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ABSTRACT. The purpose of this paper is to deal with some uniqueness problems of entire func-
tions or meromorphic functions concerning differential polynomials that share one value or fixed-
points with finite weight. We obtain a number of theorems which generalize some results due to
M.L. Fang & X.H. Hua, X.Y. Zhang & W.C. Lin, X.Y. Zhang & J.F. Chen and W.C. Lin.
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1. INTRODUCTION AND MAIN RESULTS

Let f be a non-constant meromorphic function in the whole complex plane. We shall use the
following standard notations of value distribution theory:

T(r, f),m(r, f), N(r, f), N(r, f), ...
(see Hayman [6],Yan@g [13] and Yi and Yang[16]). We denot&by f) any quantity satisfying

S(r, f) = o(T(r, f)),
asr — +o0, possibly outside of a set with finite measure. A meromorphic funectisncalled
a small function with respect té if 7'(r,a) = S(r, f). Let S(f) be the set of meromorphic
functions in the complex plan€ which are small functions with respect fo For someu €
C U oo, we define
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2 HONG-YAN XU AND TING-BIN CAO

Fora € C U oo andk a positive integer, we denote by(r, a; f| = 1) the counting function
of simplea-points of f, and denote bW (r, a; f| < k) (N(r,a; f| > k)) the counting functions
of thosea-points of f whose multiplicities are not greater (less) thawhere eachu-point is
counted according to its multiplicity (se€l [6])V (r, a; f| < k)(N(r,a; f| > k)) are defined
similarly, where in counting the-points of f we ignore the multiplicities.

Set
Ni(rya; f) = N(r,a; f) + N(rya; f| > 2) + -+ N(r,a; f > k).
We define N 5
1 Ty Nelr s
5k<a7f> - 1 rl—{go T(T’, f)

Let f andg be two nonconstant meromorphic functions defined in the open complex@lane
If for somea € S(f)N.S(g) the roots off —a andg — a coincide in locations and multiplicities
we say thatf and g share the value C'M (counting multiplicities) and if they coincide in
locations only we say that andg sharea M (ignoring multiplicities).

In 1997, Yang and Hua [14] proved the following result.

Theorem A ([14]). Let f and g be two nonconstant entire functions,> 6 a positive integer.
If f*f" andg™g’ share the valué C'M, then eitherf = ¢,e* andg = coe %%, wherec, ¢;, and
¢, are constants satisfyin@;c,)"*'c? = 1 or f = tg for a constant such that™™! = 1.

Using the same argument aslin/[14], Fanlg [3] proved the following result.

Theorem B ([3]). Let f and g be two nonconstant entire functions and.#ek be two positive
integers withn > 2k +4. If [f"]*) and[¢"]*®) share the valug C M, then eitherf = c,e®, g =
coe” %, wherecy, ¢, andc are three constants satisfyirig-1)*(c;co)"(nc)* = 1, or f = tg for
a constant such that”™ = 1.

Fang [5] obtained some unicity theorems corresponding to Theofem B.

Theorem C([5]). Let f andg be two nonconstant entire functions, anditet: be two positive
integers withn > 2k + 8. If [f"(f — 1)]® and[g"(g — 1)]*®) share 1C M, thenf = g.

Recently, Zhang and Lin [17], Zhang, Chen and Lin/[18] extended Thepfem C and obtained
the following results.

Theorem D([17]). Let f andg be two nonconstant entire functioms;n andk be three positive
integers withn > 2k +m +4, and\, 1 be constants such thaX| + || # 0. If [f™(uf™ +\)]®
and[g"(ug™ + \)]*) share 1C M, then
(i) whenAp # 0, f = g;
(i) whenAu = 0, either f = tg, wheret is a constant satisfying”™™ = 1, or f =
c1e, g = coe”*, wherecy, ¢, andc are three constants satisfying
(1) (cico)™™[(n+m)c* =1 or (=D u*(cic2)™ ™ [(n +m)c** = 1.
Theorem E ([18]). Let f andg be two nonconstant entire functions, andrlletn andk be three
positive integers with > 3m + 2k + 5, and letP(z) = a,, 2™ + @p_12™ 1 + - + a2 + ag Of
P(z) = co, Whereag # 0, a1, ..., am_1,am # 0,co # 0 are complex constants. [If"P(f)]*
and[g"P(g)]® share 1CM, then
(i) whenP(z) = apz™+am_12™ - - -+a 2 +ayg, either f = tg for a constant such that
td=1,whered = (n+m,...,n+m—1i,...,n), a,_; # 0 forsomei =0,1,...,m,
or f andg satisfy the algebraic equatioR( f, g) = 0, where

R(wl, u)z) = w’f(amw{” -+ am,lw’lnfl + e+ [051°%] + CLQ)

-1
— Wi (amwy® + AWy + -+ agwa + ag);
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(i) whenP(z) = c, either f = ¢,/ /coe”, g = ca/ /coe™, wWherecy, ¢, andc are three
constants satisfying—1)*(c,c,)"(nc)?* = 1, or f = tg for a constantt such that
" =1.

