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ABSTRACT. The aim of this paper is to continue the studies about convergenté-imorm

of the Fourier series based on representative product systems on the complete product of finite
groups. We restrict our attention to bounded groups with unbounded seqiienthke most

simple example of this groups is the complete produd;ofin this case we proved the existence

of anl < p < 2 number for which exists ajfi € L? such that its n-th partial sum of Fourier
seriesS,, do not converge to the functighin LP-norm. In this paper we extend this "negative”
result for alll < p < co andp # 2 numbers.
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In Sectior| 1 we introduce basic concepts in the study of representative product systems and
Fourier analysis. We also introduce the system with which we work on the complete product
of S;, i.e. the symmetric group on 3 elements (see [2]). Se€iion 2 extends the definition of the
sequencel for all p > 1. Finally, we use the results of Sectipp 2 to study the convergence
in the LP-norm (p > 1) of the Fourier series on bounded groups with unbounded sequgence
supposing all the same finite groups appearing in the prodd¢taive the same systepat all
of their occurrences. These results appear in Section 3 and they complete the statement proved
by G. Gat and the author of this paperlin [2] for the complete produst ofThere have been
similar results proved with respect to Walsh-like systemslin [4] ahd [5].

Throughout this work denote by, P, C the set of nonnegative, positive integers and complex
numbers, respectively. The notation which we have used in this paper is similar to [3].

1. REPRESENTATIVE PRODUCT SYSTEMS

Letm := (my, k € N) be a sequence of positive integers such that> 2 andG,, a finite
group with ordemny, (k € N). Suppose that each group has discrete topology and normalized
Haar measurg,. Let G be the compact group formed by the complete direct product,of
with the product of the topologies, operations and meagurgsThus eachx € G consists of
sequences := (zg,xy,...), Wherez, € G, (k € N). We call this sequence tlexpansiorof
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x. The compact totally disconnected grotias called abounded groupf the sequencen is
bounded.

If My :=1andM,, := mpyMy, k € N, then everyn € N can be uniquely expressed as
n=3 o omkMg, 0 < ny < my, n, € N. This allows us to say that the sequerieg, ny, .. .)
is the expansion aof with respect ton.

Denote byY) the dual object of the finite grou@, (k¢ € N). Thus eachr € X is a
set of continuous irreducible unitary representation& pfvhich are equivalent to some fixed
representatiot/(”). Letd, be the dimension of its representation space anlets, . .., (q, }
be a fixed but arbitrary orthonormal basis in the representation space. The functions

u (@) = (UG G) (G e{l,... d}, v € Gy)

are called the coordinate functions fGt?) and the basi§(i, (s, . .., (g, }. In this manner for
eacho € X, we obtaind> number of coordinate functions, in total, number of functions for
the whole dual object of’;.. The L2-norm of these functions is/\/d,,.

Let{¢; : 0 < s < my} be the set of alhormalized coordinate functiores the groupG), and
suppose thap! = 1. Thus for every) < s < my, there exists & € %, 4,7 € {1,...,d,} such

that
eile) = VdouT (@) (z € ).
Let+ be the product system gf;, namely

bnl@) = [[ep @) (@eq),

wheren is of the formn = "2 n,M; andz = (xo,z1,...). Thus we say that’ is the
representative product systeshyp. The Weyl-Peter’s theorem (see [3]) ensures that the system
1 is orthonormal and complete dit (G).

The functions),, (n € N) are not necessarily uniformly bounded, so define

Uy o= max [Yn]flynflec (K €N).

It seems that the boundedness of the sequénpkays an important role in the norm conver-
gence of Fourier series.

For an integrable complex functiofi defined inG we define the Fourier coefficients and
partial sums by

n—1
fr = | Jhdn (REN),  S.f => fith (nEP).
m k=0

According to the theorem of Banach-Steinhaussf — f asn — oo in the LP norm for
f € LP(G) if and only if there exists &', > 0 such that

1Snfllp < CollFllo - (F € LP(G)).

