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ABSTRACT. The present paper deals with the study of the mixed summation integral type op-
erators having Szasz and Baskakov basis functions in summation and integration respectively.
Here we obtain the rate of point wise convergence, a Voronovskaja type asymptotic formula, an
error estimate in simultaneous approximation. We also study some local direct results in terms of
modulus of smoothness and modulus of continuity in ordinary and simultaneous approximation.
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1. INTRODUCTION

The mixed summation-integral type operators discussed in this paper are defined as

(11)  Si(f.x) = /Ooo W (2, ) F (1) dt

-1 snu(a) / b (Ot + e F(0), € [0,00),

v=1
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2 VIJAY GUPTA AND ESRA ERKUS

where .
W, (x, (n—1) ZS”” bpy—1(t) + e "0(1),
v=1
)(t) being Dirac delta function,
spu(z) =¢e Y

and
Do (t) = (n tve 1)1&”(1 )T
1%

are respectively Szasz and Baskakov basis functions. Itis easily verified that the oplerdtors (1.1)
are linear positive operators, these operators were recently proposed by Gupta and Gupta in [3].
The behavior of these operators is very similar to the operators studied by Gupta and Srivastava
[5], but the approximation properties of the operatSysare different in comparison to the
operators studied in [5]. The main difference is that the opergtors (1.1) are discretely defined
at the point zero. Recently Srivastava and Gupta [8] proposed a general family of summation-
integral type operator&,, .(f, ) which include some well known operators (see €.g. [4], [7])

as special cases. The rate of convergence for bounded variation functions was estimated in
[8], Ispir and Yuksel([6] considered the Bézier variant of the operathrs(f, z) and studied

the rate of convergence for bounded variation functions. We also note here that the results
analogous to [6] and [8] cannot be obtained for the mixed oper&tgis x) because it is not
easier to write the integration of Baskakov basis functions in the summation form of Szasz basis
functions, which is necessary in the analysis for obtaining the rate of convergence at the point
of discontinuity. We propose this as an open problem for the readers.

In the present paper we study some direct results, for the class of unbounded functions with
growth of ordert”, v > 0, for the operatorsy,, we obtain a point wise rate of convergence,
asymptotic formula of Voronovskaja type, and an error estimate in simultaneous approxima-
tion. We also estimate local direct results in terms of modulus of smoothness and modulus of
continuity in ordinary and simultaneous approximation.

2. AUXILIARY RESULTS
We will subsequently need the following lemmas:

Lemma 2.1. For m € N° = N U {0}, if the m-th order moment is defined as

thenUmo(l‘) =1, Uml(flf) =0 and

nUpm+1(z) = [U,Slm( ) + mUpm-1(2)] .

Consequently
U () = O (n~1mD/2)

Lemma 2.2. Let the functionu,, ,,(z), m € N°, be defined as
Porm ( (n—1) Z S / nw—1 () (t —x)"dt + (—x)™e .
Then

21 nz(z + 2) + 622
5 ”H,Q([E) = 5
n—2 (n—2)(n—3)

MnO( ) 1, :uml(x) =
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also we have the recurrence relation:

(n—=m = 2)pimi1 (x) = & [, (2) + (& + 2) 1 ()]
+ [m+2z(m+ )] ppm(x); n>m+2.

Consequently for each € [0, co) we have from this recurrence relation that
() = O (n7m+ 0/
Remark 2.3. Itis easily verified from Lemmpa 2.2 that for eacte (0, )

n—i—2)!

@Y 5, = =] (n—i-2)

(nx) +i(i — 1) n=2)

(nz)~ ' 4+ 0(n2).

Lemma 2.4. [5]. There exist the polynomiafg; ; .(z) independent of andv such that

2" D" sy, (2)] = Z n'(v —nz) Qi (2)sn.(z),
Qii;;égo’r

whereD = di.
XL

Lemma 2.5.Letn > r > 1and f € C[0,00) fori € {0,1,2,...,r} (cf. Sectiof B). Then

S(0) = gy Dol [ a0

3. DIRECT RESULTS
In this section we consider the claSs|0, co) of continuous unbounded functions, defined as
feC,[0,00) ={f €C[0,00) :|f(t)] < ML, for someM >0, v > 0}.
We prove the following direct estimates:

Theorem 3.1.Let f € C,[0,00), v > 0 and ") exists at a point € (0, 00), then

(3.1) lim SO (f(t),2) = £ ().

