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1. Introduction and Main Results

Let f be a non-constant meromorphic function in the whole complex plane. We shall
use the following standard notations of value distribution theory:

T(Ta f)7 m(r, f>7 N(Ty f),N(T, f), e
(see Haymand],Yang [13] and Yi and Yang 16]). We denote byS(r, f) any quan-

tity satisfying
S(r, f) = o(T(r, f)),

asr — +oo, possibly outside of a set with finite measure. A meromorphic function
a is called a small function with respect foif 7'(r,a) = S(r, f). Let S(f) be the

set of meromorphic functions in the complex pl&hehich are small functions with
respect tof. For somez € C U oo, we define

N(r,a; f)

O(a, f) =1 = Jim ==

Fora € CUoco andk a positive integer, we denote BY(r, a; f| = 1) the counting
function of simplea-points of f, and denote bW (r, a; f| < k) (N(r,a; f| > k))
the counting functions of those-points of f whose multiplicities are not greater
(less) thank: where eachu-point is counted according to its multiplicity (se@)

N(r,a; f| < k)(N(r,a; f| > k)) are defined similarly, where in counting the
points of f we ignore the multiplicities.

Set
Ni(r,a; f) = N(r,a; f > k).

We define

N(r,a; f) + N(r,a; f| >2)+---+

1 lme(Taf)
e D=1 BTG g
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Let f andg be two nonconstant meromorphic functions defined in the open com-

plex planeC. If for somea € S(f) N S(g) the roots off — a andg — a coincide
in locations and multiplicities we say th#tand g share the value C'M (counting
multiplicities) and if they coincide in locations only we say thfaandg sharea 1M
(ignoring multiplicities).

In 1997, Yang and Huall] proved the following result.

Theorem A ([14]). Let f andg be two nonconstant entire functioms> 6 a positive
integer. If f”f" and g"¢’ share the valud C'M, then eitherf = c;e®* andg =
cee” % wherec, c¢;, andc, are constants satisfying:; c,)"'c* = 1 or f = tg for a
constantt such that™ ! = 1.

Using the same argument as ], Fang 3] proved the following result.

Theorem B ([3]). Let f and g be two nonconstant entire functions andet be
two positive integers with > 2k + 4. If [f"]*) and [¢"]*®) share the valug C M,
then eitherf = ce%*, g = coe™*, wherecy, co andc are three constants satisfying
(—=1)*(c1e2)"(ne)?* =1, or f = tg for a constant such that™ = 1.

Fang p] obtained some unicity theorems corresponding to Thedsem

Theorem C ([5]). Let f and g be two nonconstant entire functions, and/et be
two positive integers with > 2k + 8. If [f"(f — 1)]*) and[¢g"(g — 1)]*) share 1
CM, thenf = g.

Recently, Zhang and Linl[/], Zhang, Chen and Lin1f8] extended Theoremx
and obtained the following results.

Theorem D ([17]). Let f and g be two nonconstant entire functions,m and k&
be three positive integers with > 2k + m + 4, and A\, . be constants such that
N 4[] # 0. 1 [ (uf™ + N)]® and [g" (ug™ + \)]*) share 1C M, then
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(i) when\p # 0, f = g;

(i) when\y = 0, either f = tg, wheret is a constant satisfying’*™ = 1, or
f = e, g = coe %%, wherecy, ¢, andc are three constants satisfying

(=DA% (cre)™™[(n+m)* =1 or (=1)*u2(cico)"™[(n+m)c]* = 1.

Theorem E ([18]). Let f and g be two nonconstant entire functions, andetn
and k be three positive integers with > 3m + 2k + 5, and letP(z) = a,,2™ +
Um12™ - a1 z4ag OF P(2) = ¢y, Wwhereay # 0,ay, ..., Gpm1, am # 0,¢0 # 0
are complex constants. [If* P(f)]*®) and[¢g" P(g)]**) share 1C M, then

(i) whenP(2) = a;n2™ + ap12™ 1+ - -+ a1z + ao, either f = tg for a constant
t such thatt! = 1, whered = (n+m,...,n+m —i,...,n), anm_; # 0 for
somei = 0,1,...,m, or f andg satisfy the algebraic equatioR(f, g) = 0,
where

R(wi,ws) = W (amw* + @1+ -+ aqwr + ag)
— W AmWY + QW - agwa + ag);
(i) whenP(z) = co, either f = ¢,/ /coe®, g = co/ {/coe™ %, wherecy, ¢, and ¢

are three constants satisfyitig-1)*(c;c2)"(nc)?* = 1, or f = tg for a constant
t such that™ = 1.