Regarding Theorenjs|D apdl E, it is natural to ask the following question.
Problem 1.1. In Theorem$ D and]E, can the nature of sharig' be further relaxed?

For meromorphic functions, Yang and Hual[14] proved the following result corresponding to
TheoreniA.

Theorem F([14]). Let f and g be two nonconstant meromorphic functions; 11 an integer,
anda € C — {0}. If f*f" and ¢"¢’ share the values C' M, then eitherf = dg for some
(n + 1)th root of unityd or g = cie”* and f = cye~ %, wherec, ¢;, and ¢, are constants
satisfying(cyco)"™1c? = —a?.

Lin and Yi [7] obtained some unicity theorems corresponding to Thepiem F.

Theorem G([[7]). Let f andg be two nonconstant meromorphic functions satisfygo, f) >

ni—l-l’ n>12. If [f"(f —1)]f and[¢"(g — 1)]¢' share 1C'M, thenf = g.

Lin and Yi [8] extended Theorem|G by replacing the value 1 with the functiand obtained
the following result.

Theorem H ([8]). Let f and g be two transcendental meromorphic functions,> 12 an

integer. If f*(f —1)f" andg"(g — 1)¢’ sharez C'M, then eitherf = g or g = %

andf = % whereh is a nonconstant meromorphic function.

Recently, Zhang, Chen and Lin [18] extended Theoteins f &and G and obtained the following
result.

Theorem | ([18]). Let f and g be two nonconstant meromorphic functions, anchlahdm be
two positive integers with > max{m + 10,3m + 3}, and letP(z) = a,,2™ + a,_12™ " +
<o+ + a1z + ag, Whereay # 0,ay,...,a,_1,a, # 0 are complex constants. *P(f)f’
and g"P(g)g share 1C M, then eitherf = tg for a constantt such thatt? = 1, where
d=Mn+m+1,....n+m+1—4,....,n+1), ay,_; # 0forsomei =0,1,...,m, or fand
g satisfy the algebraic equatioR( f, g) = 0, where

m m—1
QW Ay —1Wq Qo
R(wi,ws) = wi LS et
(w1,02) 1<7’L—f-m—|—1 n-—+m n+1
o Ay am_lwg“_l ao
\n+m+1 n+m n+1/

Regarding Theoref I, it is natural to ask the following questions.
Problem 1.2. Is it possible that the value 1 can be replaced by a functionTheorenj||?

Problem 1.3. Is it possible to relax the nature of sharingn Theorenj]l and if possible, how
far?

In 2001, Lahiri [9]10] first employed the idea of weighted sharing of values which measures
how close a shared value is to being shaféd or to being shared’)M/. Recently, many
mathematicians (such as H. X. Yi, I. Lahiri, M. L. Fang, A. Banerjee, W. C. Lin, X. Yan) have
been interested in investigating meromorphic functions sharing values with finite weight in the
field of complex analysis.

We first introduced the notion of weighted sharing of values as follows.
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Definition 1.1 ([9},[10]). Let £ be a nonnegative integer or infinity. Fore CU{co0}, we denote
by Ex(a; f) the set of alla-points where am-point of multiplicity m is countedm times if
m < kandk + 1 timesifm > k. If Ex(a; f) = Ex(a; g), we say thatf, g share the value
with weightk.

We denote by, (a; f) the set of allk-points of f with multiplicities not exceeding:, where
an a-point is counted according to its multiplicity. If for somee C U {o0}, Ex)(a; f) =
E+(a; g), then we say thaf, g share the value C'M.

The definition implies that iff, ¢ share a value with weightk thenz is a zero off — a with
multiplicity m (< k) if and only if itis a zero ofy — a with multiplicity m(< k); andz, is a zero
of f — a with multiplicity m (> k) if and only if it is a zero ofy — a with multiplicity n(> k),
wherem is not necessarily equal ta

We write f, g share(a, k) to mean thatf, g share the value with weightk, clearly if f, g
share(a, k), then f, g share(a, p) for all integersp (0 < p < k).Also, we note thaf, g share a
valuea I M or CM if and only if they sharga, 0) or (a, cc0), respectively.