n—oo

Proof. By Taylor’'s expansion of’, we have
") (g ,
10 =3y sy e, ape - ay,
i=0 '

wheres(t,z) — 0 ast — x. Thus, using the above, we have

SW(f x) = b W (¢, x) f(t)dt

n
0

- Z / (i?(”) / h W (t,x)(t — x)idt + / N WO(t, )e(t, x)(t — x)"dt

0

= R, + R, say.
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First to estimate?,;, using a binomial expansion ¢f — =)™ and applying[(2]1), we have

T (7) ) . . or 00

v=0
(r) dr —r—=2n" -
= f '(x) y [(n ( ! 2)? i + terms containing lower powers o
r! " n — 2)!
n—r—2)n" ,
= fO)(z) [( (n—Q)? ] — f0(z) asn — oo.
Next using Lemma 24, we obtain
Qi ()]
< _ (2 2Js
[Rof < (n—1) > p
2i4j<r
i,j>0

x> v = nal’ sp(x) /0 b1 (t) |e(t, )| (t — z)"dt
v=1

+ (=n)"e™ [e(0,z)| (—z)"
= R3 + Ry, say.

Sincee(t,z) — 0 ast — x for a givens > 0 there exists & > 0 such thate(¢,z)| < ¢
whenevel) < |t — z| < J. Further ifs > max {v, r}, wheres is any integer, then we can find
a constanf\/; > 0 such thate (¢, z)(t — x)"| < My |t — z|°, for |t — x| > 4. Thus

Ry < Ms(n—1) Z nian,y(x)

2itj<r
1,520

X v — nx)’ {6/ by—1(t) |t — 2| dt+/ boy—1(t) My |t — x| dt}
[t—=z|<$ [t—z|>6
= Rs + R,

say.
Applying the Schwarz inequality for integration and summation respectively, and using Lemma
2.7 and LemmA 2]2, we obtain

Rs < eMsy(n—1) Z niZSnW(x)
2i4j<r v=1
i,j>0

« | — naf ( / bn,yl(odt)
0

< eM, Z n' (Z Spu(x) (v — nx)2j>

2i+j<r
1,520

X ((n —1))  snul) /O h b1 (1) (t — @Mt)

< eM, Z n'o (nj/Q) O (n’T/Q) =e0(1).

2i+j<r
1,520

NI

< /OOO b1 (t)(t — x)*" dt> 3

N|=

o=
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Again using the Schwarz inequality, Lemfnal2.1 and Lernmia 2.2, we get

Rs < M3(n—1) Z Z‘S"” )|l — n$|J/ by y—1(t) |t — x> dt

2'L+]<r |t71“26
4,5 >0
1
00 2
< M; g n' g Snu () (Vv — na)?
2Z+j<T v=1
4,720

« ((n 1Y (@) /0 Ty (D) — x)QSdt)

= 3 WO ()0 (1) = 0 () = o),

2i+j<r
4,720

Thus due to the arbitrariness ©f> 0 it follows that B3 = o(1). Also R, — 0 asn — oo and
thereforeR, = o(1). Collecting the estimates df, and R, we get[(3.]L). O

Theorem 3.2.Let f € C,[0,00), v > 0. If f"+2) exists at a point € (0, 00), then
lim n [SO(f,2) — f7(x)]

r(r+3)

S0 @) + o2+ 1)+ 1] @)+ 2+ ) ) @)

Proof. By Taylor’s expansion of, we have

r+2 f(l

=

wheres(t,z) — 0 ast — z. Applying Lemmd 2. and the above Taylor's expansion, we have

t —a) +e(t,z)(t—ax)

r+2 ( ) '
n SO W.2) — @] = [Z ! it — £ <x>]

- {n /OO W (t, x)e(t, z)(t — $)T+2dt}

0
= F, + E;, say.

r+2 i ) . )
E :nzf (2!(9”) 0 (;,)(—x)i—j / WO (¢t )t dt — nf(z)

i=0 j=

_ f(’”)(fff)n (SO, 2) — 1] + (Hl 1()) [(r+ 1) (=2) STt 2) + SOt 2)]

i [ D e ) 4+ DS 0) 4 50000

_|_
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Therefore, using (2]1) we have

B = nf"(x) {M _ 1}

(n—2)!
fU(2) n"(n—r—2)!
+nm {(r+1)(—x)r!{w}
n™H(n —r—3)! n"(n—r—3)!
-I—{ (<n—2)! ) (r+ Dz +r(r+1) ((n—2)! T!H
fU+2)(2) {(r+2)(r+1) Z(T‘)n’”(n—r—Q)!
(r+2)! 7 (n—2)!
nH(n — n—r—3)
+(r+2)(— ){ ((n ) )(T+1)ZL‘+T(T+1) ((n_2)!3)7“!}
n"2n—r -4 (r+2)! .2
A
7‘+1 4)

+(T+1)(r+2) (r+ 1)l +0 (n” )].