Regarding Theorenis andE, it is natural to ask the following question.

Problem 1.1. In TheoremsD and E, can the nature of sharing UM be further
relaxed?

For meromorphic functions, Yang and HU&] proved the following result cor-
responding to Theorerh.
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Theorem F ([14]). Let f andg be two nonconstant meromorphic functions; 11
an integer, andz € C' — {0}. If f*f" and g"¢’ share the value. C'M, then either
f = dg for some(n + 1)th root of unityd or g = ¢;e® and f = coe™ %, wherec, ¢4,
andc, are constants satisfyin@c;)""c? = —a?.

Lin and Yi [7] obtained some unicity theorems corresponding to Thedrem

Theorem G ([7]). Let f andg be two nonconstant meromorphic functions satisfying

O(o0, f) > 25, n > 12. If [f*(f—1)]f" and[g"(g—1)]¢' share 1IC'M, thenf = g.

Lin and Yi [8] extended Theorer® by replacing the value 1 with the functian
and obtained the following result.

Theorem H ([8]). Let f and g be two transcendental meromorphic functions;
12 an integer. Iff"(f — 1)f andg™(g — 1)¢’ sharez C'M, then eitherf = g or

g = % and f = (("ijl))h((l—l_‘}fﬂl)) whereh is a nonconstant meromorphic

function.

Recently, Zhang, Chen and Lid§] extended Theorems and G and obtained
the following result.

Theorem | ([18]). Let f and g be two nonconstant meromorphic functions, and let
n andm be two positive integers with > max{m + 10,3m + 3}, and letP(z) =

A 2"+ Ay 1 2" a2+ ag, Whereag # 0, aq, . . ., Gm_1, Gy # 0 are complex
constants. Iff" P(f)f  andg™P(g)g' share 1C'M, then eitherf = tg for a constant
tsuchthat? = 1,whered = (n+m-+1,....n+m+1—i,....,n+1), ap_; #0

for somei = 0,1,...,m, or f and g satisfy the algebraic equatioR(f,g) = 0,
where

m m—1
L Ay W] ap )

R = Wy -
(w1,00) = <n+m+1 n—+m +n+1
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n( amwgn
n+m-+1

Regarding Theorem it is natural to ask the following questions.

m—1
(15 ap )

+
n—+m n+1

Problem 1.2. Is it possible that the value 1 can be replaced by a functiamThe-
orem|?

Problem 1.3. Is it possible to relax the nature of sharingin Theoreml and if
possible, how far?

In 2001, Lahiri P, 10Q] first employed the idea of weighted sharing of values
which measures how close a shared value is to being stidredr to being shared
C'M. Recently, many mathematicians (such as H. X. Yi, I. Lahiri, M. L. Fang, A.
Banerjee, W. C. Lin, X. Yan) have been interested in investigating meromorphic
functions sharing values with finite weight in the field of complex analysis.

We first introduced the notion of weighted sharing of values as follows.

Definition 1.1 ([9, 10]). Letk be a nonnegative integer or infinity. Fare CU{oc},
we denote by (a; f) the set of alla-points where am-point of multiplicitym is
countedn times ifm < k andk + 1 times ifm > k. If Ex(a; f) = Ex(a; g), we say
that f, g share the value with weightk.

We denote by, (a; f) the set of alla-points of f with multiplicities not ex-
ceedingm, where ana-point is counted according to its multiplicity. If for some
a € CU{oo}, Exy(a; f) = Ex)(a; g), then we say thaf, g share the value C')M .

The definition implies that iff, ¢ share a value with weightk thenz, is a zero
of f — a with multiplicity m(< k) if and only if it is a zero ofy — a with multiplicity
m(< k); andz is a zero off — a with multiplicity m (> k) if and only if it is a zero
of g — a with multiplicity n(> k), wherem is not necessarily equal ta
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We write f, g share(a, k) to mean thatf, g share the value with weight k,
clearly if f, g share(a, k), thenf, g share(a, p) for all integersp (0 < p < k).Also,
we note thayf, g share a value /M or C'M if and only if they sharéa, 0) or (a, c0),
respectively.

With the notion of weighted sharing of values, we investigate the solution of the
above question and obtain the following results.

