journal of inequalities in pure and applied mathematics

http://jipam.vu.edu.au issn: 1443-5756

Volume 9 (2008), Issue 2, Article 46, 7 pp.

SOME INEQUALITIES REGARDING A GENERALIZATION OF EULER'S CONSTANT

ALINA SÎNTĂMĂRIAN

DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY OF CLUJ-NAPOCA
STR. C. DAICOVICIU NR. 15
400020 CLUJ-NAPOCA
ROMANIA.

Alina.Sintamarian@math.utcluj.ro

Received 28 November, 2007; accepted 20 March, 2008 Communicated by L. Tóth

ABSTRACT. The purpose of this paper is to evaluate the limit $\gamma(a)$ of the sequence

$$\left(\frac{1}{a} + \frac{1}{a+1} + \dots + \frac{1}{a+n-1} - \ln \frac{a+n-1}{a}\right)_{n \in \mathbb{N}},$$

where $a \in (0, +\infty)$. We give some lower and upper estimates for

$$\frac{1}{a} + \frac{1}{a+1} + \dots + \frac{1}{a+n-1} - \ln \frac{a+n-1}{a} - \gamma(a), \quad n \in \mathbb{N}.$$

Key words and phrases: Sequence, Convergence, Euler's constant, Approximation, Estimate, Series.

2000 Mathematics Subject Classification. 11Y60, 40A05.

1. Introduction

Let $(D_n)_{n\in\mathbb{N}}$ be the sequence defined by $D_n=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n$, for each $n\in\mathbb{N}$. It is well-known that the sequence $(D_n)_{n\in\mathbb{N}}$ is convergent and its limit, usually denoted by γ , is called Euler's constant.

For $D_n - \gamma$, $n \in \mathbb{N}$, many lower and upper estimates have been obtained in the literature. We recall some of them:

- $\frac{1}{2(n+1)} < D_n \gamma < \frac{1}{2(n-1)}$, for each $n \in \mathbb{N} \setminus \{1\}$ ([14]);
- $\frac{1}{2(n+1)} < D_n \gamma < \frac{1}{2n}$, for each $n \in \mathbb{N}$ ([8], [19]);
- $\frac{1}{2n+1} < D_n \gamma < \frac{1}{2n}$, for each $n \in \mathbb{N}$ ([17]);
- $\frac{1}{2n+\frac{2}{5}} < D_n \gamma < \frac{1}{2n+\frac{1}{3}}$, for each $n \in \mathbb{N}$ ([15], [16]);
- $\frac{1}{2n+\frac{2\gamma-1}{1-\gamma}} \leq D_n \gamma < \frac{1}{2n+\frac{1}{3}}$, for each $n \in \mathbb{N}$ ([16, Editorial comment], [2], [3]).

In Section 2 we present a generalization of Euler's constant as the limit of the sequence

$$\left(\frac{1}{a} + \frac{1}{a+1} + \dots + \frac{1}{a+n-1} - \ln \frac{a+n-1}{a}\right)_{n \in \mathbb{N}}, \quad a \in (0, +\infty),$$

and we denote this limit by $\gamma(a)$.

In Section 3 we give some lower and upper estimates for

$$\frac{1}{a} + \frac{1}{a+1} + \dots + \frac{1}{a+n-1} - \ln \frac{a+n-1}{a} - \gamma(a), \quad n \in \mathbb{N}.$$

2. The Number $\gamma(a)$

It is known that the sequence

$$\left(\frac{1}{a} + \frac{1}{a+1} + \dots + \frac{1}{a+n-1} - \ln \frac{a+n-1}{a}\right)_{n \in \mathbb{N}}, \quad a \in (0, +\infty),$$

is convergent (see for example [5, p. 453], [7], where problems in this sense were proposed; [6]; [13]).

The results contained in the following theorem were given in [10].

Theorem 2.1. Let $a \in (0, +\infty)$. We consider the sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ defined by

$$x_n = \frac{1}{a} + \frac{1}{a+1} + \dots + \frac{1}{a+n-1} - \ln \frac{a+n}{a}$$

and

$$y_n = \frac{1}{a} + \frac{1}{a+1} + \dots + \frac{1}{a+n-1} - \ln \frac{a+n-1}{a},$$

for each $n \in \mathbb{N}$.

Then:

- (i) the sequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ are convergent to the same number, which we denote by $\gamma(a)$, and satisfy the inequalities $x_n < x_{n+1} < \gamma(a) < y_{n+1} < y_n$, for each $n \in \mathbb{N}$;
- (ii) $0 < \frac{1}{a} \ln\left(1 + \frac{1}{a}\right) < \gamma(a) < \frac{1}{a};$
- (iii) $\lim_{n\to\infty} n(\gamma(a)-x_n) = \frac{1}{2}$ and $\lim_{n\to\infty} n(y_n-\gamma(a)) = \frac{1}{2}$.

Remark 1. The sequence $(y_n)_{n\in\mathbb{N}}$ from Theorem 2.1, for a=1, becomes the sequence $(D_n)_{n\in\mathbb{N}}$, so $\gamma(1)=\gamma$.

The following theorem was given by the author in [12, Theorem 2.3].