(n—2)!

In order to complete the proof of the theorem it is sufficient to show #hat- 0 asn — oo,
which can easily be proved along the lines of the proof of Thegrein 3.1 and by using Lemma

2.1, Lemm& 22 and Lemma 2.4. O

Theorem 3.3.Let f € C,[0,00), v > 0andr < m < r + 2. If f(™ exists and is continuous
on(a—mn,b+n) C (0,00),n > 0, then forn sufficiently large

[0 2) = 1 < Man™ 32 (5O 4+ Msn 2w (£050,0712) + 0 (n72)
=1
where the constant/, and M; are independent of andn, w(f, 6) is the modulus of continuity

of f on(a —n,b+n) and||-|| denotes the sup-norm on the interj@lb] .

Proof. By Taylor’s expansion of, we have

m ()
fty=3 (1 -y D

1=0

S™E) — S ()

m!

+ (t —2)™C(t) + h(t,z) (1= ((1),

where( lies between andx and((¢) is the characteristic function on the interyal— n, b + 7).
Fort € (a —n,b+n), z € [a,b], we have

m )
f) =3t - 2y

=0

™) = fmx)

m!

+(t—a)™

Fort € [0,00) \ (a — 1,0+ 1), z € [a,b], we define

m ) (g
hta) = 5(0) Y (¢ - oy
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O (¢, ) (t — x)idt — f) (x)}

{ / W 6= fm(x)(t_x)mw)dt}

m!

{/ WO (t, 2)h tx)(l—g(t))dt}

= Al + Az + Ag, say.

Using (3.1), we obtain

i (;) (=) aa; /0 TWt o)dt — £ ()

(J) T e

(n—j—2)!
(n—2)!

i

HG-1) 0y 0 ()] - (o),

Hence

[l < Man™ 3 || FOf+ 0 (%)

i=r

uniformly in z € [a, b]. Next

2al < [T L o oy

m.

(m) o0 _
< M/ (W) (t,2)] <1+ t x') It — x|™ dt.
0

m)!

Next, we shall show that fay = 0,1, 2, ...

(n—1) Z Spo(x) |V — nx|j/ bny—1(t) |t —z|*dt = O (n(j_qw) :
v=1 0

Now by using Lemma 2]1 and Lemma].2, we have

< (Zsm@s)(u —na ) ((n —1) 2 s / -1 (£) (t = ;,;)m)
-0 (n1/2) 0O (n—q/2) O (n(j—q)/2)
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uniformly in z. Thus by Lemma 2|4, we obtain

(n—1) Z ’sg’)y(a:)’ /OO bny—1(t) |t —z|"dt
v=1 0

<Mg Y o [m— )Y snula) v — nal’ /OOO b1 (t) yt—xyth]

2i+j<r
1,720

= 0 (nl9/2)
uniformly in =, whereMs = sup sup |Q;;.(z)|z~". Choosings = n~1/2, we get for any

2i+j<r € [a,b]
4,720

(m) ,,—1/2
(f n;'” ) [O(n(rfm)/Q) 20 (n(rfmfl)/Q) L0 (n*s)]

< Msw (f(m)7 n—1/2) n—(m—r)/2‘

Sincet € [0,00) \ (a —n,b+ 1), we can choose &> 0 in such a way thajt — x| > ¢ for alll
z € [a,b] . Applying Lemmd 2.4, we obtain

80l < =13 3w —ap Qs

v=1 2i+j<r
1,520

s >0,

w
1Az <

X / bny—1(t) |h(t, z)| dt +n"e " |h(0, )] .
[t—a]>3

If 5 is any integer greater than or equal{tp, m}, then we can find a constaif; such that
\h(t, )] < M |t — z|° for |t — 2| > 6. Now applying Lemml and Lem@.z, it is easily
verified thatA; = O (n~?) for anygq > 0 uniformly on[a, b]. Combining the estimates; — A3,

we get the required result. O

4. LOCAL APPROXIMATION

In this section we establish direct local approximation theorems for the opefatdrs (1.1). Let
Cg|0,00) be the space of all real valued continuous bounded functfoms [0, oo) endowed
with the norm|| f|| = sup | f(z)|. The K-functionals are defined as
x>0

