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ABSTRACT. In this note we prove a generalized version of an inequality which was first intro-
duced by A. Q. Ngo,et al. and later generalized and proved by W. J. Liu,et al. in the paper: "On
an open problem concerning an integral inequality",J. Inequal. Pure & Appl. Math., 8(3) 2007.
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1. I NTRODUCTION

In [2] the following result was proved: Iff ≥ 0 is a continuous function on[0, 1] such that

(1.1)
∫ 1

x

f(t)dt ≥
∫ 1

x

tdt, ∀x ∈ [0, 1],

then ∫ 1

0

fα+1(x)dx ≥
∫ 1

0

xαf(x)dx, ∀α > 0.

The following question was raised in [2]: Iff satisfies the above assumptions, under what
additional assumptions can one claim that:∫ 1

0

fα+β(x)dx ≥
∫ 1

0

xαfβ(x)dx, ∀α, β > 0?

It was proved in [1] that iff ≥ 0 is a continuous function on[0, 1] satisfying∫ b

x

fα(t)dt ≥
∫ b

x

tαdt, α, b > 0, ∀x ∈ [0, b],

then ∫ b

0

fα+β(x)dx ≥
∫ b

0

xαfβ(x)dx, ∀β > 0.

In this paper, we prove more general results, namely, Theorems 2.4 and 2.5 below.

The author wishes to express his thanks to Prof. A.G. Ramm for helpful comments during the preparation of the paper.
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2. RESULTS AND PROOFS

Let us recall the following result:

Lemma 2.1(Young’s inequality). Let α andβ be positive real numbers satisfyingα + β = 1.
Then for all positive real numbersx andy, we have:

αx + βy ≥ xαyβ.

Throughout the paper,[a, b] denotes a bounded interval and all functions are real-valued. Let
us prove the following lemma:

Lemma 2.2. Letf ∈ L1[a, b], g ∈ C1[a, b]. Supposef ≥ 0, g > 0 is nondecreasing. If∫ b

x

f(t)dt ≥
∫ b

x

g(t)dt, ∀x ∈ [a, b],

then∀α > 0 the following inqualities hold∫ b

a

gα(x)f(x)dx ≥
∫ b

a

gα+1(x)dx,(2.1) ∫ b

a

fα+1(x)dx ≥
∫ b

a

fα(x)g(x)dx,(2.2) ∫ b

a

fα+1(x)dx ≥
∫ b

a

f(x)gα(x)dx.(2.3)

Proof. First, let us prove (2.1). LetA, A∗ denote

Af(x) :=

∫ x

a

f(t)dt, A∗f(x) :=

∫ b

x

f(t)dt, x ∈ [a, b], f ∈ L1[a, b].

Note that these are continuous functions. From the assumption one has

A∗f(x) ≥ A∗g(x), ∀x ∈ [a, b].

This means
(A∗f − A∗g)(x) ≥ 0, ∀x ∈ [a, b].

Then∀h ∈ L1[a, b], h ≥ 0, one obtains

(2.4) 〈A∗f − A∗g, h〉 :=

∫ b

a

(A∗f − A∗g)(x)h(x)dx ≥ 0.

Note that the left-hand side of (2.4) is finite sinceA∗f, A∗g are bounded andh ∈ L1[a, b]. Thus,
by Fubini’s Theorem, one has

(2.5) 〈f − g, Ah〉 = 〈A∗f − A∗g, h〉 ≥ 0, ∀h ≥ 0, h ∈ L1[a, b].

Denoteh(x) = αg(x)α−1g′(x). One has

Ah(x) =

∫ x

a

h(t)dt = gα(x)− gα(a), ∀x ∈ [a, b].

By the assumption,

(2.6) 〈f − g, gα(a)〉 = gα(a)

∫ b

a

(f(x)− g(x))dx ≥ 0.

Sinceh ≥ 0, from (2.5) and (2.6) one gets

(2.7) 〈f − g, gα〉 = 〈f − g, Ah〉+ 〈f − g, gα(a)〉 ≥ 0, ∀α ≥ 0.

Hence, (2.1) is obtained.
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Since
(f(x)− g(x))(fα(x)− gα(x)) ≥ 0, ∀x ∈ [a, b], ∀α ≥ 0,

one gets

(2.8) 〈f − g, fα − gα〉 ≥ 0, ∀α ≥ 0.

Inequalities (2.7) and (2.8) imply

〈f − g, fα〉 = 〈f − g, fα − gα〉+ 〈f − g, gα〉 ≥ 0, ∀α > 0.

Thus, (2.2) holds.
By Lemma 2.1,

1

α + 1
fα+1(x) +

α

α + 1
gα+1(x) ≥ gα(x)f(x), ∀x ∈ [a, b].

Thus,

(2.9)
1

α + 1

∫ b

a

fα+1(x)dx +
α

α + 1

∫ b

a

gα+1(x)dx ≥
∫ b

a

gα(x)f(x)dx, ∀α > 0.

From (2.1) and (2.9) one obtains∫ b

a

fα+1(x)dx ≥
∫ b

a

gα(x)f(x)dx, ∀α ≥ 0.