Theorem 1.2.Let f and g be two nonconstant entire functions, andretn and &
be three positive integers with > 5m + 5k + 8. If [f"P(f)]® and [¢"P(g)]®
share(1, 0), then the conclusion of Theoréamstill holds.

Theorem 1.3.Let f and g be two nonconstant entire functions, andsretn and &
be three positive integers with > 2m + 4k + 2. If [f"P(f)]*) and [¢g"P(g)]*®
share(1, 1), then the conclusion of Theoremstill holds.

Theorem 1.4.Let f and g be two nonconstant entire functions, andsidetn and k
be three positive integers with > 3m + 3k + 5. If [f"P(f)]® and [¢"P(g)]®
share(1, 2), then the conclusion of Theoremstill holds.

Remarkl. From Theoremd4.2— 1.4, we obtain a positive answer to Questibn.

Theorem 1.5. Let f and g be two transcendental meromorphic functions, and let
n and m be two positive integers with > m + 10, and let P(z) = a,,2" +
Up12™ L+ oo+ ayz + ag, Whereag # 0,aq,...,0,_1,a, # 0 are complex
constants. Iff" P(f)f' andg™P(g)g’ sharez C'M, then eitherf = tg for a constant

t such that? = 1, whered = (n+m+1,....n+m+1—1i,....,n+1),ap_; # 0

for somei = 0,1,...,m, or f and g satisfy the algebraic equatioR(f,g) = 0,

where
m m—1
QW Ay —1Wq Qo
R(w,, — " 1
(w1,00) = <n+m+1 n-—+m n+1)
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m m—1
) A1 W a
— WP 2 2 440 .
n+m+1 n+m n+1

Theorem 1.6. Let f and g be two transcendental meromorphic functions, and let
n and m be two positive integers with > 4m + 22, and letP(z) = a,,z" +
Ap12™ 4 -+ a1z + ag, Whereag # 0,a1,...,0m_1,a, # 0 are complex
constants. Iff"P(f)f andg¢g™P(g)g’ sharez I M, then the conclusion of Theorem
1.5still holds.

Theorem 1.7.Let f andg be two transcendental meromorphic functionspldtand
m be three positive integers, and IB(z) = a,,2™ + @y 12™ 1 + -+ + a1z + ay,
whereag # 0, a1, ..., am-1,an 7# 0 are complex constants. By (z, f"P(f)f') =
Ey(z,9"P(9)d'),

(i) If I =1andn > 3m + 18, then the conclusion of Theorelb still holds.

@) Ifl=2andn > gm + 12, then the conclusion of Theoreis still holds.

Remark2. Theoreml.5is an improvement of Theorem. Theoreml.6and1.7 are
complements to Theorem.

Though the standard definitions and notations of value distribution theory are

available in B, 13], we explain the ones which are used in the paper.

Definition 1.8 ([1, 16]). Whenf and g sharel 1M, We denote bW (r, 1; f) the
counting function of thé-points of f whose multiplicities are greater tharpoints
of g, where each zero is counted only once; Similarly, we hiy¢r, 1; g). Letz
be a zero off — 1 of multiplicity p and a zero ofy — 1 of multiplicity ¢, we also
denote byVy,(r, 1; f) the counting function of thosepoints of f wherep = ¢ = 1;

Nﬁj(r, 1; f) denotes the counting function of those 1-pointg efherep = ¢ > 2,

each point in these counting functions is counted only once. In the same way, one

can defineVy, (r, 1; g), N'o(r, 1; g).
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Definition 1.9 ([9, 10]). Let f, g sharea valuel IM. We denote by, (r, 1; f, g) the
reduced counting function of thoseooints of f whose multiplicities differ from the
multiplicities of the correspondingpoints ofg. Clearly N, (r, 1; f, g) = N.(r, 1; 9, f)
andN*<r7 1; f7 g) = NL(Tv 1; f) + NL(TJ 1; g)
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2. Some Lemmas

For the proof of our results we need the following lemmas.

Lemma 2.1 ([15, p. 27, Theorem 1.12]).Let f be a nonconstant meromorphic
function andP(f) = ap + arf + asf? + -+ + a,f™, whereag, ay, as, . . ., a, are
constants and,, # 0. Then

T(r,P(f)) =nT(r, f) + S(r, f).

Lemma 2.2 ([L8]). Let f be a transcendental entire function, tetk, m be positive
integers withn > &k + 2, and P(2) = ag + a1z + ap2® + -+ + a,,2™, Where
ag, a1, as, . . ., ay, are complex constants. Théff P(f)]*) = 1 has infinitely many
solutions.

