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ABSTRACT. In this paper some new retarded integral inequalities are established and explicit
bounds on the unknown functions are derived. The present results extend some existing ones
proved by Lipovan in [A retarded integral inequality and its applications, J. Math. Anal. Appl.
285 (2003) 436-443].
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1. INTRODUCTION

During the past decades, studies on integral inequalities have been greatly enriched by the
recognition of their potential applications in various applied scierices [1] — [6]. Recently, in-
tegral inequalities with delays have received much attention from researchers/[7] — [12]. In
this paper, we establish some new retarded integral inequalities and derive explicit bounds on
unknown functions, the results of which improve some known ones in [9].

2. MAIN RESULTS

Throughout the papefR denotes the set of real numbers dd = [0,+00). C(M,S)
denotes the class of all continuous functions framto S. C'(M,S) denotes the class of
functions with continuous first derivative.

Theorem 2.1. Suppose that > ¢ > 0 andc > 0 are constants, and, f,g,h € C (R, ,R,).
Letw € (Ry,R,) be nondecreasing withy(u) > 0 on (0,0), anda € C*'(R,,R,) be
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nondecreasing with(¢) < t onRR,. Then the following integral inequality

(21) wP(t) <+ 2/:(” [f(s)uq(s) (/Osg(T)w(u(T))dT> + h(s)uq(s)] ds, t € Ry
implies for0 <t < T,

1

4 2(p—q) [V g e
(2.2) u(t) < {G’ G(&(t)) + T i (s)/o g(T)des] }

holds, where
2(p—q — a(t)
(2.3) ety = 50 L A=) / h(s)ds,
p 0
" 1
(2.4) G(r) = / ————ds, 1 >19>0,
wow (s77)

G~ denotes the inverse function@f and7" € R, is chosen so that

2(p —q)
p 0

Proof. The conditionsy € C* (R, R, ) anda(t) < t imply thata(0) = 0. Firstly we assume
thatc > 0. Define the nondeceasing positive functign) by

z@»=8+2£“ﬂpwm%@([hvmww»M)+M$w@ﬂw.
Thenz(0) = ¢® and by [(2.1.) we have
(2.5) u(t) < [=()]
and consequenthy(a(t)) < [z(a(t))]%

o(t) s
G(&(t)) + f(s)/ g(t)drds € Dom(G~'), forall0 <t <T.
0

[z(t)]%. By differentiation we get

<
a(t)
2(t) = 2u’(a(t)) [f(a(t)) ( g(T)W(U(T))dT> + h(a(t))] o/(t)

. ()
<2[=()] [f(a(t)) ( g(T)w(U(T))dT> + h(a(t))] a/(t).

Hence

Integrating both sides of last relation @ih¢] yields

- - a(t) a(t) s
P o) < pV®w—mA MWMMA f@Agmwwmma

b—q b—q
which can be rewritten as

Lyt < e 2 —a) (Y
@8 [0 < A / h(s)d

2(p—q) [V °
+T/O f(s)/o g(T)w(u(r))drds.
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Let 7 (< T') be an arbitrary number. For< ¢ < Tj, from (2.3) and[(2]6) we have
r=a 2(p—q) [ ’
@7) (0 < 6+ 22 [ ps) [ gtrywtatryaras.
Denoting the right-hand side .7) by(t), we knowu(t) < [z(t)]
is hondecreasing, we obtain
wu(r)] < w ()7 | < w |(a®)?] <w|w)F], for 7€ 0,a(t)

Hence

1

< [m(t)]7=2. Sincew

3=
Q

_ a(t)
() =2 aoya'e) [ g(r)otulris
_ ) a(t)
< 2220 [0)] flaya'e) [ atriar
2(]9 - Q) ﬁ / ot)
< 2 [(m(e)#] o)) [ alriar
That is
m(t) 2(p — q) o [
(2.8) — < fla(t))a'(t) (T)dr.
Sy S T e

Integrating both sides of the last inequality [on¢] and using the definitiori (2.4), we get
2Ap — a(t) s
2.9) Gm(t)) — G(m(0)) < ¥ () / o(r)drds.
0 0

Takingt = T} in inequality ) and using(t) < [m(t)]ﬁ, we have

. 2(p —q) [>T s e
wms{G GWEWFj;jA f@Agmmﬂ} |

SinceT (< T) is arbitrary, we have proved the desired inequality|(2.2).
The case: = 0 can be handled by repeating the above procedureawith) instead ofc and
subsequently letting — 0. This completes the proof. O

