), givesg; (z) # 0, for all z € (d,b) . Hence,
we can apply Cauchy’s mean value theorenfitog; on the intervald, b] to obtain,

L) = fi(d) _ fi(7)

g () =g (d)  g1(7)
for somer € (d, b) which can further be written as,
fFO) = f(d)=(b=d)f'(s) _ f'(r) = f(s)
gb)—gd)=0b—=d)g(s) ¢ (1)—g(s)
Applying Cauchy’s mean value theorem fg ¢’ on the intervals, 7], we have that for some

€ (s,7) C(a,b),
(2.5)

(2.4)

1) = 1) _ 110
g(r)=g'(s)  ¢"(&)
Combining(2.4) and(2.5) we have,

f)—fid

(2.6) m < ORI
(x)

()

forall s € (a, c), wherem = inf, ¢ (@b)

)= (b—d) f'(s)
)= (b—=d)g'(s)
a 1"

ndM = SUDge(a,b) f//((xg

<M
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By further application of the mean value Theorem and using the assungptigrwe readily
get,

(2.7) g() —g(d)—(b—d)g'(s) > 0.
Multiplying by ,

(2.8) m(g () —g(d)—(b—d) g (s)) < f(b)— f(d)—(b—d) f'(s)
<M (g(b)—g(d)—(b—d)g (s)).
Integrating the inequalitie®.7) and([2.8)) with respect tos from a to ¢ we obtain respectively,

(2.9) (c—a)(g(b)—g(d)—(b—d)(g(c)—g(a)) >0
and
(2.10) m((c—a)(g() —g(d) —(b—d)(g(c)—g(a)))

<(c=a)(f(b) = f(d)—(b—d)(f(c)— [ (a))

< M((c=a)(g(b) —g(d)) = (b—=d)(g(c) = g(a))).
Finally, dividing by ,

(c=a)(f(b) = f(d) = (b—d)(f(c) — [ (a))
(c=a)(g(b) —g(d) - (b—d)(g(c) —g(a))

as required. O

m < <M

Remark 2.2. Itis obvious that Theorefn .1 holds also in the case whére 0 on (a,b) .

Corollary 2.3. Leta < ¢ < d < band F, G be two continuous functions da, b] that are
differentiable on(a, b) . If G’ > 0 on (a,b) or G’ < 0 on(a,b) and% is boundeda, b) , then,

Yo Py dt— 2 [CF () dt i
(211) 1nf /(ZE) S b—d fdb ( ) c—a fc:: ( ) S sup ,(:E)
weed) G'(x) = L (VG () dt — L [TG () dt ~ weab) G ()
and
212) rid-a—o it P < [ Fuya— /CF(t)dt
' 2 2€(a,b) ~b—d ), c—a J,

—_

<—-(b+d—a—c) sup F'(z).
2 z€(a,b)

The constant in (2.12) is the best possible.
Proof. If we apply Theorem 2]1 for the functions,

f(:v)::/xF(t)dt, g(x)::/IG(t)dt, x € |a,b],

then we immediately obtaif.11)). Choosing& (x) = x in (2.11)) we get(2.12)) . O
Remark 2.4. Substitutingd = b in (1.2)) of Theorenj 1.2 we get,

1
< Z(c— .
- <5 l-a) |,

(2.13) ‘bi /bF(x)d:c_bic/bF(x)da:
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Settingd = c in (2.12) of Corollary[2.3 we get,

(2.14) b= it P (r) < /bF()d - /CF()d
' mel&,b) Y=yTe . Vet T T, u T ax
<24 sup F' (z).
z€(a,b)
Now,

Using this in(2.14) we derive the inequality,
c—a | 1

b 1 b c—
— <
b_C/CF(x)dx b_a/aF(x)dx_

From this we clearly get again inequalif9.13)) . Consequently, inequalit{2.12) can be seen
as a complement dfi.2)).

¢ sup F'(z).

z€(a,b)

Corollary 2.5. Let F, G be two continuous functions on an interval_ R and differentiable
on the interior/ of I with the properties?’ > 0on/or G’ < 0on/ and% bounded on.

Leta, b be any numbers ir% such thata < b, then for allz € I — (a,b), thatis,z € I but
x ¢ (a,b), we have the estimation:

) i [P F(t)dt — F (x)
relaba) G' (1) = 2 (PG () dt — G (x) ~ e
where({a,b,z}) := (min {a, x, } ,max {x, b}) .

Proof. Letu, w, y, z be any numbers if such that: < w <y < z. According to Corollary 2|3
we then have the inequality,

F(t)
f
tel(rzltz G/( B

We distinguish two cases:

(2.15)

sup s
({abay) G (1)

(2.16)

If r < a, then by choosmg =

= b andu = w = z in (2.12) and assuming that
=G (z) as I|m|t|ng cases(2.16) reduces to,

D —F@) _E

—— fu F(t)dt = F () and -1~ f
inf G’ § bl f
te(z,b) b_f

Hence(2.15)) holds for allz < a.
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If = > b, then by choosing. = a, w = bandy = z = x, in (2.16) , similarly to the above,
we can prove that for alf > b the inequality(2.15)) holds. O

Corollary 2.6. Let F' be a continuous function on an intenalc R. If I € Loj, then for all
a,b € I'withb > aandallz € I — (a,b) we have:

(2.17) 'F ——/ ' |b+a2 2 1F'|| o

The inequality(2.17) is sharp.