Thus, we say that the operat6y, is of type (p, p). Since the systemp forms an orthonormal
base in the Hilbert space?(G), it is obvious thatS,, is of type(2, 2).
The representative product systems are the generalization of the well known Walsh-Paley
and Vilenkin systems. Indeed, we obtain the Walsh-Paley system # 2 andG, := Z,, the
cyclic group of order 2 for alk € N. Moreover, we obtain the Vilenkin systems if the sequence
m is an arbitrary sequence of integers greater than 1ang= Z,,, , the cyclic group of order
my, forall k& € N.
Let m, = 6 for all £ € N andS; be thesymmetric groupn 3 elements. Letr, := S; for
all £ € N. 83 has two characters and a 2-dimensional representation. Using a calculation of the
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matrices corresponding to the 2-dimensional representation we construct the fupgtidns
the notation the indek is omitted because all of the grou@$ are the same.

e (12) (13) (23) (123) (132) || 'l | Iloe
W] 1 1 1 1 1 1 1 1
SOl -1 -1 -1 1 1 1 1

Notice that the functiong; can take the value 0, and the product system isfnot uniformly
bounded. These facts encumber the study of these systems. On the othggh]%mwf I11112% ]| so
<s<

= 3, thus¥,, = (%)k — oo if K — oco. More examples of representative product systems have
appeared in [2] and [7].

2. THE SEQUENCE OF FUNCTIONS Wy (p)

We extend the definition of the sequenkdor all p > 1 as follows:

1 1
— > = N
W) = bl (p212 42 =1 ke )
(if p = 1theng = o). Notice that¥,, = U, (1) for all £ € N. Clearly, the functiond’,(p) can
be written in the form

k—1
Wi(p) = | Jmax [l
i=0 !

o 11
::HTi(p) (le,——F—zl,kEN).
i=0 P4
Therefore, we study the produlf||,|| f||, for normalized functions on finite groups. In this
regard we use the Holder inequality (see [3, p. 137]). First, we prove the following lemma.

Lemma 2.1. Let G be a finite group with discrete topology and normalized Haar meagure
and letf be a normalized complex valued function@r|| f||> = 1). Thus,

(@) it [|£l1]| | = 1. then|[ ], fll, = 1forall p> Tand + 1 = 1.
@) i [|f11]| flloe > L, then|| ], f]l, > Lforall p>1,p#2and! + 1 =1.

Proof.
(1) The conditions imply the equality

du - o =1= 2 du.
/G!f!quH 1 /G!f| "

Let fy := W Then
(2.1) |folz)| <1 (z€G)

J. Inequal. Pure and Appl. Matt9(4) (2008), Art. 99, 7 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 R. TOLEDO

and

(2.2) /G (ol du = /G [fol? dp

Thus by [2.11) we obtaiffo(z)| — | fo(z)]* > 0 (z € G) and by [2.2) we have
[ 1l = 15F di=o.

Hencel fo(z)| = | fo(z)|? for all z € G. Thus, we haveéfy(z)| = 1 or | fo(z)| = 0 for all
x € G, therefore| f(z)| = || f||« OF | f(z)| = 0 for all z € G. For this reason we obtain
an equality in the Hélder inequality for all< p < oo, % + % = 1 and the equality

- /G P dye = 1017

holds.
(2) Suppose there iskh< p < 2 such that

1ALl fllg =1 = / P dp

Then the equality in the Holder inequality holds. For this reason there are nonnegative
numbersA and B not both 0 such that
Alf(2)[" = B|f(@)|* (z € G).
Thus, there is a > 0 such that f| = cor |f| = 0forallz € G (¢ = || f|l«). Then
If] - I fllse = |fI?. Integrating boths part of the last equation we h@ig || ]| = 1.
We obtain a contradiction.
O

However, the following lemma states much more.

Lemma 2.2. Let G be a finite group with discrete topology and normalized Haar mea,sure
and letf be a complex valued function 6éh Thus, the functio® (p) := || |, fll ( =1)

is a monotone decreasing function on the inteftal].

Proof. Let f, := HfH . ThenU(p) = || fIIZ 1l follp|l foll4- Letm be the order of the grou. We
take the elements @ in the orderG = {g1, g2, - .., gm}, to Obtain the numbers

a; = |fo(g:)] <1 (1=1,...,m),
with which we write

1

(5] ()

Sl

Sinceq = p%l, we have

Therefore,
ov “ 1>, afloga,
— =Y(p ——log al i= 1mz
(9p ( ) (; > p Zz 1 G,f

— af log a; ( q2>
——lo a; “—Z —— .
g<z ) Zz lag ] p2
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The conditionl < p < 2 ensures that

+1 [Z:nl ajloga; 371", ajloga;

from which we have
. _

1 ov 1 -~
V(p) Op _log@“)‘log(;%) Sl S af

Both addends in the sum above are not positive. Indeed, thedfastd forall 1 <i < m and
p < g imply thata! < of forall 1 < i < m, from which itis clear that

3) — log (Zaf) <0.
i=1

is @ monotone increasing function. Indeed,

Zz 1 zlog a)2¢ L a5 _(Zz 1 llogaz)
(S0, af)”

2o afai(log a; — logay)? .