Remark 1. If ¢ = 0 andh(t) = 0 hold, G(£(¢)) = G(0) in (2.4) is not defined. In such a case,
the upper bound on solutions of the integral inequality|(2.1) can be calculated as

2(p—q) [*® ° P
G(e) + T/o f(s)/o g(T)des]} :

From Theorem 2|1, we can easily derive the following corollaries.

e—0+

u(t) < lim {G—l

Corollary 2.2. Suppose that,h € C (R, ,R,) andc > 0is a constant. Lett € C* (R, ,R,)
be nondecreasing with(¢) < ¢ onR,. Then the following inequality

a(t)
wi(t) < 2+ 2/ h(s)u(s)ds,
0
implies

u(t) <c+ /a(t) h(s)ds.
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Remark 2. If a(t) = ¢, from Corollary 2.2 we get the Ou-lang inequality.

Corollary 2.3. Suppose that, f,g,h € C(R,,R,), andc > 0 is a constant. Letv €
(R, R.) be nondecreasing witly(u) > 0 on (0, 00), anda € C* (R, R, ) be nondecreasing
with a(t) < t onR.. Then the following inequality

WA(t) < 2 +2 /O " { F(s)u(s) ( /0 S g(T)u(T)dT> + h(s)u(s)} ds

ult) < (1) exp ( [ s ([ strar) ds>

where¢(t) = ¢ + foo‘(t) h(s)ds.

Theorem 2.4. Suppose that > ¢ > 0 andc > 0 are constants, and, f,g,h € C (R, ,R).
Letw € (Ry,R,) be nondecreasing withy(u) > 0 on (0,), anda € C*'(R,,R,) be
nondecreasing with(¢) < t onRR.. Then the following integral inequality

implies

10) w2 [7 [105)(wtats)
+ /0 S g(f)wm(f))m) 4 h(s)uq(s)]ds, teR,

e + 22 | " e (1 -/ sgmm) ds] }

where¢(t) andG(r) are defined by (2]3) anfl (2.4), respectively, &hd R, is chosen so that

implies for0 <t < T

(2.11) u(t) < {G—l

G(&(t)) + @ Oa(t) f(s) (1 + /Osg(T)d7‘> ds € Dom(G™'), forall 0 <t <T.

Proof. Firstly we assume that> 0. Define the nondeceasing positive function by

A=z " £(61u(6) (wtulo)+ [ arwtutrir ) + sy s,

thenz(0) = ¢* and by [2.1D) we have
(212) u(t) < [2()]7

and
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Integrating both sides of the last inequality [ont], we get

p—q

PrP—q a(t)
D) < 2 20)F + 2 / (s)ds
a(t)

+2 f(s) (w(u(s)) + /Osg(r)w(u(r))dr> ds.

0

p=1 2(p—q) [V ’
)7 <6+ 20 [ g (w<u<s>>+ / g<7>w<u<r>>df) ds.

Let 7 (< T') be an arbitrary number. From last inequality we know the following relation holds
fort € [0,T1],

pP—gq - Ot(t)
) < e+ 2
Letting
B 20p—q) [V ’
@13  ml=gm)+ =L / 7(s) (w<u<s>>+ / gmw(u(f))m) ds

we get[z(t)]% < m(t). Sincew is nondecreasing, we have

76) (wtu(s) + [ atryututryar ) ds

1

wlu(a(®)] < w | ((a(®)?] <w |(=(0)7] < w |m(e)7]

and

3 =

wlu(r)] < w [(2(7)7| < w | (z(a(t))
From (2.13), by differentiation we obtain

} <w [(z(t))%] , for 7e[0,a(t)).

iy 20— q) o ,
m(t) = =L (o) (w<u<a<t>>>+ / gmw(um)df)a(t)
2(p —q) o 1
<=0 f(a(t)){w([m(t)]“>+ / g(r)w ([m(t)}w)dT}aa)
) _ oft)
= w ([m()]77) 2(pp D f(aft) (1+ / gde) o/ (1)
Hence

'(t 2p — a(t)

"t L <2 Q)f(a(t)) <1 +/ g(T)dT> a(t).
w <[m(t)]pﬂz> p 0

Integrating both sides of the last inequality [on¢], from (2.4) we get

Gm(t) < G 2p q/ 1) (1+ [ atryar )as
#2020 1) (14 [ otoar) ds] -
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Takingt = T} in inequality ) and using(t) < [m(t)]plfq, we have

1

w(Th) < {G‘1 G(g(Tl))ﬂ(pp_ ) /Oa(Tl)f(s) (1+/Osg(7)d7)ds]}pq.