Lemma 2.3 ([L8]). Let f and g be two nonconstant entire functions, and det:
be two positive integers with > k&, and letP(z) = a;,2™ + ap12™ ' + - +
a1z+aq be anonzero polynomial, wheig, a4, . . ., a,,_1, a,, are complex constants.
If [f"P(f)]®[g"P(g9)]* = 1, thenP(z) is reduced to a nonzero monomial, that
is, P(z) = a;2" # 0 for somei = 0,1,...,m; further,f = ¢,/ "/a;e* g =
o/ "R/aze%*, wherecy, ¢, and ¢ are three constants satisfyirig-1)*(cic2)"[(n +
o) = 1.

Let f be an entire function; we ha¥e(oo, f) = 1. Using the same argument as
[12, Lemma 2.12], we can easily obtain the following lemma.

Lemma 2.4. Let f and g be two entire functions, and létbe a positive integer.If
f® andg® share(1,1) (I = 0,1,2). Then

(i) 1f1 =0,
(2.1) ©(0, f)+0x(0, f)+0k41(0, f)+6r41(0, 9)+0k42(0, f)+r42(0, 9) > 5,
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then eitherf(®¢*) = 1 or f = ¢;
(i) If 1 =1,
(22) 5000, )+ 6100, £) + 54:2(0. 1)) + s (0, )

+0k41(0,9) + ©(0, 9) + (0, 9) >

)

N ©

then eitherf(®¢*) = 1 or f = ¢;

(i3) If 1 = 2,
(2.3) O(0, f) 4+ 6x(0, f) + 0x+1(0, )} + dk+2(0, g) > 3,
then eitherf®¢*) =1 or f = g.

Lemma 2.5. Let f and g be two transcendental meromorphic functions,ieind
m be three positive integers with> 7, and letP(z2) = a;,2™ + @y 1 2™+ - +
a1z + ag, Whereag # 0,a4, ..., am_1,a, # 0 are complex constants. ff*P(f)f’
andg"P(g)g' sharez I M, thenS(r, f) = S(r,g).

Proof. Using the same arguments as 8} &nd [18], we easily obtain Lemma.5.
O

Lemma 2.6. Let f and g be two transcendental meromorphic functions, andlet
andm be three positive integers with> m + 3, F; = L2 and G, = £299
wheren(> 4) is a positive integer. I}, = G, then eitherf = tg for a constant
such that? = 1, whered = (n+m+1,...,n+m+1—i,...,n+1),a,_; # 0 for
somei = 0,1,...,m, or f andg satisfy the algebraic equatioR(f, g) = 0, where
R(wy,w>) is as stated in Theoremb©.
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Proof. Using the same arguments as thoselitj fnd [18], we can easily get Lemma
2.6. O

Lemma 2.7. Let f and g be two transcendental meromorphic functions. Then
f"P(f)f'g"P(g)g' # 2°,
wheren > m + 4 is a positive integer.

Proof. Using the same argument as ihl] and [18], we easily obtain Lemma.7.
O

Lemma 2.8 ([3]). Let f and g be two meromorphic functions. ffandg share 1
C'M, one of the following three cases holds:

(I) T(Ta f) S NQ(T7OOaf) + NQ(T7OOag) + NQ(T’,O,f) + N2<T70>g) + S(Tv f) +
S(r, g), the same inequality holding f@r(r, g);

(i) f=g
(i) f-g=1.

Lemma 2.9 (H]). Let f andg be two meromorphic functions, and ldie a positive
integer. IfE) (1, f) = Ey(1, g), then one of the following cases must occur:

(i)
T(T, f) +T(Tvg) < NQ(T,OO;f) + N2(Ta0; f) + NQ(T,OO;Q)

+ Ny(r,0;9) + N(r, 1; f) + N(r, 1. 9) — Nua(r, 1; f)
+N(r,1;f| >1+1) +N(r,1;g\ >1+ 1)+ S(r, f)+ S(r,g);
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(i) f= % wherea(+ 0), b are two constants.

Lemma 2.10 (f]). Let f and g be two meromorphic functions. ffand g share 1
1M, then one of the following cases must occur:

(i)
T(T’, f) —|—T(7“7 g) S Q[NQ(Tu (S OH f) +N2(T> 07 f) + N2<7a7 0079) +N2(7", ng)]
+3NL(r, 15 f) +3NL(r,1;9) + S(r, f) + S(r, 9);
(i) f= % wherea(+£ 0), b are two constants.