(0, af)” B

(2.3) log (

v

Secondly,

h,<ﬂ7> :(

Consequently, we have

(24) Zznl Zlogal Zlnl zlogaz <0

D i @ - i al T
By (2.3 .) and [(2] ud) we obtaifil < 0 forall 1 < p < 2, which completes the proof of the
lemma. O

We can apply Lemmia 2.1 and Leminal2.2 to obtain similar propertie¥ fgr) and ¥ (p)
because these functions are the maximum value and the product of finite functions satisfying
the conditions of the two lemmas. Consequently, we obtain:

Theorem 2.3. Let G, be a coordinate group aff such that||¢;|; = 1 for all s < my. Then
Ti(p) = 1. Otherwise, the functioff'x(p) is a strictly monotone decreasing function on the
interval 1, 2].

The function¥,(p) = 1if ||¢i]]s = 1 forall s < m; andi < k. Otherwise, the function
U, (p) is a strictly monotone decreasing function on the intefva].

It is important to remark that the function§,(p) and ¥, (p) are monotone increasing if
p > 2. It follows from the propertyX';(p) = YTx ( > In order to illustrate these properties

we plot the values of (p) for the groupss.

3. NEGATIVE RESULTS

Theorem 3.1.Letp be a fixed number on the intervdl, 2) and}) + % = 1. If G is a group with
unbounded sequendg, (p), then the operatos,, is not of type(p, p) or (¢, q).
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Figure 2.1: Values off'(p) for the groupSs;

Proof. To prove this theorem, choosg < m;, the index for which the normalized coordinate
functiony;* of the finite group’, satisfies
il il = max ([l il -
Define
i i -2
fie(@) = g (@) [ ()] (z € Gy).

Thus, [fi(2)P = | (2)|? and fiu(x) B (2) = [of(2)|” € R if pif(x) # 0. Hence both
equalities hold in Holder’s inequality. For this reason

(3.1) \ / 1 due| 6l = 1felly ), 1]
k

If k& is an arbitrary positive integer and:= Z?;& i;M;, then defineFy, € LP(G) by
k—1
Fi(x) ::Hfj(xj) (x = (zg, x1,...) € G).
j=0

since|| Fill, =TT 1 £illp- it follows from (3.1) that

(3-2) HSnJAFk - SanHp =

/ Fk@ndu\ el
G

k—1
=H /fj@jdﬂj
j=017¢

On the other hand, if,, is of type(p, p), then there exists @, > 0 such that
[Sn+1Fk = SuFllp < [[Snt1Fllp + 1SnFilly < 2C[| Fllp

1251l = Ui ()| Fll,-
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for eachkt > 0, which contradicts[(3]2) because the sequehg®) is not bounded. For this
reason, the operators, are not uniformly of typgp, p). By a duality argument (seg&l[6]) the
operatorsS,, cannot be uniformly of typég, ¢). This completes the proof of the theorem.[

By Theorenj 3.1 we obtain:

Theorem 3.2.Let G be a bounded group and suppose that all the same finite groups appearing
in the product ofG have the same systemat all of their occurrences. If the sequenteis
unbounded, then the operat8y, is not of type(p, p) for all p # 2.

Proof. If the sequenca,, = V(1) is not bounded, there exists a finite grobipvith system
{¢®*: 0 < s < |F|}(|F|is the order of the group’) which appears infinitely many times in the
product ofG and

T() = max]ie*la ¢l > 1.
Hence by Theoremm 2.3 we have

T(p) := max [[°[|,[|*[l > 1
s<|F|

for all p # 2. Denote byi(k) the number of times the group appears in the firgt coordinates
of G. Thusi(k) — oo if k — oo and
l
Ui(p) = || T(p) 200 if k— o0,
=1
for all p # 2. Consequently, the grou@ satisfies the conditions of Theorém|3.1 forlak p <
2. This completes the proof of the theorem. O

—~
o
~

Corollary 3.3. If G is the complete product &; with the systenp appearing in Sectiop]2,
then the operatof,, is not of type(p, p) for all p # 2.
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