With the notion of weighted sharing of values, we investigate the solution of the above ques-
tion and obtain the following results.

Theorem 1.1. Let f and g be two nonconstant entire functions, andetn and k be three
positive integers witm > 5m + 5k + 8. If [f"P(f)]*® and[¢"P(g)]*) share(1,0), then the
conclusion of Theorefm E still holds.

Theorem 1.2. Let f and g be two nonconstant entire functions, andtetn and k be three
positive integers witlh > 2m + 4k + 5. If [f"P(f)]*) and [¢"P(g)]*) share(1,1), then the
conclusion of Theorefm E still holds.

Theorem 1.3. Let f and g be two nonconstant entire functions, andetn and k be three
positive integers witth > 3m 4 3k + 5. If [f*P(f)]® and[¢"P(g)]*) share(1,2), then the
conclusion of Theorefm E still holds.

Remark 1. From Theoremp 1]1[- 1.3, we obtain a positive answer to Quéstipn 1.1.

Theorem 1.4.Let f and g be two transcendental meromorphic functions, anchlandm be
two positive integers with > m + 10, and letP(z) = a,,2™ + ayp_12™ ' + -+ - + a1z + ay,
whereay # 0,ay, ..., an_1,a, # 0 are complex constants. fi*P(f)f' andg™P(g)g' sharez
CM, then eitherf = tg for a constant such that? = 1, whered = (n+m+1,...,n+m+
1—i4,...,n+1),a,_; #0forsome =0,1,...,m, or f andg satisfy the algebraic equation
R(f,g9) =0, where

m m—1

Aoy W Am—1W1 Qg
R(wi,wy) = W} L4 RS
(wr,2) 1<n+m+1 n-—+m n+1

m m—1
AW A1 W a
_wg 2 1%2 S 0 .
n+m+1 n+m n+1

Theorem 1.5. Let f and g be two transcendental meromorphic functions, anchlandm be
two positive integers with > 4m + 22, and letP(z) = a,;,2™ + ayp12™ 1 + -+ + a1z + ay,
whereay # 0,ay, ..., an_1,a, # 0 are complex constants. ff*P(f)f andg™P(g)g' sharez
IM, then the conclusion of Theorém|1.4 still holds.

Theorem 1.6. Let f and g be two transcendental meromorphic functions,rlet and m be
three positive integers, and 16t(z) = a,,2™ + ap_12™ ' + -+ + a1z + a9, Whereag #
0,ai,...,0n,_1,a, # 0 are complex constants. B, (z, f"P(f)f') = Ey(z,9"P(g9)9’),

(i) If L =1andn > 3m + 18, then the conclusion of Theorém]1.4 still holds.
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(i) If 1 =2andn > $m + 12, then the conclusion of Theor¢m|1.4 still holds.

Remark 2. Theorenj 1.4 is an improvement of Theorein H. Thedrerm 1.5 and 1.6 are comple-
ments to TheoremH.

Though the standard definitions and notations of value distribution theory are available in
[613], we explain the ones which are used in the paper.

Definition 1.2 ([1}, [16]). When f and g sharel IM, We denote byN (r, 1; f) the counting
function of thel-points of f whose multiplicities are greater thaspoints ofg, where each zero
is counted only once; Similarly, we haveéy(r, 1; g). Let z, be a zero off — 1 of multiplicity
p and a zero ofy — 1 of multiplicity ¢, we also denote b, (r, 1; f) the counting function

of thosel-points of f wherep = ¢ = 1; Ng(r, 1; f) denotes the counting function of those
1-points of f wherep = ¢ > 2, each point in these counting functions is counted only once. In
the same way, one can defing, (r, 1; g), N (r, 1; g).

Definition 1.3 ([0} [10]). Let f, g sharea valuel IM. We denote byV, (r, 1; f, ) the reduced
counting function of thosé-points of f whose multiplicities differ from the multiplicities of
the corresponding-points ofg. Clearly N.(r,1; f,g) = N.(r,1;9,f) andN.(r,1; f,g) =
Ni(r,1; )+ Nr(r,1;9).

