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ABSTRACT. Generalized form of Hermite-Hadamard inequality {2n)-convex Lebesgue in-
tegrable functions are obtained through generalization of Taylor's Formula.
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The classical Hermite-Hadamard inequality gives us an estimate, from below and from above,
of the mean value of a convex functigh [a,b] — R (seel[1, pp. 137]):

(HH) () < it [ < HOEI0,

In [2] the first author with Sabir Hussain proved the following two theorems

Theorem 1. Assume thaf is Lebesgue integrable and convex(anb). Then
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forall z € (a,b).
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Theorem 2. Assume thaf : [a,b] — R is a convex function. Then
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Remark 1. Forz = “ in Theorenj . and: = a or = = b in Theoren] P, we obtain improve-
ments of inequality (HH).

In this paper we will prove further generalizations of these results.

forall z € (a,b).

Theorem 3. Assume thaf : [a,b] — R is a(2n — 1)-times differentiable and2n)—convex
function. Then
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forall x € (a,b).

Proof. Itis well known that a continuou®n)—convex function can be uniformly approximated
by a (2n)—convex polynomial. So we can suppose that we h&vg—derivatives off. By
Taylor’s formula,

fly) = fl@)+ (y—2)f () + %Jw@) T
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for z,y € [a,b], £ € (a,b). Sincef is (2n)—convex, we havg " (z) > 0.
So
and we can write
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Now by using the triangle inequality
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Now integrating the last inequality with respectit@nd using the triangle inequality for inte-
grals, we get
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Theorem 4. Assume thaf : [a,b] — R is a(2n — 1)—times differentiable an¢2n)—convex
function. Then
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Proof. Integrating [(1) with respect to and by using the triangle inequality for integrals, we get
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By replacingr andy we obtain the required result. O

Corollary 5. Suppose thaf : [a,b] — Ris a(2n — 1)—times differentiable an¢tn)—convex
function. Then

bean(252) - L o )

J. Inequal. Pure and Appl. Mat}9(4) (2008), Art. 105, 4 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 MATLOOB ANWAR AND J. PECARIC

: b atb) = (-%") w (ath
Z(b—a)/a f(y)_f< 2 )_;k—ffk( . )dy
—pﬁwn(a+b)w—a>-4a—w%
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Proof. Setz = 23 in Theoren B. .

Corollary 6. Suppose thaf : [a,b] — Ris a(2n — 1)—times differentiable an¢2n)—convex
function. Then
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Proof. Setx = a in Theorenj 4. O
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