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ABSTRACT. The purpose of this paper is to evaluate the liniit) of the sequence
1 1 1 a+n—1
— 4+ + .+ —1In ,
a a+1 a+n—1 a neN
wherea € (0, +00). We give some lower and upper estimates for
1 1 1 a+n—1

1 _ N.
a+a—|—1+ +a—|—n—1 . a (), ne
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1. INTRODUCTION

Let (D,,).en be the sequence defined by, = 1 + % + e+ % — Inn, for eachn € N. It

is well-known that the sequené®,,),cn is convergent and its limit, usually denoted fyis
called Euler’s constant.

For D, — v, n € N, many lower and upper estimates have been obtained in the literature. We
recall some of them:

. (n+1) <D, < g3y, foreachn € N\ {1} ([14]);
. (n+1) < D, —v < 5=, for eachn € N ([8], [19]);

° 5ig <D, 7<2i,foreachneN([ﬂl]);
.2+2<D 1,foreachneN([Iﬂil] [16));

o W <D,—~v< ﬁ, for eachn € N ([16, Editorial comment],[2],[13]).
n n 3
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In Sectiorf 2 we present a generalization of Euler’s constant as the limit of the sequence

1 1 1 a+n—1
~+ ot —In , € (0,+00),
a a-+1 a+n-—1 a neN

and we denote this limit by(a).
In Sectior] B we give some lower and upper estimates for

1 1 1 a+n-—1
+ +it——Inn— —
a a+1 a+n—1 a

v(a), mn€N.

2. THE NUMBER 7(a)

It is known that the sequence

1 1 1 -1
lna+n ) , a € (0,400),
neN

(a a+1 a+mn-—1 a
is convergent (see for examplée [5, p. 453], [7], where problems in this sense were proposed,;
[6]; [13]).
The results contained in the following theorem were given in [10].

Theorem 2.1.Leta € (0, +00). We consider the sequendes,),.cn and (v, )nen defined by

1 1 1 a+n
Tn=—+ + i+ ————In
a a+1 a+n-—1 a
and
1+ 1 L n 1 | a+n—1
n — — — In ,
4 a a-+1 a+n—1 a

for eachn € N.
Then:

(1) the sequences:,, ) en and(y, ).en are convergent to the same number, which we denote
by~(a), and satisfy the inequalities, < z,1 < v(a) < Yn+1 < yn, for eachn € N;
(i) 0 <2 —In(1+ 1) <v(a) < L
(¢7) lim n(y(a) —z,) =1 andnli_):rgO n(yn, —v(a)) = 3.

n—oo

Remark 1. The sequencgy,),en from Theoren 2]1, for = 1, becomes the sequen@®@, ) ,.cn,
soy(1) = 1.
The following theorem was given by the authorlinl[12, Theorem 2.3].

Theorem 2.2.Leta € (0,+00). We consider the sequente, ),y defined byu,, = vy, —

m, for eachn € N, where(y, ).cn is the sequence from the statement of The 2.1.
3
Also, we specify that(a) is the limit of the sequende,, ),.cx-

Then:

(i) Un < Uns1 < ¥(a), for eachn € N\ {1}, and lim n®(y(a) — u,) = ;

(ZZ) m < Yn — ’y(a) < m, for eachn € N \ {1}
Remark 2. The lower estimate from pafti) of Theorenj 2.p holds for = 1 as well.

Remark 3. The second limit from partiii) of Theoren] 2./l also follows from pafi:) of
Theoreni 2.
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3. PROVING SOME ESTIMATES FOR y, —v(a) USING THE LOGARITHMIC DERIVATIVE
OF THE GAMMA FUNCTION

As we already mentioned in Section 1, itis known thatl([16, Editorial comment], [2, Theorem
3], [3, Theorem 1.1])

1
< D,—~v<
-1 — “n
2n+177—7

2n+§’

for eachn € N, the constant%ﬁ_—‘; and% being the best possible with this property.