2. SOME LEMMAS
For the proof of our results we need the following lemmas.

Lemma 2.1([15, p. 27, Theorem 1.12])Let f be a nonconstant meromorphic function and
P(f)=ao+arf+asf?+ - +a,f", whereay, a;, as, . .., a, are constants and,, # 0. Then

T(r,P(f)) =nT(r, f)+ 50 f).
Lemma 2.2 ([18]). Let f be a transcendental entire function, letk, m be positive integers

withn > k+2,andP(z2) = ap+ a2+ asz*+- - - +a,, 2™, whereag, a1, as, . . . , a,, are complex
constants. Thefy” P(f)]* = 1 has infinitely many solutions.

Lemma 2.3([18]). Let f andg be two nonconstant entire functions, andrlek be two positive
integers withn > k, and letP(z) = a,,2™ + ap_12™"' + -+ + a1z + ao be a nonzero
polynomial, wherex, ay, . . . , ,,_1, a,, are complex constants. [If" P(f)]®[g"P(¢)]* = 1,
thenP(z) is reduced to a nonzero monomial, thati¥z) = a;2* # 0 forsome = 0,1, ..., m;
furtherf = ¢/ "/a,e”, g = c2/ "/a;e” %, wherec,, c; and ¢ are three constants satisfying
(—=1)*(ere2)"[(n + 1)e)** = 1.

Let f be an entire function; we ha&(co, f) = 1. Using the same argument asl[12, Lemma
2.12], we can easily obtain the following lemma.

Lemma 2.4. Let f and ¢ be two entire functions, and létbe a positive integer.lf*) and ¢(*)
share(1,l) (I =0,1,2). Then
(4) If 1 =0,
(21) 6(07 f) + 5/@(07 f) + 6k+1(07 f) + 6k+1(07 g) + 6k+2(07 f) + 6k+2(07 g) > 57
then eitherf(®¢*) = 1 or f = ¢;
(id) If 1 =1,
1

then eitherf®)¢*) = 1 0or f = ¢;

Y

N ©
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(i) If 1 =2,
(2.3) ©(0, f) + 0k(0, f) + k410, )} + 0r42(0, g) > 3,
then eitherf(®¢*) = 1 0or f = g.
Lemma 2.5. Let f and g be two transcendental meromorphic functionsdetnd m be three
positive integers witm > 7, and let P(z) = a,,2™ + apm_12™"1 + -+ + a1z + ap, Where

ap # 0,a1,...,am_1,a, # 0 are complex constants. ff*P(f)f andg¢g"P(g)g’ sharez I M,
thenS(r, f) = S(r,g).

Proof. Using the same arguments aslin [8] and [18], we easily obtain L§mrpha 2.5. O

Lemma 2.6. Let f and g be two transcendental meromorphic functions, andhleind m be
three positive integers with > m + 3, F, = 2V and @, = %(9)9/, wheren(> 4) is
a positive integer. Iff} = G, then eltherf = tg for a constantt such thatt = 1, where
d=mn+m+1,....n+m+1—14,....,n+1), ay_; # 0forsomei =0,1,...,m, or f and
g satisfy the algebraic equatioR( f, g) = 0, whereR(w;,w») is as stated in Theoren 1.4.

Proof. Using the same arguments as those in [11] and [18], we can easily get Llenjmal2.6.

Lemma 2.7. Let f and g be two transcendental meromorphic functions. Then
J"P(f)['g"P(g)g # 2°,

wheren > m + 4 is a positive integer.

Proof. Using the same argument aslin|[11] and [18], we easily obtain L§mma 2.7. O

Lemma 2.8([3]). Let f and g be two meromorphic functions. ffand g share 1C'M, one of
the following three cases holds:

(I) T(T, f) S NQ(T,OO,f) + NQ(?",OO,Q) + N2(r707 f) + NQ(T,O,g) + S<T7 f) + S(r,g),
the same inequality holding far(r, g);

(i) f=g
(i) f-g=1.

Lemma 2.9([4]). Let f and g be two meromorphic functions, and ldbe a positive integer. If
Ey(1, f) = Ey(1, g), then one of the following cases must occur:

(i):
T(Tv f) + T(T, g) S N2(T7 o5 f) + N2<7‘, 0; f) + NQ(Ta OO;g)
+ Ny(r,0;9) + N(r, 1; f) + N(r, 1;9) = Nu(r, 1; f)
+ N L f| >+ 1)+ N 1,gl >1+1)+ S, f)+S(r,g);

(i): f= % wherea(+ 0), b are two constants.

