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Abstract

In the theory of minimal submanifolds, the following problem is fundamental:
when does a given Riemannian manifold admit (or does not admit) a mini-
mal isometric immersion into an Euclidean space of arbitrary dimension? S.S.
Chern, in his monograph [6] Minimal submanifolds in a Riemannian manifold,
remarked that the result of Takahashi (the Ricci tensor of a minimal submanifold
into a Euclidean space is negative semidefinite) was the only known Rieman-
nian obstruction to minimal isometric immersions in Euclidean spaces. A sec-
ond obstruction was obtained by B.Y. Chen as an immediate application of his
fundamental inequality [1]: the scalar curvature and the sectional curvature of a
minimal submanifold into a Euclidean space satisfies the inequality τ ≤ k. We
find a new relation between the Chen invariant, the dimension of the subman-
ifold, the length of the mean curvature vector field and a deviation parameter.
This result implies a new obstruction: the sectional curvature of a minimal sub-
manifold into a Euclidean space also satisfies the inequality k ≤ −τ.

2000 Mathematics Subject Classification: 53C21, 53C24, 49K35.
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1. Optimizations on Riemannian Manifolds
Let (N, g̃) be a Riemannian manifold,(M, g) a Riemannian submanifold, and
f ∈ F(N). To these ingredients we attach the optimum problem

(1.1) min
x∈M

f(x).

The fundamental properties of such programs are given in the papers [7] –
[9]. For the interest of this paper we recall below a result obtained in [7].

Theorem 1.1. If x0 ∈ M is a solution of the problem(1.1), then

i) (grad f)(x0) ∈ T⊥
x0

M,

ii) the bilinear form

α : Tx0M × Tx0M → R,

α(X, Y ) = Hess f (X, Y ) + g̃(h(X, Y ), (grad f)(x0))

is positive semidefinite, whereh is the second fundamental form of the
submanifoldM in N.

Remark 1. The bilinear formα is nothing else butHess f |M(x0).
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2. Chen’s Inequality
Let (M, g) be a Riemannian manifold of dimensionn, andx a point inM. We
consider the orthonormal frame{e1, e2, . . . , en} in TxM.

Thescalar curvatureatx is defined by

τ =
∑

1≤i<j≤n

R(ei, ej, ei, ej).

We denote
δM = τ −min(k),

wherek is thesectional curvatureat the pointx. The invariantδM is called the
Chen’s invariantof Riemannian manifold(M, g).

The Chen’s invariant was estimated as the following: “(M, g) is a Rieman-
nian submanifold in a real space form̃M(c), varying withc and the length of
the mean curvature vector field ofM in M̃(c).”

Theorem 2.1. Consider(M̃(c), g̃) a real space form of dimensionm, M ⊂
M̃(c) a Riemannian submanifold of dimensionn ≥ 3. The Chen’s invariant of
M satisfies

δM ≤ n− 2

2

{
n2

n− 1
‖H‖2 + (n + 1)c

}
,

whereH is the mean curvature vector field of submanifoldM in M̃(c). Equality
is attained at a pointx ∈ M if and only if there is an orthonormal frame
{e1, . . . , en} in TxM and an orthonormal frame{en+1, . . . , em} in T⊥

x M in
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which the Weingarten operators take the following form

An+1 =


hn+1

11 0 0 · · · 0
0 hn+1

22 0 · · · 0
0 0 hn+1

33 · · · 0
...

...
...

...
...

0 0 0 · · · hn+1
nn

 ,

with hn+1
11 + hn+1

22 = hn+1
33 = · · · = hn+1

nn and

Ar =


hr

11 hr
12 0 · · · 0

hr
12 −hr

11 0 · · · 0
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

 , r ∈ n + 2, m.

Corollary 2.2. If the Riemannian manifold(M, g), of dimensionn ≥ 3, admits
a minimal isometric immersion into a real space form̃M(c), then

k ≥ τ − (n− 2)(n + 1)c

2
.