Lemma 2.11.Let f andg be two transcendental meromorphic functioms; m+6
be a positive integer, and lgt, = 2V and G, = 299 f

z

@4 h= e woy

wherea(# 0), b are two constants, then the conclusion of Theote#still holds.

Proof. By LemmaZ2.1we know that

(2.5) T F) =T ( M)

<T(r,f"P(f)) +T(r, ') + logr
<(n+m)T(r,f)+2T(r, f) +1logr+ S(r, f)
=m+m-+2)T(r, f)+logr+ S(r, f),
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(2.6) (n4+m)T(r, f)
=T(r, f"P(f)) + S(r, f)
= N(r,o00; f*P(f)) +m(r, ["P(f)) + S(r, f)

<N <7",00; w) — N(r,00; f')

z

+m (r, —f"Pif)f’) +m (r, %) +logr + S(r, f)
<T (r, w> +T(r, f)

— N(r,00; f') — N(r,0; f') +logr + S(r, f)
<T(r,Fy)+T(r,f) — N(r,o0; f) — N(r,0; f') + logr + S(r, f).
So
7)) T(r,F) > (n+m—1T(r,f)+ N(r,o0; )+ N(r,0; f') +logr + S(r, f).
Thus, by ¢.5), (2.7) andn > m + 6, we getS(r, F}) = S(r, f). Similarly,
(2.8) T'(r,Gy) > (n+m—1)T(r,g9) + N(r,00; g) + N(r,0; ¢') +log r + S(r, g).

Without loss of generality, we suppose th&t, f) < T'(r,g), r € I, wherel is
a set with infinite measure. Next, we consider three cases.

Caselb#0,—1,Ifa—b—1#0,then by ¢.4) we know

— a—b—-1 —
N(r,———=:Gy | = N(r,0; ).
(7“7 b—|—1 aGl) (T,O, 1)

Since
(2.9)  N(r,0;¢') < N(r,00;9) + N(r,0;9) + S(r,g) < 2T(r,9) + S(r,g).
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By Nevanlinna’s second fundamental theorem ané) we have

a—b—1

H—l’ Gl) + S(T’, Gl)

< N(r,00;9) + N(r,0;9) +mT(r,g) + N(r,0;¢') + N(r,0; f)
+mT(r, f) + N(r,0; f) + N(r,00; f) + 2logr + S(r, )

< (2m+4)T(r,g) + N(r,00;9) + N(r,0;¢') + 2logr + S(r, g).

Hence, byn > m+6 and ¢.9), we knowT'(r,g) < S(r,g),r € I, thisis impossible.
If a—b—1=0, then by £.4) we knowF; = ((b+1)G;)/(bG; + 1). Obviously,

T(r,G1) < N(r,00;G1) + N(r,0;G1) + N (7", -

N (r=3:61) = Niros ).

By the Nevanlinna second fundamental theorem an@ (ve have
_ — — 1
T(r,G1) < N(r,00;Gy) + N(r,0;G1) + N <r, —3 Gl) + S(r,Gy)
< N(r,00; ) + N(r,0;g) + mT(r, g) + N(r,0; ')
+N(r,00; ) +2logr + S(r, g)
< (m+2)T(r,g) + N(r,00;g) + N(r,0;¢') + 2logr + S(r, g).
Then byn > m + 6 and @.9), we knowT'(r, g) < S(r,g),r € I, a contradiction.
Case 2.b = —1. Then @.4) becomed; = a/(a + 1 — Gy).
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If a +1+#0,thenN(r,a+1;G,) = N(r,o0; F}). Applying a similar argument
to that forCase 1 we can again deduce a contradiction.
fa+1= 0, thenFl . Gl =1, that iS,

f"P(f)f'g"P(g)d # 2*.
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Sincen > m + 6, by LemmaZ2.7we get a contradiction.
Case 3.b = 0. Then @.4) becomed; = (G +a — 1) /a.

If a —1+#0,thenN(r,1 —a;G,) = N(r,0; F}). Applying a similar argument
to that forCase 1 we can again deduce a contradiction.
If «a —1=0,thenF; = G4, thatis

f"P(f)f = g"P(g)g"

By LemmaZ.6, we obtain the conclusions of Lemrfial 1.
Thus we complete the proof of Lemmal 1. O
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3. The Proofs of Theoremsl.2-1.4

3.1. Proof of Theorem1.2

Proof. (i) P(2) = anz™ + apm12™ 1 + - + a1z + ao.