Lemma 2.10([4]). Let f and g be two meromorphic functions. ffand g share 17 M, then
one of the following cases must occur:

(i):
T(Tv f) + T(Tu g) S 2[N2(T7 5 f) + NQ(Tu O; f) + N2(T7 OO;g) + NQ(T,O;Q>]
+3NL(r, 1 f) +3Nr(r, 1;9) + S(r, f) + S(r, 9);

(i): f= % wherea(+ 0), b are two constants.
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Lemma 2.11. Let f and g be two transcendental meromorphic functions;> m + 6 be a
positive integer, and lef;, = ZPU0 and G, = £LWI |

(b+ )G1+(a—b—1)

bGl + (& — b) ’
wherea(# 0), b are two constants, then the conclusion of Thedrerh 1.4 still holds.
Proof. By Lemmg 2.1 we know that

_ Py
(2.5) T(r,F)=T <7", — )

<T(r,f"P(f)) +T(r,[) +logr
<(n+m)T(r,f)+2T(r, f) +logr + S(r, f)
=n+m+2)T(r, f)+logr+ S(r, f),

(2.6) (n+m)T(r, f)
=T(r, f"P(f)) +5(r, f)
= N(r,00; f*P(f)) + m(r, f*P(f)) + S(r, f)

<N( fnpf ) N(r,o00; )

( PEDLY o (v 5 ) + togr + 50

< T( I" if)f/> +T(r, f') — N(r,00; f') — N(r,0; ') + logr + S(r, f)

<T(r,Fy)+T(r,f)— N(r,o0; f) — N(r,0; f') + logr + S(r, f).
So
(2.7) T(r,F1) > (n+m—1)T(r, f)+ N(r,o00; f) + N(r,0; f') + logr + S(r, f).
Thus, by [(2.5),[(2]7) and > m + 6, we getS(r, F}) = S(r, f). Similarly,
(2.8) T(r,Gi) > (n+m—1)T(r,g) + N(r,00;9) + N(r,0;¢') + logr + S(r, g).

Without loss of generality, we suppose ti&t-, f) < T'(r,g), r € I, wherel is a set with
infinite measure. Next, we consider three cases.

Case 1.b #0,—1,1f a —b— 1 # 0, then by [(2.4) we know
N (r, —a;TbIl; Gl) = N(r,0; F}).
Since

(2.9) N(r,0;¢") < N(r,o00;g9) + N(r,0;9) + S(r,g) < 2T(r,g) + S(r,9).
By Nevanlinna’s second fundamental theorem (2.9) we have
a—b—1
b1
< N(r,00; ) + N(r,0; g) +mT(r, g) + N(r,0; g') + N(r,0; f)

+mT(r, f) + N(r,0; f) + N(r,00; f) + 2logr + S(r, 9)
< (2m+4)T(r,g) + N(r,00;9) + N(r,0;¢') + 2logr + S(r, g).

T(r,Gp) < N(r, 00; Gy) + N(r,0; G1) +N (r, G ) + S(r,Gy)
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Hence, byn > m + 6 and [2.8), we knowl'(r, g) < S(r,g),r € I, this is impossible.
If a —b—1=0, then by|(2.4) we know; = ((b+ 1)G4)/(bG; + 1). Obviously,

N (7’, —%; Gl) = N(r,00; F}).
By the Nevanlinna second fundamental theorem pndl (2.9) we have
— 1
T(r, G1)§N(7’OOG1)—|—N(TOG1)+N(, G1>—|—S(7’,G1>

b’
< N(r,00;9) + N(r,0; g) +mT(r,g) + N(r,0; ¢')
+ N(r,00; f) +2logr + S(r, g)
< (m+2)T(r,g) + N(r,00; 9) + N(r,0;¢') + 2logr + S(r, g).
Then byn > m + 6 and [2.8), we knowl’(r, g) < S(r,g),r € I, a contradiction.
Case 2.b = —1. Then [2.4) becomeB, = a/(a + 1 — G1).
If a4+ 1 +# 0, thenN(r,a + 1;G;) = N(r, o00; F}). Applying a similar argument to that for
Case 1 we can again deduce a contradiction.
If a+1=0,thenF;-G; =1, thatis,
f"P(f)f'd"P(9)g # 2°.
Sincen > m + 6, by Lemmdg 2.]/ we get a contradiction.
Case 3.b = 0. Then [2.4) becomeB, = (G +a — 1)/a.
Ifa—1#0, thenN(r 1 —a;G,) = N(r,0; F}). Applying a similar argument to that for

Case 1 we can again deduce a contradiction.
If a —1=0,thenF, = G4, thatis

f"P(f)f'=4g"P(9)g"

By Lemmg 2.5, we obtain the conclusions of Lenjma.11.
Thus we complete the proof of Lemrna 2.11. O

3. THE PROOFS OF THEOREMS [I.1f1.3
3.1. Proof of Theorem[1.].

Proof. (i) P(2) = amnz™ + apm12™ 1 + -+ + a1z + ao.