Leta € (0,+00). In a similar way as in the proof given by H. Alzer in [2, Theorem 3], we
shall obtain lower and upper estimates for— v(a) (n € N), where(y, ).y is the sequence
from the statement of Theorgm P.1, the limit of which we denoted (y. In order to do this
we shall prove, in a similar way as in/[3, Lemma 2.1], some finer inequalities than those used
by H. Alzer in [2, Theorem 3].

Lemma 3.1. We have:

(i) Yz +1) —Inx > 5= — 53 + 3021 — 7555 T0r eachz € (0, 4-00);

(i1) L = (2 4+1) < 35 — 55 + 5005 — 7 T 3050, for eachz € (0, +o0).

We specify that the functianis the logarithmic derivative of the gamma function, ig¢z) =
T, for eachs € (0, 400).

r

o0 eft_efwi

Proof. (i) It is known (see, for example|, [18, p. 116]) tHatr = |, -
x € (0,400). Also, we shall need the formula

v = [ (5 - o) o

which holds for eachr € (0, +00), known as Gauss’ expressionofz) as an infinite integral
(see, for example, [18, p. 247]). Having in view the above relations, we are able to write that

1) —Inz = o e
Y(r+1)—Inz /0 (t et—l)e dt,
for eachr € (0, +00).

It is not difficult to verify that

dt, for each

o0 |
n:
ny—xt
/0 t"e " dt = pray

for eachn € NU {0}, anyz € (0, 4+00).
Then we have

(x+1)—1 L + ! ! + !
x —Inx — — —
2¢ 1222 120z* 25226

_/°° 1 1 1+t t3+ £ -
S Jo \t €—-1 2 12 720 30240

[30240(€" — 1) — 30240t — 15120t(€" — 1) 4 2520¢%(¢ — 1)

- /0 30240t(€/ — 1)
—42t' (e — 1) + 5 — 1)]e " dt
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oo tn oo tn+1 o0 tn+2
30240 ) 5 — 15120 | —-+2520 ) —,
n=2

n=1 n=1

> 1
B /0 30240t (e — 1)

— T
—42 Zl n! + Zl n! erd

N i (n=3)(n=5)(n=7) (n—8) (n*+8n-+36) 4
n=9 ’

n
= e dt >0
/0 30240t(e’ — 1) ’

for eachz € (0, +00).

(71) In part(i) we obtained that

> 1 1
Inz —Y(x+1 :/ (———)e_xtdt,
( ) o \&—-1 ¢t

for eachz € (0, +00). Differentiating here we get that

]- / o > o t —xt

for eachz € (0, +00).
Then we have

r 1 1 1 1 1
— 1) — — 4+ — — —
s Ve S G T 305 T o 3000
_/°° L : EJrﬁ—iJr Lo e dt
—Jo e€—1 2 12 720 30240 1209600
o 1

= 1209600(€" — 1) — 1209600t — 604800t(¢/ — 1

/0 1209600(€" — 1)[ ( ) ( )

+ 100800t (€ — 1) — 1680t* (6" — 1) + 40t°(€ — 1) — t3(&' — 1)]e " dit

00 1 o0 n o0 tn+1
- 1209600 Y — — 604800
/0 1209600(€ — 1) [ ; n! nzl n!

tn+2

0 tn—|—4 o tn+6 o tn+8
— 1680 Z —— +40 Z
n!
n=1

-+100800 io:

n! n! n!

] et dt
n= n=1 n=1

1 =
_ /oo ZZO:H (n—3)(n—5)(n—7)(n—9)(n—10)(n+4)(n?42n+32) n
0

n!

1209600(€ — 1)

e " dt <0,

for eachz € (0, +00). O

Remark 4. In fact, these inequalities from Lemma 3.1 come from the asymptotic formulae
(see, for example, [Jp. 259, 260])

1 B2n
~lng — — —
(@) e 21 = 2n2n
1 1 1 1
=Ilnx — 4.

22 1222 T 12008 25240
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and
1 1 =, B
/ n
V@~ T L
n=1
1 1 1 1 1 1
==+ + - + 4o

222 62® 3025 4227 3029
whereB,,, is the Bernoulli number of indexn.