K(f,0) =mf {|[f —gll +0llg"l : g € WL},
whereW? = {g € Cp[0,0) : ¢, ¢" € Cl0,00)}. By [1, pp 177, Th. 2.4], there exists a
constant\/ such that'(f,d) < ]\NJwQ (f, \/5) whered > 0 and the second order modulus of
smoothness is defined as
wy (£,V0) = swp sup |f(w+2h) = 2f(x+ ) + ()],
0<h<+/6 €[0,00)

wheref € Cg[0, 00). Furthermore, let
w(f,0) = sup sup [f(z+h)— f(z)

0<h<d z€[0,00)

be the usual modulus of continuity ¢fe C5[0, 00).
Our first theorem in this section is in ordinary approximation which involves second order
and ordinary moduli of smoothness:
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Theorem 4.1.Let f € Cg[0, c0). Then there exists an absolute constafit > 0 such that

\&Uw%J@HSMWaG,x“+@)+woﬂi?>,

n—2 "n—2

for everyz € [0,00) andn = 3,4, ....
A
Proof. We define a new operatst, : Cz[0,00) — Cg0, c0) as follows

@) ,(00) = Su(f) — £l + £ (255

A
Then by Lemm2, we obtaifi,(t — z,x) = 0. Now, letz € [0,00) andg € WZ. From
Taylor’s formula

g(t) = g(x) + ¢'(z)(t — x) +/ (t = u)g"(u)du, t€0,00)

we get

42) 8,000~ o) = 50 ([ 1= ) @)

_ s, ( / - u)g”(u)du,x) + / e (n e u) §"(u)du.

On the other hand,

t

4.3) ‘/u—um%mesa—waw
and

nx/(n—2) n nx 2

. _ 1! < _ 1
as ([ () s < (55— ) 1)
4 y de(1+2) , ,
< g < Dy oy
(n—2) (n—2)

Thus by [4.2),[(4.]3)[ (4]4) and by the positivity 8f, we obtain

Suto.2) ~9(a) < 5, (=0 2) I+ L)

Il”

g

Hence in view of Lemma 2|2, we have

b -] < (S

n 1 de(1+2x), ,
<
_(n—3+n—2) n—2 g7l
18
-2

(4.5)

< —a(l+a)|lg'll
Again applying Lemma 2|2

[Sa(f,2)| < (n=1) ) snu(2) /OOO b1 (0) [F ()] dt + ™ [FO)] < 1]
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This means thaf,, is a contraction, i.e||S,, f|| < ||f]|. f € Cs[0,00). Thus by [(4.P)
A
Suf || < ISufll +21LFIF < 311 f € Cp[0,00).

Using (4.1),[(4.p) and (416), we obtain
fo) = f (n”_‘”Q) ‘

Su(f.2) = F@)] < |Su(f = g.2) = (F — 9) @)
e 1+ @) - 1 (5]

n_ 2
<18 {1 ol + 5211} o (£55).

Now taking the infimum on the right hand side over@alt W2 and usingl) we arrive at the
assertion of the theorem. O

(4.6)

+18u(g,2) — g(2)| +

<4|f—-gll+

The following error estimation is in terms of ordinary modulus of continuity in simultaneous
approximation:

Theorem 4.2.Letn > r +3 > 4 and f® € Cp[0,00) fori € {0,1,2,...,r}. Then

n"(n—r—2)! n'(n—r—2)
506 = £ < (g ) IO

" <1+\/[n+(T+1)(r+2)]x2+2[n+r(r+2)]x+r(r+1))

n—r-—3
xw (f7, (n—r—2)"1?)
wherez € [0, c0).

Proof. Using Lemma 25 and taking into account the well known properfy ), A5) < (1 +
Nw (f,8), X > 0, we obtain

@7 |SO(f,2) = fO(x)]

=i :OO su@) [ i) [0 = 500
{nr(?n_—;! s 1} )
< % i susl) %[ bacaa6) (1457 =l w0 (7.6)
i

Further, using Cauchy’s inequality, we have

@8) (11— 1) sle) | a0 =l
v=0 0

< {(n —r =1 snu(2) /Ooo by—rirgr—1 (1) (t — 2)? dt} :

v=0
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By direct computation

49 (n—r—-1) i Snu(T) /OO by pir—1(t) (t — $)2 dt
v=0 0

o on+(r+1)(r+2) 22 2n + 2r(r + 2)
C(n—r=3)(n—-1r-2) (n—r—=3)(n—r—2

T
)
N r(r+1) '
(mn—r—=3)(n—r—2)
Thus by combining (4]7)] (4.8) arld (4.9) and chooging= v/n — 7 — 2, we obtain the desired

result. O
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