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ABSTRACT. We prove an Orlicz type version of the multiplicative embedding inequality for
Sobolev spaces.
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1. INTRODUCTION AND PRELIMINARY RESULTS

Let 2 be a non-empty bounded open seRinm > 1 and letl < p < n. The most important
result of Sobolev space theory is the well-kno®abolev imbedding theoref(see e.g. [[1]),
which - in the case of functions vanishing on the boundary - gives an estimate of the norm in
the Lebesgue spade(2), ¢ = np/(n — p) of a functionu in the Sobolev spacd/, ?(Q), in
terms of itsWW, ”(Q2)-norm. Such an estimate, due to Gagliardo and Nirenbgrg {[6], [12]) can
be stated in the following multiplicative form (see e!ld. [4],/[10]).

Theorem 1.1. Let Q) be a non-empty bounded open seRinn > 1 and letl < p < n. Let
u e Wy (Q) N L"(Q) for somer > 1. If ¢ lies in the closed interval bounded by the numbers
randnp/(n — p), then the following inequality holds

(1.1) ullg < el Dulll|lull;~?,
where
1_1
0=+—72+€l0,1]
n Tt
and ,
—1
¢ = c(n,p.6) = [p(” q
n—p
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2 MARIA ROSARIA FORMICA

The constant = ¢(n, p, ) is not optimal (see [16][]7] for details).

The goal of this paper is to provide an Orlicz version of inequality| (1.1), in which the role
of the parametef is played by a certain concave function. Our approach uses a generalized
Holder inequality proved iri 8] (see Lemrpall.2 below).

We summarize some basic facts of Orlicz space theory; we refer the reader to Krasrosel’ski
and Ruticki [9], Maligranda[11], or Rao and Ren [14] for further details.

A function A : [0,00) — [0,00) is an N-function if it is continuous, convex and strictly
increasing, and ifA(0) = 0, A(t)/t — 0 ast — 0, A(t)/t — +o0 ast — +oc.

If A, B are N-functions (in the following we will adopt the next symbol for the inverse
function of V-functions, too), we writed(t) ~ B(t) if there are constants, c; > 0 such that
1 A(t) < B(t) < cA(t) for all t > 0. Also, we say thatB dominates4, and denote this
by A < B, if there existsc > 0 such that for alt > 0, A(t) < B(ct). If this is true for all
t >ty > 0, we say thatd < B near infinity.

An N-function A is said to be doubling if there exists a positive constanich thatd (2t) <
cA(t) for all t > 0; A is called submultiplicative ifA(st) < cA(s)A(t) for all s,¢ > 0.
Clearly A(t) = t", r > 1, is submultiplicative. A straightforward computation shows that
A(t) = t*[log(e + t)]’, a > 1, b > 0, is also submultiplicative.

Given anN —function A, the Orlicz spacd. () is the Banach space of Lebesgue mea-
surable functiong such thatA(|f|/)) is (Lebesgue) integrable aA for some) > 0. Itis

equipped with the Luxemburg norfif|| 4 = inf {A >0: [, A <‘—J;') dr < 1}.

If A < B near infinity then there exists a constantiepending oM and B, such that for all
functionsf,

(1.2) Iflla < cllflls.

This follows from the standard embedding theorem which shows/the®) C L. (€2).
Given anN-function A, the complementary-function A is defined by

A(t) = sup{st — A(s)},  t>0.

s>0
The N-functionsA and A satisfy the following inequality (see e.q@. [1, (7) p. 230]):
(1.3) t< AN ATN(E) < 2t

The Holder’s inequality in Orlicz spaces reads as

/Q Faldz < 2 lallgll .

We will need the following generalization of Holder’s inequality to Orlicz spaces due to Hogan,
Li, Mcintosh, Zhang([3] (see alsb![3] and references therein).

Lemma 1.2.1f A, B andC are N—functions such that for all > 0,
B7H(H)CH(t) < A7),
then
1fglla < 2[flzllglle:

If A is anN—function, let us denote bi#’14(Q) the space of all functions ih*(Q) such
that the distributional partial derivatives belongtd((2), and byWOLA(Q) the closure of the
Cs°(§2) functions in this space. Such spaces are well-known in the literatudeliag-Sobolev
spaces (see e.d.![1]) and share various properties of the classical Sobolev spaces. References
for main properties and applications are for instance [5] and [15].
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If uw e W*(Q) and

/100 A(S)ds:—l—oo, n' =n/(n—1)

Sn’—i—l
then the continuous embedding inequality
(1.4) [ull a= < e[| Dul]l 4

holds, whereA* is the so-calledsobolev conjugatef A, defined in [1], and: is a positive
constant depending only aftandn. In the following it will be not essential, for our purposes,
to know the exact expression df. However, we stress here that one could considebést
function A* such that inequality (I}4) holds (sée [2], [13] for details).

In the sequel we will need the following definition.

Definition 1.1. Given anN —function A, define the functiork 4 by
A(st)
h = ,
als) = sub
Remark 1.3. The functionh 4 could be infinite ifs > 1, but if A is doubling then it is finite for

all 0 < s < oo (see Maligrandd [11, Theorem 11.7]). Afis submultiplicative therh 4 ~ A.
More generally, given any, for all s,¢ > 0, A(st) < ha(s)A(t).

