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ABSTRACT. In the theory of minimal submanifolds, the following problem is fundamental:
when does a given Riemannian manifold admit (or does not admit) a minimal isometric immer-

sion into an Euclidean space of arbitrary dimension? S.S. Chern, in his monogragh [8]inimal
submanifolds in a Riemannian manifold, remarked that the result of Takahasthie(Ricci tensor

of a minimal submanifold into a Euclidean space is negative semidefinite) was the only known
Riemannian obstruction to minimal isometric immersions in Euclidean spaces. A second ob-
struction was obtained by B.Y. Chen as an immediate application of his fundamental inequality
[1]: the scalar curvature and the sectional curvature of a minimal submanifold into a Euclidean

space satisfies the inequality T < k. We find a new relation between the Chen invariant, the
dimension of the submanifold, the length of the mean curvature vector field and a deviation pa-
rameter. This result implies a new obstructiaife sectional curvature of a minimal submanifold

into a Euclidean space also satisfies the inequality k < —T.
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1. OPTIMIZATIONS ON RIEMANNIAN MANIFOLDS

Let (V, g) be a Riemannian manifold)/, g) a Riemannian submanifold, arfde 7 (V). To
these ingredients we attach the optimum problem

(1.1) min f(z).

zeM

The fundamental properties of such programs are given in the papers [7] —[9]. For the interest
of this paper we recall below a result obtained in [7].

Theorem 1.1.1f zy € M is a solution of the probler{l.1)), then
) (grad f)(xo) € T M,
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i) the bilinear form

a: T, MxT, M — R,
a(X,Y) =Hess ;(X,Y) + g(h(X,Y), (grad f)(zo))
is positive semidefinite, wheteis the second fundamental form of the submanifald
in N.

Remark 1.2. The bilinear formu is nothing else buless fj5/(o).

2. CHEN’S INEQUALITY

Let (M, g) be a Riemannian manifold of dimensienandz a point in M. We consider the
orthonormal framgey, es, ... e, } in T, M.
Thescalar curvatureat x is defined by

T = Z R(ei,ej, e, e;).
1<i<j<n
We denote
oy = 7 — min(k),
wherek is thesectional curvaturat the pointc. The invarian®,, is called theChen'’s invariant

of Riemannian manifold//, g).
The Chen’s invariant was estimated as the followin@i/’ ¢) is a Riemannian submanifold

in a real space fornzﬁ(c), varying withc and the length of the mean curvature vector field of
M in M(c).”

Theorem 2.1.Consider(]\7(c), g) areal space form of dimension, M C ]\7(0) a Riemannian
submanifold of dimensiom > 3. The Chen’s invariant o/ satisfies

n—2( n?
o < "2 (e

whereH is the mean curvature vector field of submaniféfdin ]\7(c). Equality is attained at

a pointz € M if and only if there is an orthonormal framg, ..., e,} in T, M and an or-
thonormal frame{e,, 11, . . ., e, } in T+ M in which the Weingarten operators take the following
form
R0 0o - 0
0o Ayt 0 -~ 0
Ay = 0 0 hy' - 0 |,
0 0 0 .- hotd
with Rt + Rt = Rt = - = bt and
hgl h/7{2 0 A O
A= 0 0 0 - 0], rEn+2,m.
0 0O 0 - 0
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Corollary 2.2. If the Riemannian manifold}/, g), of dimension. > 3, admits a minimal
isometric immersion into a real space forh(c), then

(n—2)(n+ 1)0.

k>1—
=T 9

The aim of this paper is threefold:

¢ to formulate a new theorem regarding the relation betwggnthe dimensiom, the
length of the mean curvature vector field, and a deviation paramgeter
e to prove this new theorem using the technique of Riemannian programming;

. . 2_ .. . .. . .
e to obtain a new obstructioi, < —7 + w for minimal isometric immersions in
real space forms.

3. ANEwW OBSTRUCTION TO MINIMAL |ISOMETRIC IMMERSIONS INTO A REAL
SPACE FORM

Let (M, g) be a Riemannian manifold of dimensiananda a real number. We define the
following invariants

T —amink, fora >0,
oy =

T —amaxk, fora <D0,

wherer is the scalar curvature, artds the sectional curvature.
With these ingredients we obtain

Theorem 3.1.For any real number € [—1, 1], the invariantd$, of a Riemannian submanifold
(M, g), of dimensiom > 3, into a real space formi/ (c), of dimensionn, verifies the inequality
2—n—2a)c n(a+1)—3a—1n*|H|

2 n(a+1) —2a 2

51, < 1

whereH is the mean curvature vector field of submanifdldin M(c).
If a € (—1,1), equality is attained at the point € M if and only if there is an orthonormal

frame{e,...,e,} in T,M and an orthonormal framée,,,1,...,e,} in T:-M in which the
Weingarten operators take the form
R:, 0 0 - 0
0 hfy 0 - 0
Ar _ 0 0 hgg . 0 ’
0o 0 0 --- h,
with (a + 1)k}, = (a + 1)hiy =hiy =---=h] Vren+1,m.