By the assumptions of Theorem? and Lemma?.2, we know that either botlf
andg are transcendental entire functions or bfthndg are polynomials.

First, we consider the case wh¢rmandg are transcendental entire functions.

Let /' = f"P(f)andG = ¢g"P(g), from the condition of Theorem.2, we know
that F, G share(1, 0).

By LemmaZ2.1we can easily get

R N(r,0; F)
@(O,F)—l—hiris(;lpw
. N(r,0; f*P(f))
=1-limsu
L G TG )
- N(r,0; f) + N(r,0; P(f))
=1-—limsu
= ey ) R
3.1) o0, F)>1- "t _n-l

n+m n-+m

Similarly, we have

(3.2) 0(0,G)
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Next, by the definition ofVy(r, a; f) we have
. Nk+1(TaO; f) . (k+1)N(T7Oa f)
= — > -
O41(0, f) = 1 = limsup =5 =s > 1 = Hm sup == 7= ==,

10, F) = 1 — limsup 1 (R OS2 PU))

T—00 T(’I“, F) Uniqueness of Entire or
Therefore Meromorphic Functions
( i N 1)T( f) I 1 Hong-Yan Xu and Ting-Bin Cao
m + T n—k— .
33 5 O F > 1 o 1 ) — ) vol. 10, iss. 3, art. 88, 2009
(3-3) k(0. F) = lﬁilp (n+m)T(r, f) n+m
Similarly we get Title Page
— k-1 C
(3.4) 5k+1(0, G) > n— ontents
ntm «“ M
and < >
—k—-2 — k=2
(35) 5k+2(07 F) > nnﬁ, 5k+2(07 G) > nnﬁ Page 19 of 30
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Full Screen
(0, f) 4 0x(0, f) + 0r41(0, f) + 0x+1(0, g) + 0x42(0, f) + dx42(0, 9) Close
n—1 n—=k n—k—1 n—k—2 6n-—-5-—-7
> - +2 +2 = :
n+m n+m n+m n+m n+m journal of inequalities
in pure and applied
By n > 5m + 5k + 7, we have mathematics
@(07 f) + 5k<07 f) + 6k+1(07 f) + 5k+1(07 g) + 6k+2(07 f) + 5k+2(07 g) > 5. issn AAA3S7Se

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

Therefore, by Lemma.4, we deduce eitheF®) . G*) = 1 or F = G.
If £®) . G® =1, thatis

(3.6)  [f™amf™ + a1 fT 4+ ag)]®
X [0 (Amg™ + Gm1g™ 4+ ag)] P = 1,

then by the assumptions of Theorén? and Lemma2.3we can get a contradiction.

Hence, we deduce that = G, that is

B.7) famf™ + a1 f" T a0) = g (g™ F Qg™ ag).
Leth = f/g. If his a constant, then substitutirffg= gh into (3.7) we deduce
Amg" T (AT — 1)+ a1 g" TR = 1) - agg™ (R — 1) = 0,

which impliesh? = 1, whered = (n +m,...,n+m —i,...,n),am_1 # 0 for
somei = 0,1,...,m. Thusf = tg for a constant such thatt! = 1, where
d=mn+m,...,n+m—1,...,n),a,_; # 0forsome; =0,1,...,m.

If his not a constant, then we know by.() that f and g satisfy the algebraic
equationR(f, g) = 0, whereR(w;,ws) = W (@mwt™ + @1 + -+ + ayw; +
ag) — W (AW} 4 Q15+ -+ aywy + ag). This proves (i) of Theorerh.2.

Now we consider the case wh¢mandg are two polynomials. Fronk', G share
(1,0), we have

3.8) [ (amf™ + am f™ -+ ag)]® — 1
= c{[gn(amgm + amilgmfl 4+ 4 CLO)](k) . 1}’

wherec is a nonzero constant. Létg f = [. Then by (.6) we know thatdeg g = [.
Differentiating the two sides of3(8), we can get

(3.9) [ g =g g,
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wheregq,, ¢, are two polynomials withleg ¢; = degge = (m + k+ 1)l — (k + 1).