By the assumptions of Theorém[1.1 and Lenima 2.2, we know that eitherftanld g are
transcendental entire functions or bgtlandg are polynomials.

First, we consider the case whérandg are transcendental entire functions.

Let F = f"P(f) andG = ¢"P(g), from the condition of Theorein 1.1, we know thatG
share(1,0).

By Lemmd 2.1 we can easily get

, N(r,0; F)
Fy=1-1 _—
©(0, F) s

N(r,0; f*P(f))

=1 lmswp (0 70,7
i N0+ N0 P()
= 1-lmsup =
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i.€.
1 —1
(3.1) o0, F)>1-1F1_ "
n+m n-+m
Similarly, we have
n—1
3.2 0(0 >
(32) 0,6)> —

Next, by the definition ofVy(r, a; f) we have

. Nia(r,0; f) . (k+1)N(r,0; f)
=1-1 — 72 >1 -1
a0, f) = 1 = lim sup =70 7y = L lim sup T
. . Niya(r,0; f"P(f))
5k’+1 <O7 F) =1 hl;,risoljp 1—1(7,7 F) .
Therefore
, m+k+10)T(r,f) n—k-—1
. >1— = .
(3:3) Ok41(0,F) 2 1 hrrris;}p (n4+m)T(r, f) n+m
Similarly we get
n—k—1
(3.4) 0k11(0,G) > “ntm
and
n—k—2 n—k—2
(3.5) Or12(0, F) > T m Or12(0,G) > ErT—

From (3.1) —[(3.p) and’, G share(1,0), we can get

@(O7f) +5k(07f)+5k+1(07f) +5k+1<0ag)+6/€+2(07f) +5k+2<0ag)

n—1 n—=k n—k—1 n—k—2 6n-—5k—17
+ 2 +2 = :

n+m n4+m n+m n—+m n-+m

By n > bm + 5k + 7, we have

6(07 f) + 5k(07 f) + 5k+1<07 f) + 6k+1(07 g) + 5k+2<07 f) + 6k+2(07 g) > 5.
Therefore, by Lemmja 2.4, we deduce eithéf) - G*) =1 or F = G.
If . G®) =1, thatis
(36) [fn(amfm + am—lfm_l +oeet aO)](k) [gn(amgm + am—lgm_l + o+ aO)](k) = 17

then by the assumptions of Theorem| 1.1 and Lefnma 2.3 we can get a contradiction. Hence, we
deduce that' = G, that is

@7 fanf™ F @ fUT A ag) = g (amg™ F Q1 g T A ag).
Leth = f/g. If his a constant, then substitutirig= g/ into (3.7) we deduce
amgn+m(hn+m _ 1) 4 amilgnerfl(hn«#mfl _ 1) S Clogn(hn _ 1) _ O,

which impliesh? = 1, whered = (n +m,...,n+m —i,...,n),am_1 # 0 for somei =
0,1,...,m. Thusf = tg for a constant such that? = 1, whered = (n +m,...,n+m —
iy...,n),am,_; # 0forsomei =0,1,...,m.
If h is not a constant, then we know Hy (3.7) thfaend ¢ satisfy the algebraic equation
R(f,g) = 0, whereR(wy,ws) = wi(amw® + am 1w " + - + ayw; + ag) — wi(anwi +
m—1 ; i
1wy -+ agws + ag). This proves (i) of Theorem 1.1.

>
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Now we consider the case whghandg are two polynomials. Fron#, G share (1,0), we
have

(3.8) [ (amf™ + amr f™ -+ ag)]® — 1
= c{[gn(amgm + am_lgm—l 4+ .+ ao)](k) _ 1}’

wherec is a nonzero constant. Létg f = . Then by [(3.B) we know thateg g = . Differen-
tiating the two sides of (3]8), we can get

(3.9) g =g g,

whereq, ¢; are two polynomials withlegq; = degge = (m+k+ 1)l — (k+1). Byn >
4m + 4k + 8, we havedeg " *~! = (n — k — 1)I > deg go. Therefore by[(3]9) we know that
there exists, such thatf(zy) = g(z0) = 0. Hence, by[(3]8) andl(zy) = g(z9) = 0, we deduce
thatec =1, i.e.,