The aim of this paper is threefold:

• to formulate a new theorem regarding the relation betweenδM , the di-
mensionn, the length of the mean curvature vector field, and a deviation
parametera;
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• to prove this new theorem using the technique of Riemannian program-
ming;

• to obtain a new obstruction,k ≤ −τ + (n2−n+2)c
2

, for minimal isometric
immersions in real space forms.
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3. A New Obstruction To Minimal Isometric
Immersions Into A Real Space Form

Let (M, g) be a Riemannian manifold of dimensionn, anda a real number. We
define the following invariants

δa
M =

{
τ − a min k, for a ≥ 0,

τ − a max k, for a < 0,

whereτ is the scalar curvature, andk is the sectional curvature.
With these ingredients we obtain

Theorem 3.1. For any real numbera ∈ [−1, 1], the invariantδa
M of a Rieman-

nian submanifold(M, g), of dimensionn ≥ 3, into a real space form̃M(c), of
dimensionm, verifies the inequality

δa
M ≤ (n2 − n− 2a)c

2
+

n(a + 1)− 3a− 1

n(a + 1)− 2a

n2 ‖H‖2

2
,

whereH is the mean curvature vector field of submanifoldM in M̃(c).
If a ∈ (−1, 1), equality is attained at the pointx ∈ M if and only if

there is an orthonormal frame{e1, . . . , en} in TxM and an orthonormal frame
{en+1, . . . , em} in T⊥

x M in which the Weingarten operators take the form

Ar =


hr

11 0 0 · · · 0
0 hr

22 0 · · · 0
0 0 hr

33 · · · 0
...

...
...

...
...

0 0 0 · · · hr
nn

 ,
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with (a + 1)hr
11 = (a + 1)hr

22 = hr
33 = · · · = hr

nn, ∀ r ∈ n + 1, m.

Proof. Considerx ∈ M , {e1, e2, . . . , en} an orthonormal frame inTxM ,
{en+1, en+2, . . . , em} an orthonormal frame inT⊥

x M anda ∈ (−1, 1).

From Gauss’ equation it follows

τ − ak(e1 ∧ e2) =
(n2 − n− 2a)c

2

+
m∑

r=n+1

∑
1≤i<j≤n

(hr
iih

r
jj − (hr

ij)
2)− a

m∑
r=n+1

(hr
11h

r
22 − (hr

12)
2).

Using the fact thata ∈ (−1, 1), we obtain

(3.1) τ−ak(e1∧e2) ≤
(n2 − n− 2a)c

2
+

m∑
r=n+1

∑
1≤i<j≤n

hr
iih

r
jj−a

m∑
r=n+1

hr
11h

r
22.

For r ∈ n + 1, m, let us consider the quadratic form

fr : Rn → R,

fr(h
r
11, h

r
22, . . . , h

r
nn) =

∑
1≤i<j≤n

(hr
iih

r
jj)− ahr

11h
r
22

and the constrained extremum problem

max fr,

subject toP : hr
11 + hr

22 + · · ·+ hr
nn = kr,
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wherekr is a real constant.
The first three partial derivatives of the functionfr are

∂fr

∂hr
11

=
∑

2≤j≤n

hr
jj − ahr

22,(3.2)

∂fr

∂hr
22

=
∑

j∈1,n\{2}

hr
jj − ahr

11,(3.3)

∂fr

∂hr
33

=
∑

j∈1,n\{3}

hr
jj .(3.4)

As for a solution(hr
11, h

r
22, . . . , h

r
nn) of the problem in question, the vector

(grad)(f1) being normal atP , from (3.2) and (3.3) we obtain

n∑
j=1

hr
jj − hr

11 − ahr
22 =

n∑
j=1

hr
jj − hr

22 − ahr
11,

therefore

(3.5) hr
11 = hr

22 = br.

From (3.2) and (3.4), it follows

n∑
j=1

hr
jj − hr

11 − ahr
22 =

n∑
j=1

hr
jj − hr

33.
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By using (3.5) we obtainhr
33 = br(a + 1). Similarly one gets

(3.6) hr
jj = br(a + 1), ∀j ∈ 3, n.

As hr
11 + hr

22 + · · ·+ hr
nn = kr, from (3.5) and (3.6) we obtain

(3.7) br =
kr

n(a + 1)− 2a
.

We fix an arbitrary pointp ∈ P.