SinceT; (< T) is arbitrary we have proved the desired inequality (2.11).
If ¢ = 0, the result can be proved by repeating the above procedureswitld instead ofc
and subsequently letting— 0. This completes the proof. O

Remark 3. Theoren{ 2]l of Lipovan in_[9] is special case of above Thedrem 2.4, under the
assumptions that = 2, ¢ = 1 andg(t) = 0.

Theorem 2.5. Suppose that > ¢ > 0 andc > 0 are constants, and, f,g9,h € C (R, ,R,).

Letw € (R,,R,) be nondecreasing witlv(u) > 0 on (0,00), anda, 3 € C' (Ry,R,) be
nondecreasing with(t) < t, 5(t) <t onR,. Then the following integral inequality

@15) wise+2 | " F61s) (wu(e) + [ atryotutrir ) |as

B()
+ 2/0 h(s)ul (s)w(u(s))ds, teRy

implies for0 <t < T

(2.16) u(t) < {Gl

G + @ /0 ") (1 + /O sg(T)dT) ds

2(p—q) [V o
+T/0 h(s)ds]} :

whereG(r) is defined by (2]4) an@ € R, is chosen so that

G (cg> + @ Oa(t) £(5) (1 + /0 sg(T)dT> ds

Ap — B(t)
+ M/ h(s)ds € Dom(G™"), forall 0<t<T.
p 0

Proof. The conditions that, 3 € C' (R,,R,) are nondecreasing with(¢) < ¢, 3(t) < ¢
imply thata(0) = 0 and3(0) = 0.
Let us first assume that> 0. Denoting the right-hand side of (2]15) byt), we knowz(t)
is nondecreasing,(0) = ¢? andu(t) < [z(t)]%. Consequently we have
u(a(t)) < [z(a(®)]r <[2(0)]7  and wu(B()) < [2(B(1)]" < [2(t)]

Sincew is nondecreasing, we obtain
a(t)
2(t) = 2f(a(t))u(a(t)) (w(um(t))) + /0 g<7>w<'u(f))d7> o/(t)
+2h (B (1) u (B (1) w (u (B (1)) 5(t)

D=
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Integrating both sides d, ¢], we get
p p—4q P p—4q
() »r < zZ(0)] P
p_q[U] _p_q[(ﬂ
a(t) s B(t)
+2 (s) (w(u(s)) +/ g(T)w(u(T))dT) ds + 2/ h(s)w (u(s))ds,
0 0 0

which can be rewritten as

q 2(p—aq)

e 2(p—q) [V ’
(2.17) [2(t)] 7 <c » +T/O f(s) (w(u(s))+/0 g(T)w(u(T))dT) ds

+ 2r =) /ﬁ(t) h(s)w (u(s)) ds.

p
Denoting the right-hand side af (2/17) by(¢), we know|z (t)]% < m (t) and

— a(t)
2229 o) (w(u(a(tm + [ g<r>w<u<r>>d7> /(e

0

m'(t) =

) _ a(t)
<w (it () 220 [f(a(t)) (1 -/ g(r)dr> o/(1) + h (5 (1) 5 <t>] .

p
The above relation gives

m' ) _ _20—q
w (mﬁ (t)) B p
Integrating both sides o, t] and using definitior] (2]4) we get

G (1) < G (m (0) + 2= [/Oa(t)f(s) (1+ [oar) ds+/f(t)h<s>ds]

g(}@ﬂﬁ”)+ggilﬁ[Awa@)(L+1fguyh>¢y+ém”h@pk].

< [m(t)]ﬁ, we get the desired inequali 16).

a(t)
[f(a<t)) (1 " / g<f>d7> o(t) + (5 () B <t>] |

=

Using the relationu(t) < [z(¢)]
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If ¢ = 0, the result can be proved by repeating the above procedureswitld instead ofc
and subsequently letting— 0. This completes the proof. O

Remark 4. Theorem 2 of Lipovan in[9] is a special case of Theofen 2.5 above, under the
assumptions that= 2, ¢ = 1, g(t) = 0 andj(t) = ¢.

3. APPLICATION

Example 3.1. Consider the delay integral equation

a(t) s
(38.1) 2°(t) =af + 2/ {x?’(s)M (S,J:(s),/ N(S,T,w(|x(r)|))d7> + h(s)x?’(s)} ds.
0 0
Assume that
(3.2) [M(s,t,0)| < f(s)[o],  [N(s,t,0)] < g(t) |v],
wheref, g, h, a andw are as defined in Theorgm R.1. Frgm [3.1) (3.2) we obtain
a(t)
oof <adrz [ |l o) [

Applying Theorenj 21 to the last relation, we get an explicit bound on an unknown function

s

g()w(j(r)|)dr + h(s) |x<s>|ﬂ ds.