By n > 4m + 4k + 8, we havedeg ¢g" %! = (n — k — 1)] > deg ¢». Therefore by
(3.9 we know that there exists, such thatf(z,) = g(z0) = 0. Hence, by §.8) and
f(20) = g(20) = 0, we deduce that= 1, i.e.,

(310) [fn(amfm + am—lfm_l 4ot ao)](k)
= [9"(amg™ + am—_1g™ " + -+ ag)]®.

Then we have
(3.11) f™(am ™+ am-1 "+ ta0) = g (g amo19™ "+ +ag) = p(2),

wherep(z) is a polynomial of degree at mokt— 1. Next, we provep(z) = 0 by
rewriting (3.10) as

(3.12) "y = g" Fpa,

wherep,, p, are two polynomials witkleg p; = deg p, = (m+k)l—k anddeg f = [.
Therefore, the total number of the common zerog’of* andg™~* is at least.
Then by ¢.11) we deduce thai(z) =0, i.e.,

F amf ™+ a1 f" e ar f+ag) = g (amg™ + Am1g™ - arg+ag).

Then using the same argument 8f4), we can also get the case (i) of Theorem
1.2

(i) P(z) = co. From TheorenB, we can easily see that the case (ii) of Theorem
1.2holds.

Thus, we complete the proof of Theoren?. m
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3.2. Proof of Theorem1.3

Proof. From the condition of Theorem 3and Lemma?.4(ii), using the same argu-
ment of Theoreni..2, Theoreml.3 can be easily proved . O

3.3. Proof of Theorem1.4

Proof. From the condition of Theoreth 4 and Lemma.4(jii), using the same argu- unideness of Entire or

- Meromorphic Functions
ment of Theoreni..2, Theoreml.4 can be easily proved . O A
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4. The Proofs of Theoremsl.5-1.7

Let I} andG; be defined as in Lemmalland

A n+m-+1 Qe n+m—1 a n+1
e O T af

n+m-+1 n+m n+1

and +m+1 +m—1 +1
A, n-+m Ay n+m— ana™

GF — g 19 T 09 ‘

n+m-+1 n+m n-+1

4.1. Proof of Theorem1.5

Proof. From the condition of Theorerh 5, thenF; andG, sharez C' M.
By LemmaZ2.1, we have

(4.1) Tr,F*y=n+m+1)T(r,f)+S
T(r,G*)=(n+m+1)T(r,g)+ S(r,g).

~~
=3

~
~—

Since(F*)" = Fz, we deduce

m (7“, %) <m <T,ZLE) +S(r, f) <m <r, Fil) +logr+ S(r, f),

and by Nevanlinna’s first fundamental theorem

(4.2) T(r,F*) <T(r,Fy)+ N(r,0; F*) — N(r,0; Fy) +logr + S(r, f)
<T(r,F1)+ N(r,0; f) + N(r,by; f) + -+ N(r,by; f)
—N(ryei; f) — - = N(ryem; f)
— N(r,0; f') +logr + S(r, f),
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whereby, bs, . .., b,, are roots of the algebraic equation

m m—1

A 2 Ap—1% Qo
+ .. 4 — 0’
n+m-+1 n+m n-+1
andcy, co, . . ., ¢, are roots of the algebraic equation

2™ 4 Q1 2™V a2+ ag = 0.

By the definition ofF;, GG, we have

(4.3) Ny(r,0; F}) + No(r,00; Fy) < 2N(r,00; f) +2N(r,0; f) + N(r,c1; f)

+ o+ N(r,cm; f) + N(r,0; f') + 2log .

Similarly, we obtain
(4.4) No(r,0;G1) + Na(r, 00; G1) < 2N (r,00; g) + 2N (1,05 g) + N(r,c1; 9)
+ -+ N(r,cm; 9) + N(r,0;9") + 2log .
If LemmaZ2.g(i) holds, from ¢.2) — (4.4) we have

(45) T'(r,F1) < (m+5)T(r, f)+(m+6)T(r,g) +4logr+ S(r, f) + S(r, g).

Similarly, we obtain

(4.6) T(r,Gy) < (m+5)T(r,g)+ (m+6)T(r, f) +4logr+ S(r, f) + S(r,g).