The 2-formα : TpP × TpP → R has the expression

α(X, Y ) = Hess fr(X, Y ) + 〈h′(X, Y ), (grad fr)(p)〉 ,

whereh′ is the second fundamental form ofP in Rn and〈·, ·〉 is the standard
inner-product onRn.

In the standard frame ofRn, the Hessian offr has the matrix

Hess fr =


0 1− a 1 · · · 1

1− a 0 1 · · · 1
1 1 0 · · · 1
...

...
...

...
...

1 1 1 · · · 0

 .

As P is totally geodesic inRn, considering a vectorX tangent toP at the
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arbitrary pointp, that is, verifying the relation
∑n

i=1 X i = 0, we have

α(X, X) = 2
∑

1≤i<j≤n

X iXj − 2aX1X2

=

(
n∑

i=1

X i

)2

−
n∑

i=1

(X i)2 − 2aX1X2

= −
n∑

i=1

(X i)2 − a(X1 + X2)2 + a(X1)2 + a(X2)2

= −
n∑

i=3

(X i)2 − a(X1 + X2)2 − (1− a)(X1)2 − (1− a)(X2)2

≤ 0.

So Hess f |M is everywhere negative semidefinite, therefore the point
(hr

11, h
r
22, . . . , h

r
nn), which satisfies (3.5), (3.6), (3.7) is a global maximum point.

From (3.5) and (3.6), it follows

fr ≤ (br)2 + 2br(n− 2)br(a + 1) + C2
n−2(b

r)2(a + 1)2 − a(br)2(3.8)

=
(br)2

2
[n2(a + 1)2 − n(a + 1)(5a + 1) + 6a2 + 2a]

=
(br)2

2
[n(a + 1)− 3a− 1][n(a + 1)− 2a].

By using (3.7) and (3.8), we obtain

fr ≤
(kr)2

2[n(a + 1)− 2a]
[n(a + 1)− 3a− 1](3.9)
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=
n2(Hr)2

2
· n(a + 1)− 3a− 1

n(a + 1)− 2a
.

The relations (3.1) and (3.9) imply

(3.10) τ − ak(e1 ∧ e2) ≤
(n2 − n− 2a)c

2
+

n(a + 1)− 3a− 1

n(a + 1)− 2a
· n2 ‖H‖2

2
.

In (3.10) we have equality if and only if the same thing occurs in the inequal-
ity (3.1) and, in addition, (3.5) and (3.6) occur. Therefore

(3.11) hr
ij = 0, ∀r ∈ n + 1, m, ∀i, j ∈ 1, n, with i 6= j

and

(3.12) (a + 1)hr
11 = (a + 1)hr

22 = hr
33 = · · · = hr

nn,∀r ∈ n + 1, m.

The relations (3.10), (3.11) and (3.12) imply the conclusion of the theorem.

Remark 2.

i) Making a to converge at1 in the previous inequality, we obtainChen’s
Inequality. The conditions for which we have equality are obtained in [1]
and [7].

ii) For a = 0 we obtain the well-known inequality

τ ≤ n(n− 1)

2
(‖H‖2 + c).

The equality is attained at the pointx ∈ M if and only if x is a totally
umbilical point.
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iii) Makinga converge at−1 in the previous inequality, we obtain

δ−1
M ≤ (n2 − n + 2)c

2
+

n2 ‖H‖2

2
.

The equality is attained at the pointx ∈ M if and only if there is an or-
thonormal frame {e1, . . . , en} in TxM and an orthonormal frame
{en+1, . . . , em} in T⊥

x M in which the Weingarten operators take the fol-
lowing form

Ar =


hr

11 0 0 · · · 0
0 hr

22 0 · · · 0
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

 ,

with hr
11 = hr

22, ∀ r ∈ n + 1, m.

Corollary 3.2. If the Riemannian manifold(M, g), of dimensionn ≥ 3, admits
a minimal isometric immersion into a real space form̃M(c), then

τ − (n− 2)(n + 1)c

2
≤ k ≤ −τ +

(n2 − n + 2)c

2
.

Corollary 3.3. If the Riemannian manifold(M, g), of dimensionn ≥ 3, admits
a minimal isometric immersion into a Euclidean space, then

τ ≤ k ≤ −τ.
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