Proof. Applying (2.15) for G (z) = = we readily get(2.17) . ChoosingF’ (z) = z in (2.17)) we
see that the equality holds, so the cons@'mtthe best possible. O

, (min{a,z},max{b,x}) *

(2.17) is now used to obtain an extension of Ostrowski's inequdiity).
Proposition 2.7. Let I be as in Corollary 2.p, then for all, b € I withb > a and forallz € I,

1 b
e F(t)dt
o [

< |-+ 72 | h—a)|F
>~ [4 + (b _ )2 ( CL) ” “ ,(min{a,z},max{b,x}) *

(2.18) ‘F (z) —

Proof. Clearly, the restriction of inequality2.18)) on [a, b] is Ostrowski’s inequality(1.1]) .
Moreover, a simple calculation yields

2
b+ a — 2z 1 (z— okt
Proz sl o2 (p—gq
2 — |4 (b . a>2 ( )
forall x € R.
Combining this latter inequality witlj2.17) we conclude that2.18) holds also forz €
I — (a,b) and so(2.18)) is valid for allz € I. O

3. APPLICATIONS FOR PDFs

We now use inequality2.2)) in Theorenj 2.1 to obtain improvements of some resultslin [3, p.
245-246].

Assume thatf : [a,b] — R, is a probability density function (pdf) of a certain random
variable X, thatis [” f () dz = 1, and

Pr(XSx):/mf(t)dt, z € [a,b]

is its cumulative distribution function. Working similarly tol[3, p. 245-246] we can state the
following:

Proposition 3.1. With the previous assumptions férwe have that for alk: € [a, b]

r—a

(3.1) %(b—x)(:z:—a) inf f'(z) <

z€(a,b) b—a

<lo-n)@-a) s 1),

z€(a,b)

provided thatf € C [a, b] and f is differentiable and bounded dn, b) .
Proof. Apply Theorem 2.1 forf (z) = Pr (X < ), g(z) =22, c=d = =. O

—Pr(X <ux)
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Proposition 3.2. Let f be as above, then,

2
(3.2) % (z —a)* (3b—a — 2z) xeigfb) f(x) < % —zPr(X <z)+ E, (X)
< i(x—cz)2(3b—a—2x) sup f'(z),
12 z€(a,b)

forall x € [a, b] , where
E, (X) ::/ tPr(X <t)dt, x € [a,b].

Proof. Integrating(3.1)) from a to = and using, in the resulting estimation, the following identity,

(3.3) /IPr(Xgx)d:z::xPr(Xga:)—/xav(Pr(ng))'d:c
' ::cPr(Xga:)—EC;(X)

we easily get the desired result. O
Remark 3.3. Settingz = b in we get,

00 it )< EX) - - s f )
Proposition 3.4. Let f, Pr (X < z) be as above. If € L., [a, b], then we have,

Sb=) @ —a) inf f(r) < T2 (b= B (X))~ sPr(X <2)+ E, (X)
< 3 b—2)(r —a) swp [ ()

z€[a,b]
forall z € [a,b] .
Proof. Apply Theoren) 21 foif (z) := [ Pr(X < t)dt, g(z) := 2%, = € [a,b], and identity
(3-3)- O

REFERENCES

[1] A. AGLIC ALJINOVIC, J. PEARIC AND |. PERIC, Estimates of the difference between two
weighted integral means via weighted Montgomery idenkitgth. Inequal. Appl 7(3) (2004), 315—
336.

[2] A. AGLIC ALJINOVIC, J. PEEARIC AND A. VUKELI C, The extension of Montgomery identity
via Fink identity with applications]. Inequal. Appl.20051), 67—79.

[3] N.S. BARNETT, P. CERONE, S.S. DRAGOMIRND A. M. FINK, Comparing two integral means
for absolutely continuous mappings whose derivatives ark.ina, b] and applicationsComput.
Math. Appl.,44(1-2) (2002), 241-251.

[4] P. CERONEAND S.S. DRAGOMIR, Differences between means with bounds from a Riemann-
Stieltjes integralComp. and Math. Appl46 (2003), 445-453.

[5] A. OSTROWSKI, Uber die Absolutabweichung einer differenzierbaren funktion von ihren inte-
gralmittelwert,Comment. Math. Helv1,0(1938), 226—-227 (German).

[6] J. PECARIC, I. PERC AND A. VUKELI C, Estimations of the difference between two integral
means via Euler-type identitieBlath. Inequal. Appl.7(3) (2004), 365-378.

J. Inequal. Pure and Appl. Mat}8(1) (2007), Art. 10, 6 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Some Inequalities
	3. Applications for PDFs
	References