By (4.1), (4.5, (4.6) andn > m + 10, we can obtain a contradiction.
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If LemmaZ2.(ii) holds, thenF; = ;. By LemmaZ.6, we can get the conclusion
of Theoreml.5. journal of inequalities
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can get a contradiction. mathematics
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4.2. Proof of Theorem 1.6
Proof. Suppose that (i) in Lemma 10holds. Since

_ F,
(4.7) No(r,1;F})) <N (r, 0; Fl,)
1

(7“,00;5{) +S(r, f)

I
=

Fy
N(r,00; Fy) + N(r,0; F1) + S(r, f)
(m+4)T(r, f)+ 2logr + S(r, f),

IA N

similarly, we have
(4.8) Ni(r,1;Gy) < (m+4)T(r,g) + 2logr + S(r, g).
By (4.2) — (4.4), (4.7) — (4.9) and Lemma&2.1((i), we have
(4.9) (n—4m —22)[T(r, )+ T(r,g9)] <20logr + S(r, f) + S(r,9).
By n > 4m + 22, we get a contradiction. Hendg and(; satisfy (ii) in Lemma
2.10 By Lemma2.11, we can get the conclusion of Theoréng.

Thus, we complete the proof of Theorent. O
4.3. Proof of Theorem1.7
Proof. (i) If [ = 1. Since

N(r,1; F1)+N(r,1;G1) — Ny (r, 1; FY)

1 1
< SN(r, L Fy) + §N(7”> 1;Gh)

2
< %T(r, F)+ %T(r, G1)+ S(r, f)+ S(r,g).
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Suppose that (i) in Lemma 9 holds, then we have
(4.10) T(r,F1) +T(r,Gy) < 2[No(r,0; Fy) + Na(r, 00; F1) + Nao(r,0; Gy)
+ No(r,00G1) + N(r, 1; Fi| > 2) + N(r, 1;G1| > 2)] + S(r, ) + S(r, 9)-

Since

— F;
(411)  N(nLER|[=2)<N (wx ﬁ)
1

(i) 560

N(r,00; Fy) + N(r,0; Fy) + S(r, f)
(m+ 4T (r, f)+2logr+ S(r, f),

I
=

IAIA

similarly, we have

(4.12) N(r,1;G1| >2) < (m+4)T(r,g) + 2logr + S(r, g).

By (4.2 — (4.4), (4.10 — (4.12 and Lemma&.X(i), we have

(4.13) (n—3m—18)[T(r, f)+T(r,g9)] < 16logr + S(r, f) + S(r,g).

By n > 3m + 18, we get a contradiction. Hendg and(; satisfy (ii) in Lemma
2.9. By Lemma2.11, we can get the conclusion of Theorém(i).
(ii) If [ = 2. Since

_ — 1— 1—
N(T’al;Fl)‘f'N(ra1;G1)—N11(7”71;F1)+§N(7’71;F1\ > 3)+§N(T,1;G1\ > 3)

1 1
S N(T,I,F1)+§N(’I",1,G1) S T(T,F1)+§T(T‘,G1)+S(7“,f)+S(’l",g)

N | —
N | —
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Suppose that (i) in Lemma 9 holds, then we have

(4.14) T(r,Fy) +T(r,G1) < 2[No(r,0; F1) + Na(r,00; F1) + Nao(r,0; Gy)
+ NQ(T’,OO; Gl) +N(T7 ]-a F1| Z 3) —f-N(T‘, 17 Gll Z 3)] + S(’f’, f) + S(T7g)

Since

1 F
@15)  N(nLA[23)<.N <r,oo; —1)

similarly, we have
416)  N(n1:Gi|>3) < %(m + )T (r, g) +log r + S(r, ).
By (4.2 — (4.4, (4.1 — (4.16 and Lemma&2.X(i), we have
(4.17) <n - gm - 12) (T(r, f)+T(r,g9)] < 16logr+ S(r, f) + S(r,g).

Byn > %m + 12, we get a contradiction. Hendg andG, satisfy (ii) in Lemma
2.9. By Lemma2.11, we can get the conclusion of Theorém(ii). O
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5. Remarks

It follows from the proof of Theoreni .5(1.6) that if the conditionf” P(f)f’" and
g"P(g)g' sharez CM (IM) are replaced by the conditiofi* P(f)f’ andg"P(g)g’
sharea(z) CM (IM), wherea(z) is @ meromorphic function such thatz) # 0, co
andT(r, f) = of{T'(r, ), T(r,g)}, the conclusion of Theorerm.5(1.6) still holds.
Similarly, if the conditionEy(z, f"P(f)f') = Ep(z,9"P(g)g')(l = 1,2) is re-
placed by the conditior;(a(z),

f"P(f)f") = Eyl(a(z),g"P(g)g')(l = 1,2) respectively, then the conclusion of
Theoreml.7 still holds.
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