Proof. Considerr € M, {ej,ea,...,e,} an orthonormal frame ifi,, M, {en+1,€nt2, - €m}
an orthonormal frame ifi’> M anda € (—1,1).
From Gauss’ equation it follows

2

(n®* —n —2a)c

T —ak(eg N eg) =
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Using the fact that € (—1, 1), we obtain

n? —n—2a)c “ “
(3.1) T—aqu@)g( 5 )4-53 > hphhi—a > hiyhb.
r=n+11<i<j<n r=n+1

Forr € n+ 1, m, let us consider the quadratic form

f,: R" — R,
Fo(Byy Mgyl = > (hihy) — ahly b,
1<i<j<n

and the constrained extremum problem
max fr,
subjecttoP : b}, + hby + -+ hl =k,

wherek™ is a real constant.
The first three partial derivatives of the functignare

8f7’ r T
(3.2) o Z hy; — ahy,,
o agj<n
8f7" r r
(3.3) o Z hy; — ahiy,
2 jeta\{2}
Afr ,
(3.4) = > h
B jetn\{3}
As for a solution(h},, hl,, ..., k% ) of the problem in question, the vecttrad)(f;) being

normal atP, from (3.2) and[(3]3) we obtain

> b =By —ahh, = Zh — hjy — ahfy,
j=1

therefore
(3.5) hiy = hiy =b".
From (3.2) and[(314), it follows

n n
E T T T oo__ E T T
J=1 J=1

By using [3.5) we obtai;; = b"(a + 1). Similarly one gets

(3.6) hi; =b"(a+1), Vj € 3,n.

As hi, + hi, +---+ k!, = k", from (3.5) and|(3.6) we obtain
k.’r‘

3.7 b= ———"7—.

3.7) n(a+1) —2a

We fix an arbitrary poinp € P.
The 2-forma : T,P x T,P — R has the expression

a(X,Y) = Hess ;, (X, Y) + (W'(X,Y), (grad f.)(p)),

whereh’ is the second fundamental form gfin R™ and(-, -) is the standard inner-product on
R".
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In the standard frame at”, the Hessian of, has the matrix

0 1-a 1 --- 1

l-a 0 1 --- 1

Hess s, = 1 L0 .1
1 1 1 -0

As P is totally geodesic irkR™, considering a vectak tangent toP at the arbitrary poinp, that
is, verifying the relatior) ;" , X* = 0, we have

aX,X)=2 ) X'X)-2aX'X?

1<i<j<n
(ZX ) =) (X)) - 20X X?
i=1
= - Z (X)? = a(X" + X?)? + a(X")? + a(X?)?
= —Z (X —a(X'+ X2 — (1 -a)(XH)?2 - (1-a)(XH)?<0.
SoHess fy Is everywhere negative semidefinite, therefore the paift 1%, ..., A% ), which

satisfies[(35)[ (3]6)} (3.7) is a global maximum point.
From [3.%) and[(316), it follows

(3.8) fr <) +20"(n—2) (a+ 1)+ C2_4(b")*(a + 1) — a(b")?

= (b;>2 [n%(a +1)? —n(a+1)(5a + 1) + 6a® + 24|

= g[n(a +1) —3a—1][n(a+1) — 2al.
By using [3.7) and (3]8), we obtain

(k")?
(3.9) fr < Sn(a+ 1) =24 n(a+1) —3a—1]
n?(H")*> n(a+1)—3a—1
T2 nla+1)—2a

The relations[(3]1) and (3.9) imply
n2—n—2a)c+n(a+1)—3a—1 n’ |H |
2 n(a+1) —2a 2
In (3.10) we have equality if and only if the same thing occurs in the inequlity (3.1) and, in
addition, [3.5) and (3]6) occur. Therefore

(3.10) T —ak(eg Neg) < (

(3.11) hi; =0, Vren+1,m, Vi,j €1,n, with i#j

and

(3.12) (a+1)hj; = (a+1)hby=hy=---=hl Vren+1,m.

The relations[(3.10) (3.11) and (3]12) imply the conclusion of the theorem. O
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Remark 3.2.
i) Making a to converge at in the previous inequality, we obtal®hen’s Inequality. The
conditions for which we have equality are obtained.in [1] and [7].
i) For a = 0 we obtain the well-known inequality

n(n —1)
2

T< (1H]* +¢).

The equality is attained at the pointc )M if and only if x is a totally umbilical point.
iii) Making a converge at-1 in the previous inequality, we obtain

(n?> —n+2)c N n? || H|”
2 2 '
The equality is attained at the pointc M if and only if there is an orthonormal frame

{e1,...,e,} in T, M and an orthonormal framge,,,1, ..., e, } in T;-M in which the
Weingarten operators take the following form

Oy <

0 0 -~ 0
0 hh 0 --- 0
A= 0 0 0 0],
0 0 0 --- 0

Corollary 3.3. If the Riemannian manifold)/, g), of dimensionn > 3, admits a minimal
isometric immersion into a real space fo(c), then

-2 1 2 _ 2
T_(n )én—l— )c§k§_7+(n 721+ )c.

Corollary 3.4. If the Riemannian manifold)/, g), of dimensionn > 3, admits a minimal
isometric immersion into a Euclidean space, then

T<k<-—T.
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