(3.10)  [f™(amf™ + amr f" 4 -+ a0)]P = [ (g™ F A1 g™+ -+ ag)]P.
Then we have

(B11)  fM(amf™ + @t [T+ ao) = g (@mg™ + amo1g™ T o+ ag) = p(2),
wherep(z) is a polynomial of degree at mokt— 1. Next, we provep(z) = 0 by rewriting

(3.10) as
(3.12) " Fpr = g" Fps,

wherep,, p; are two polynomials withleg p; = degps = (m + k)l — k anddeg f = 1.
Therefore, the total number of the common zerog®f* and ¢"~* is at leastt. Then by

(3.11) we deduce thakz) = 0, i.e.,
F amf™ + ama f™ 4 anf + ao) = (g™ + g™+ -+ arg + ag).

Then using the same argument[of {3.7), we can also get the case (i) of Tteorem 1.1.
(i) P(z) = ¢o. From Theorerh B, we can easily see that the case (i) of Theforém 1.1 holds.
Thus, we complete the proof of Theorgm|1.1. O

3.2. Proof of Theorem[1.2.

Proof. From the condition of Theorefn 1.2 and Lemma] 2.4(ii), using the same argument of
Theorenj 1.J1, Theoren 1.2 can be easily proved . O

3.3. Proof of Theorem[1.3.

Proof. From the condition of Theorefn 1.3 and Lemmal 2.4¢(iii), using the same argument of
Theorem 1.]1, Theorem 1.3 can be easily proved . O

4. THE PROOFS OF THEOREMS [1.4+1.6
Let F; andG; be defined as in Lemnja 2]11 and

o amfn+m+1 N am_lfrwmfl R CL0fn+1
n+m-+1 n-+m n+1
and
G Gmg™ | ameag™™ T aeg™
n+m+1 n+m n+1
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4.1. Proof of Theorem[1.4.

Proof. From the condition of Theorem 1.4, théh andG, sharez C'M.
By Lemmd 2.1, we have

@4.1) T(r,F*) = (n+m+1)T(r, f)+S(r, f), T(r,G*)=(n+m+1)T(r,g)+S(r,g).

Since(F*)" = Fiz, we deduce

m (r,%) <m (r, ZLF&) +S(r, f) <m (r, Fil) +logr + S(r, f),

and by Nevanlinna’s first fundamental theorem

4.2) T(r,F*)<T(r,F1)+ N(r,0; F*) — N(r,0; Fy) + logr + S(r, f)
ST(raFl)+N(r707f)+N(rvblaf)++N(T7bmaf) —N(’T‘,Cl;f)
_"'_N(T>cm;f) —N(T,O;f,)+lOgT+S(T,f),
whereby, by, . . ., b, are roots of the algebraic equation
A 2 A1 2™ ag
+ 4t
n+m+1 n—+m n—+1

m

)

andcy, co, . . ., ¢, are roots of the algebraic equation
2™ + Q1 2™ a1z 4 ag = 0.
By the definition ofF;, GG;, we have
(4.3) Ny(r,0; F1) + No(r,00; Fy) < 2N(r,00; f) +2N(r,0; f) + N(r,c1; f)
4o N(rycm; f) + N(r,0; f/) +2log .
Similarly, we obtain
(4.4) Ny(r,0;G1) + No(r,00;G1) < 2N(r,00;g9) +2N(r,0;9) + N(r,c1; 9)
+ -+ N(r,em;9) + N(r,0;9') + 2logr.
If Lemmal2.8(i) holds, from[(4]2) - (4.4) we have
(4.5) T(r,F1) < (m+5)T(r,f)+ (m+6)T(r,g) +4logr+ S(r, f) + S(r,g).
Similarly, we obtain
(4.6) T(r,Gy) < (m+5)T(r,g) + (m+6)T(r, f) +4logr+ S(r, f) + S(r, g).

By @.1), (4.5),[(4.p) and > m + 10, we can obtain a contradiction.

If Lemma[2.8(ii) holds, thed, = G;. By Lemmd 2.5, we can get the conclusion of Theorem
[1.4.

If Lemma[2.8(iii) holds, ther¥; - G; = 1. By Lemmg 2. andh > m + 10, we can get a
contradiction.

Therefore, we complete the proof of Theorer 1.4. O
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4.2. Proof of Theorem[L.5.
Proof. Suppose that (i) in Lemnja 2]10 holds. Since

_ F
(4.7) N.y(r,1;F,) <N (r,oo; F})

I
=

(rocih ) + 50+

N(r,00; Fy)+ N(r,0; Fy) + S(r, f)
(m+4)T(r, f)+2logr+ S(r, f),

IAINA

similarly, we have

(4.8) Np(r,1;G1) < (m+4)T(r,g) + 2logr + S(r, g).
By 4.2) — [4.4),[(4.]7) {(4]8) and Lemrpa 2. 10(i), we have
4.9 (n—4m —22)[T(r, f)+T(r,9)] <20logr+ S(r, f) + S(r, g).