The proof is complete. �

In particular, one has the following result

Corollary 2.3. Supposef ∈ L1[a, b], g ∈ C1[a, b] f, g ≥ 0, g is nondecreasing. If∫ b

x

f(t)dt ≥
∫ b

x

g(t)dt, ∀x ∈ [a, b]

then the following inequality holds

(2.10)
∫ b

a

fβ(x)dx ≥
∫ b

a

gβ(x)dx, ∀β ≥ 1.

Proof. Denotefε := f + ε, gε := g + ε whereε > 0. It is clear thatgε > 0 and∫ b

x

fε(t)dt ≥
∫ b

x

gε(t)dt, ∀x ∈ [a, b].

By (2.1) and (2.3) in Lemma 2.2 one has

(2.11)
∫ b

a

fβ
ε (x)dx ≥

∫ b

a

gβ
ε (x)dx, ∀β ≥ 1.

Inequality (2.10) is obtained from (2.11) by lettingε → 0. �

Theorem 2.4.Supposef ∈ L1[a, b], g ∈ C1[a, b], f, g ≥ 0, g is nondecreasing. If∫ b

x

f(t)dt ≥
∫ b

x

g(t)dt, ∀x ∈ [a, b],

then∀α, β ≥ 0, α + β ≥ 1, the following inequality holds

(2.12)
∫ b

a

fα+β(x)dx ≥
∫ b

a

fα(x)gβ(x)dx.
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Proof. Lemma 2.1 shows that

α

α + β
f(x)α+β +

β

α + β
g(x)α+β ≥ fα(x)gβ(x), ∀x ∈ [a, b], ∀α, β > 0.

Therefore,∀α, β > 0 one has

(2.13)
α

α + β

∫ b

a

f(x)α+βdx +
β

α + β

∫ b

a

g(x)α+βdx ≥
∫ b

a

fα(x)gβ(x)dx.

Corollary 2.3 implies

(2.14)
∫ b

a

f(x)α+βdx ≥
∫ b

a

g(x)α+βdx, ∀α, β ≥ 0, α + β ≥ 1.

Inequality (2.12) is obtained from (2.13) and (2.14). �

Remark 1. Theorem 2.4 is not true if we drop the assumptionα + β ≥ 1. Indeed, takeg ≡ 1,
[a, b] = [0, 1], and define

f(x) = c(1− x)c−1, 0 ≤ x ≤ 1,

wherec ∈ (0, 1). One has

(1− x)c =

∫ 1

x

f(t)dt ≥
∫ 1

x

g(t)dt = (1− x), ∀x ∈ [0, 1], c ∈ (0, 1),

but
2
√

c

c + 1
=

∫ 1

0

√
f(t)dt <

∫ 1

0

√
g(t)dt = 1, ∀c ∈ (0, 1).

Assuming that the conditiong ∈ C1[a, b] can be dropped and replaced byg ∈ L1[a, b], we
have the following result:

Theorem 2.5.Supposef, g ∈ L1[a, b], f, g ≥ 0, g is nondecreasing. If

(2.15)
∫ b

x

f(t)dt ≥
∫ b

x

g(t)dt, ∀x ∈ [a, b],

then

(2.16)
∫ b

a

fα+β(x)dx ≥
∫ b

a

fα(x)gβ(x)dx, ∀α, β ≥ 0, α + β ≥ 1.

Proof. SinceC1[a, b] is dense inL1, there exists a sequence(gn)∞n=1 ∈ C1[a, b] such thatgn is
nondecreasing,gn ↗ g a.e. Sincegn ↗ g a.e.,

(2.17)
∫ b

x

g(t)dt ≥
∫ b

x

gn(t)dt, ∀x ∈ [a, b], ∀n.

Inequalities (2.15), (2.17) and Theorem 2.4 imply

(2.18)
∫ b

a

fα+β(x)dx ≥
∫ b

a

fα(x)gβ
n(x)dx, ∀n, ∀α, β ≥ 0, α + β ≥ 1.

Sincefαgβ
n ↗ fαgβ a.e.,fαgβ

n ≥ 0 is measurable satisfying (2.18), by the Monotone conver-
gence theorem (see [3, 4])‖fαgβ

n → fαgβ‖L1 → 0 asn →∞. Hence,∫ b

a

fα+β(x)dx ≥
∫ b

a

fα(x)gβ(x)dx, ∀α, β ≥ 0, α + β ≥ 1.

The proof is complete. �
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Remark 2. One may wish to extend Theorem 2.5 to the case where[a, b] is unbounded. Note
that the caseb = ∞ is not meaningful. It is because ifg 6= 0 a.e., then both sides of (2.15) are
infinite. If b < ∞ anda = −∞ and inequality (2.15) holds fora = ∞, then it holds as well
for all finite a < 0. Hence, inequality (2.16) holds for alla < 0. Thus, by lettinga → −∞ in
Theorem 2.5, one gets the result of Theorem 2.5 in the casea = −∞.
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