(33) (1) < {G—l cemn+ 1 [ s | Sg<r>drds] } ,
where

£(t) = | §/at| + % /0 " h(s)ds.
In particular, ifw(t) = ¢ holds in [3.1), from[(2]4) we derive
(3.4) G(t) = /Ot @ds = /Ot Spilqu = /Ot s"2ds = 2V/1
and
(3.5) Gt = it?

Substituting[(3.4) and (3.5) into inequalify (B.3), we get
92 a(t) s
LOI<VED+: [ 1) [ atrar
0 0
Example 3.2. Consider the following equation

©0) ) =3 +2 " 219 (M. 2051, w(le(6))
[ s utiaar ) as 2 [ syt o]as

Assume that
(3.7) |M(s,t,0)] < f(s)|v], [N(s,t,0)] < f(s)g(t) [v],
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wheref, g, h, a andw are as defined in Theorgm P.4. Frdm [3.6) (3.7) we obtain
a(t)
olof <ad 2 [ [l 16) (wlete))
0
+/ g(T)w(|$(T)DdT) + h(s) \x(s)|4] ds.
0

By Theorenj 2.4 we get an explicit bound on an unknown function

+ /Oa(t) f(s) (1 + /Osg(r)dr> ds] }i )

a(t)
E(t) = |xol +/ h(s)ds.
0
In particular, ifw (t) = ¢* holds in [3.6), from[(2}4) we obtain

| b s 1
(39) G(t) = / Tds = / tdé’ = / s 1ds = 4t+
0 w (sp—q) 0 Spr—a 0

and

(3.8) jz(1)] < {G‘l

where

1
3.10 () = —t*.

Substituting[(3.0) and (3.10) intp (3.8) we get
(O] < [€ ()% + - a(t)f(s) (1+/S (T)dT)ds
S 1/, ; g .

REFERENCES

[1] L. OU-IANG, The boundness of solutions of linear differential equatigha A (¢) y = 0, Shuxue
Jinzhan 3 (1997), 409-415.

[2] Y.H. KIM, On some new integral inequalities for functions in one and two varialflesg Math.
Sinica,21(2) (2005), 423-434.

[3] B.G. PACHPATTE,Inequalities for Differential and Integral Equationé\cademic Press, New
York, 1998.

[4] B.G. PACHPATTE, Explicit bounds on certain integral inequaliti@sMath. Anal. Appl 267
(2002) 48-61.

[5] M.C. TAN AND E.H. YANG, Estimation of bounded solutions of integral inequalities involving
infinite integration limits,J. Inequal. Pure and Appl. Math7(5) (2006), Art. 189. [ONLINE:
http://jipam.vu.edu.au/article.php?sid=806 B

[6] E.H. YANG AND M.C. TAN, A generalization of Constantin’s integral inequality and its discrete
analogue,J. Inequal. Pure and Appl. Math8(2) (2007), Art. 57. [ONLINE:http://jipam.
vu.edu.au/article.php?sid=870 ].

[7] W.N. LI, M.A. HAN AND F.W. MENG, Some new delay integral inequalities and their applications,
J. Comput. Appl. Math180(2005), 191-200.

[8] O.LIPOVAN, A retarded Gronwall-like inequality and its applicatiods,Math. Anal . Appl.252
(2000), 389—-401.

J. Inequal. Pure and Appl. Math9(3) (2008), Art. 82, 10 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/article.php?sid=806
http://jipam.vu.edu.au/article.php?sid=870
http://jipam.vu.edu.au/article.php?sid=870
http://jipam.vu.edu.au/

10 MAN-CHUN TAN AND ZHI-HONG LI

[9] O. LIPOVAN, A retarded integral inequality and its applicatiofsMath. Anal. Appl 285 (2003)
436-443.

[10] Q.H. MA AND E.H. YANG, On some new nonlinear delay integral inequalitisiMath. Anal.
Appl., 252(2000), 864-878.

[11] Q.H. MA AND J. PECARIC, Some new nonlinear retarded integral inequalities and their applica-
tions,Math. Inequal. and Applics9(4) (2006), 617-632.

[12] Y.G. SUN, On retarded integral inequalities and their applicatidridath. Anal. Appl 301(2005)
265-275.

J. Inequal. Pure and Appl. Math9(3) (2008), Art. 82, 10 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Main Results
	3. Application
	References