By n > 4m + 22, we get a contradiction. Hend& and G, satisfy (ii) in Lemmg 2.10. By
Lemmd 2.1]L, we can get the conclusion of Thedrem 1.5.
Thus, we complete the proof of Theorgm|1.5. O

4.3. Proof of Theorem[1.6.
Proof. (i) If / = 1. Since
N(r,1; F))+N(r,1;Gy) — N1 (r, 1; FY)
<

1
N(r,1; Fy) + §N(7’, 1;Gy)

N
—= N =

< §T(7} F)+ %T(T, Gy)+ S(r, f) +S(r, g).

Suppose that (i) in Lemma 2.9 holds, then we have
(4.10) T(r,Fy) 4+ T(r,Gy) < 2[Ny(r,0; Fy) + No(r, 00; Fy) + No(r,0; Gy)
+ No(r,00; G1) + N(r,1; Fy| > 2) + N(r, 1, G| > 2)] + S(r, f) + S(r, 9).
Since

_ F
(4.11) N(r,1;Fi| >2) <N (r,oo; Fll)
1

(rooes gt ) +505)
N(r,00; F}) 4+ N(r,0; Fy) + S(r, f)

(m+4)T(r, f)+2logr+ S(r, f),

Il
=

VARVAN

similarly, we have

(4.12) N(r,1;G1| >2) < (m+4)T(r,g) +2logr + S(r, g).

By 4.2) —[4.4),[(4.10) {(4.12) and Lemina]2.9(i), we have

(4.13) (n—3m —18)[T'(r, f) + T(r,9)] < 16logr + S(r, f) + S(r, g).

By n > 3m + 18, we get a contradiction. Hend& and G, satisfy (i) in Lemmd 2.9. By
Lemmg 2.1]L, we can get the conclusion of Thedrem 1.6(i).
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(@i If [ = 2. Since

_ — 1— 1—
N(r,1; Fy)+ N(r,1;Gy) — Nyg(r, 15 Fy) + 5]\7 (r,1; F1| > 3) + §N (r,1;G1| > 3)

1 1 1 1
< §N(T7 ]-7 Fl) + §N(T7 17 Gl) < §T(T7 Fl) + §T(T7 Gl) + S(T7 f) + S(T’, g)

Suppose that (i) in Lemnja 2.9 holds, then we have

(4.14) T(r,F1) +T(r,G1) < 2[No(r,0; F1) + Na(r, 00; Fy) + No(r,0; Gy)
+ NZ(TaoO;Gl) +N(T7 17F1| Z 3) +N(T, 17G1| Z 3)] + S(n f) + S(Ta g)

Since
(4.15) N(T, 1;F| >3) < %N (r,oo; %)
1 F
= §N (r,oo; ﬁ) +S(r, f)
< %(m + 4T (r, f) + logr + S(r, f),
similarly, we have
(4.16) N(r,1;G4| > 3) < %(m +4)T'(r,g) + logr + S(r,g).
By (4.2) — (4.4),[(4.14) { (4.16) and Lemina]2.9(i), we have
(4.17) <n — ;m — 12) (T(r, f)+T(r,9)] < 16logr+ S(r, f) + S(r,g).

By n > #m + 12, we get a contradiction. Hendg andG, satisfy (ii) in Lemmg 2.9. By
Lemmd 2.1]L, we can get the conclusion of Thedrem 1.6(ii). O

5. REMARKS

It follows from the proof of Theorerh 1J/4(1.5) that if the conditighP(f) /' andg"P(g)g’
sharez CM (IM) are replaced by the conditiofi* P(f) f’ and g™ P(g)g’ sharea(z) CM (IM),
wherea(z) is a meromorphic function such thatz) # 0, co and?'(r, f) = of{T'(r, f),T(r, 9)},
the conclusion of Theorem 1[4(1.5) still holds. Similarly, if the conditigy(z, f"P(f)f') =
Ey(z,g"P(g)g')(l = 1,2) is replaced by the conditiofy (a(z),
fPP(f)f") = Eyla(z),g"P(9)g')(I = 1,2) respectively, then the conclusion of Theorerr 1.6
still holds.
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