0<s<o0.

The property of the functio, which will play a role in the following is that it can be
inverted, in fact the following lemma holds.

Lemma 1.4.If A is a doubling/N—function them 4 is nonnegative, submultiplicative, strictly
increasing in[0, co) andh4 (1) = 1.

For the (easy) proof seel[3, Lemma 3.1]lor![11, p. 84].

2. THE MAIN RESULT

We will begin by proving two auxiliary results. The first one concerns two functions that
we call K = K(t) andH = H(t): they are a way to “measure”, in the final multiplicative
inequality, how far the right hand side is with respect to the norms afd of | Du|. In the
standard case iti& (t) =t’,0 <0 < landH(t) = t*7.

Lemma 2.1. Let K € C([0, +oo[) (N C*(]0, +o0[) be:

- a positive, constant function,

or

- K(t) = ot for somex > 0,

or

- the inverse function of a’v —function which is doubling together with its complementary
N —function.
Then the functior{ : [0, +-o00[— [0, +-o00[ defined by

ﬁ ift >0
H(t) = o ift— o
Eg "=

belongs taC([0, +oo[) N C%(]0, +o0[), and is:
- a positive, constant function,
or
- H(t) = pt for someg > 0,
or
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- is equivalent to the inverse function of ah—function which is doubling together with its
complementaryy —function.

Proof. In the first two possibilities fois” the statement is easy to prove Afis the inverse of a
doubling N-function A, it is sufficient to observe that from inequali@]ls) iths~ A~'. O

Lemma 2.2. Let ® be anN —function, and let” be a doublingV —function such tha# o 7!
is an N —function. The following inequality holds for everye L*(2):

(2.1) [ulle < &Epr(I1F o |ulllgor—1),

whereér-1 is the increasing function defined by

1
()
Proof. By definition of . (see Definitiori 1]1; note that by the assumption t#ias$ doubling,
hr is everywhere finite, see Remark]1.3) we have

F(s)hp(t) > F(st) Vs, t>0

(2.2) Er-1(p) = Vi > 0.

and therefore
shp(t) > F(F'(s)t) Vs, t >0,

(2.3) F~ Y (shp(t)) > FY(s)t  Vs,t>0.
Setting
p=p(A) = hFl(i)
itis

A= — = (),
7 ()

therefore from inequality{ (213), far = } ands = F(|ul), taking into account thagy-1 is
increasing, we have

= &1 (1F o Jul[[gor—1)
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We can prove now the main theorem of the paper. The sybokhich appears in the
statement is the function considered in Lenjma 2.2, defined in equgtion (2.2). However, since
this symbol is used for any functiaii considered in Lemma 3.1, we agree to denote

Ex(p):=1 VYu=>0 if K is constant

and
Ex(p):=p Yu=>0 if K(t) = at for somea > 0.

The same conventions will be adopted for the syngolNote that from Lemmp 2,1 we know
that H is equivalento the inverse of a doublin —function, let us call itB~!. We will agree to
denote still by¢ the function that we should denote Hy-:. This convention does not create
ambiguities because B ~ C thenhp ~ h¢ and{z-1 =~ {c-1, thereforely is well defined up
to a multiplicative positive constant.

Theorem 2.3.Let() be a non-empty bounded open seRim > 1 and letP be anN —function
satisfying

/:OECZS——FOO, n'=n/(n—1).

Sn’—l—l

Letu € Wy'"'(Q) N L7(Q) for someN —functionR. If Q is an N —function such that

(2.4) E((P)7'(s)) - H(RT'(s)) <Q7'(s)  Vs>0
then the following inequality holds
(2.5) lulle < &x(cll|Dulllp)Sa(llullr),

whereK and H are functions as in Lemnja 2.1 ands a constant depending only en P, .

Proof. Let K and H be functions as in Lemnija 2.1. K is a positive, constant function or
K(t) = at for somea > 0, then the statement reduces respectively to a direct consequence of
inequality (I.2) (withA and B replaced respectively by andR) or to inequality [(1.4) (withA
replaced byP). We may therefore assume in the following tléis the inverse function of an

N —function which is doubling together with its complementafy-function. Let

$ =P oK Py =RoH .

It is easy to verify thatb, and®, are N —functions. By assumptiof (3.4) and Lemna]1.2 we
have

(2.6) lulle = 1K (w) H(u)lle < 1K (w)lle, [[H(w)lae, -

By inequality (2.1),

(2.7) K (u)lle, < Exlllulleon) = Ex(llullp) < Ex(ell|Dulllp),

wherec is a positive constant depending oand P only. On the other hand,

(2.8) 1H (u)llo, < Enllulloson) = &u(llullr)-

From inequalities[(2]6)] (2.7)} (2.8), we get the inequality](2.5) and the theorem is therefore
proved. O

We remark that the natural choice of powers for), R, K, H reduce Theorein 2.3 to Theo-
rem[1.] (in Theorern 2|3 also the case- n is allowed); on the other hand, if inequalify (R.5)
allows growths of x different power types, in general it is not true tifat(¢)¢y (¢) = ¢, and
this is the “price” to pay for the major “freedom” given to the growth
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