Theorem 3.2.Leta € (0,+00). We consider the sequen¢g,).cn from the statement of
Theoren 2]1, the limit of which we denotedhigy).
Then . )

20a+n—1)+« <y =7la) < 2@+n—-1)+ 03

for eachn € N\ {1,2}, witha = m —2(a+2)andg = 1.
Moreover, the constants and 5 are the best possible with this property.

Proof. The inequalities from the statement of the theorem can be rewritten in the form

1
f<——-—=2(a+n-1) <a,

Yn — V(G)
for eachn € N\ {1, 2}.
Taking into account that(z + 1) = ¢(z) + 1, for eachz € (0, +00), we can write that

1 1
platn) =9 =t At et
for eachn € N (see, for examplel, [1, p. 258]).
It is known that we have the series expansion (see, for example, [9, p. 336])

w(@:lnx_i[xik_ln(1+$ik)]7

k=0
for eachz € (0,+00). So, we are able to write the following relation betwegn) and the
logarithmic derivative of the gamma function:

Y(a) =Ina —¥(a)
(seell6, Theorem 7], [11, Theorem 4.1, Remark 4.2)).
Then

o = 2(@) = pla+n) — () ~ 0 2 fina - ()
=¢Y(a+n)—In(a+n—1),
for eachn € N. It means that, in fact, we have to prove that
1
p< Y(a+n)—In(a+n-—1)
for eachn € N\ {1, 2}, and that the constantsand are the best possible with this property.
We consider the functioyfi : (0, +00) — R, defined by
1
Jw) = Yz +1)—lnz 2,

for eachz € (0, +00). Differentiating, we get that
, 2 (x+1)—2[(z+1) —Inz]?
fla) = [z + 1) — na]? ’

—2(a+n—-1) <aq,
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for eachz € (0, +00). Using the inequalities from Lemma B.1, we are able to write that

(a4 1) = 2o+ 1) ~ Ina?

_ ! 1 . 1 1 N L (L 1 . 1 1 \?
222 6x3  30x® 4227 3029 2¢x  12z2 12024  252x6

B 1 n 1 i 1 1 221 L 1 L+ 1 1
7224 6025 36026 6327 15120028  30x°  7560x10  31752x12
=: g(),

for eachz € (0,+00). It is not difficult to verify thatg(z) < 0, for eachz € [2,+00)
(2 not being the best lower value possible with this property). It follows fhat) < 0, for
eachr € [%, +oo). So, the functionf is strictly decreasing ov[n%, +oo). This means that the
sequencéf(a +n — 1)),>3 Is strictly decreasing. Therefore

]}Lm fla+k—=1)< fla+n—1)

< fla+2)
1

— —y3 — @ —2(a+2),

for eachn € N\ {1, 2}.
The asymptotic formula for the functiaf, mentioned in RemaiK 4, permits us to write that
1 1
t+0(%) 1
lim f(r) = lim &——22 = —
O

Theorem 3.3.Leta € [3,+00). We consider the sequen¢g,),cn from the statement of
Theoren 2]1, the limit of which we denotedhigy).
Then
1 < (a) < 1
n - a )
Yn =T 2a+n—1)+p

20a+n—-1)4a —
for eachn € N\ {1}, witha = —— —2(a + 1) and = 3.

Moreover, the constants and 3 are the best possible with this property.

Proof. Sincea € [1, +00), it follows that the sequendg (a+n — 1)),,>» is strictly decreasing,
wheref is the function defined in the proof of Theorém]|3.2. O

Theorem 3.4.Leta € [2,4+00). We consider the sequen¢g,),cn from the statement of
Theoren 2]1, the limit of which we denotedhiiy).

Then
1 < (a) < 1
n - a )
2(a—|—n—1)+a_y 7 2a+n—-1)+p
' — 1 9, a2un)-]] 1
foreachneN,wnhafyl_W(a) 2a = o (a) andg = 3.

Moreover, the constants and 5 are the best possible with this property.

Proof. Sincea € [2, +00), it follows that the sequendg (a+n —1)),cn is strictly decreasing,
wheref is the function defined in the proof of Theorém]|3.2. O
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