Theorem 2.2. Let $a \in (0, +\infty)$. We consider the sequence $(u_n)_{n \in \mathbb{N}}$ defined by $u_n = y_n - \frac{1}{2(a+n-1)+\frac{1}{3}}$, for each $n \in \mathbb{N}$, where $(y_n)_{n \in \mathbb{N}}$ is the sequence from the statement of Theorem 2.1. Also, we specify that $\gamma(a)$ is the limit of the sequence $(y_n)_{n \in \mathbb{N}}$. Then:

- (i) $u_n < u_{n+1} < \gamma(a)$, for each $n \in \mathbb{N} \setminus \{1\}$, and $\lim_{n \to \infty} n^3(\gamma(a) u_n) = \frac{1}{72}$;
- (ii) $\frac{1}{2(a+n-1)+\frac{11}{28}} < y_n \gamma(a) < \frac{1}{2(a+n-1)+\frac{1}{3}}$, for each $n \in \mathbb{N} \setminus \{1\}$.

Remark 2. The lower estimate from part (ii) of Theorem 2.2 holds for n=1 as well.

Remark 3. The second limit from part (iii) of Theorem 2.1 also follows from part (ii) of Theorem 2.2.

3. Proving Some Estimates for $y_n - \gamma(a)$ using the Logarithmic Derivative of the Gamma Function

As we already mentioned in Section 1, it is known that ([16, Editorial comment], [2, Theorem 3], [3, Theorem 1.1])

$$\frac{1}{2n + \frac{2\gamma - 1}{1 - \gamma}} \le D_n - \gamma < \frac{1}{2n + \frac{1}{3}},$$

for each $n \in \mathbb{N}$, the constants $\frac{2\gamma-1}{1-\gamma}$ and $\frac{1}{3}$ being the best possible with this property.

Let $a \in (0, +\infty)$. In a similar way as in the proof given by H. Alzer in [2, Theorem 3], we shall obtain lower and upper estimates for $y_n - \gamma(a)$ $(n \in \mathbb{N})$, where $(y_n)_{n \in \mathbb{N}}$ is the sequence from the statement of Theorem 2.1, the limit of which we denoted by $\gamma(a)$. In order to do this we shall prove, in a similar way as in [3, Lemma 2.1], some finer inequalities than those used by H. Alzer in [2, Theorem 3].

Lemma 3.1. We have:

(i)
$$\psi(x+1) - \ln x > \frac{1}{2x} - \frac{1}{12x^2} + \frac{1}{120x^4} - \frac{1}{252x^6}$$
, for each $x \in (0, +\infty)$;

(ii)
$$\frac{1}{x} - \psi'(x+1) < \frac{1}{2x^2} - \frac{1}{6x^3} + \frac{1}{30x^5} - \frac{1}{42x^7} + \frac{1}{30x^9}$$
, for each $x \in (0, +\infty)$.

We specify that the function ψ is the logarithmic derivative of the gamma function, i.e. $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$, for each $x \in (0, +\infty)$.

Proof. (i) It is known (see, for example, [18, p. 116]) that $\ln x = \int_0^\infty \frac{e^{-t} - e^{-xt}}{t} dt$, for each $x \in (0, +\infty)$. Also, we shall need the formula

$$\psi(x) = \int_0^\infty \left(\frac{e^{-t}}{t} - \frac{e^{-xt}}{1 - e^{-t}}\right) dt,$$

which holds for each $x \in (0, +\infty)$, known as Gauss' expression of $\psi(x)$ as an infinite integral (see, for example, [18, p. 247]). Having in view the above relations, we are able to write that

$$\psi(x+1) - \ln x = \int_0^\infty \left(\frac{1}{t} - \frac{1}{e^t - 1}\right) e^{-xt} dt,$$

for each $x \in (0, +\infty)$.

It is not difficult to verify that

$$\int_0^\infty t^n \mathrm{e}^{-xt} \, \mathrm{d}t = \frac{n!}{x^{n+1}},$$

for each $n \in \mathbb{N} \cup \{0\}$, any $x \in (0, +\infty)$.

Then we have

$$\begin{split} &\psi(x+1) - \ln x - \frac{1}{2x} + \frac{1}{12x^2} - \frac{1}{120x^4} + \frac{1}{252x^6} \\ &= \int_0^\infty \left(\frac{1}{t} - \frac{1}{\mathrm{e}^t - 1} - \frac{1}{2} + \frac{t}{12} - \frac{t^3}{720} + \frac{t^5}{30240} \right) \mathrm{e}^{-xt} \, \mathrm{d}t \\ &= \int_0^\infty \frac{1}{30240t(\mathrm{e}^t - 1)} [30240(\mathrm{e}^t - 1) - 30240t - 15120t(\mathrm{e}^t - 1) + 2520t^2(\mathrm{e}^t - 1) \\ &\quad - 42t^4(\mathrm{e}^t - 1) + t^6(\mathrm{e}^t - 1)] \mathrm{e}^{-xt} \, \mathrm{d}t \end{split}$$

$$\begin{split} &= \int_0^\infty \frac{1}{30240t(\mathrm{e}^t-1)} \left[30240 \sum_{n=2}^\infty \frac{t^n}{n!} - 15120 \sum_{n=1}^\infty \frac{t^{n+1}}{n!} + 2520 \sum_{n=1}^\infty \frac{t^{n+2}}{n!} \right. \\ & \left. - 42 \sum_{n=1}^\infty \frac{t^{n+4}}{n!} + \sum_{n=1}^\infty \frac{t^{n+6}}{n!} \right] \mathrm{e}^{-xt} \, \mathrm{d}t \\ &= \int_0^\infty \frac{\sum_{n=9}^\infty \frac{(n-3)(n-5)(n-7)(n-8)(n^2+8n+36)}{n!} t^n}{30240t(\mathrm{e}^t-1)} \cdot \mathrm{e}^{-xt} \, \mathrm{d}t > 0, \end{split}$$

for each $x \in (0, +\infty)$.

(ii) In part (i) we obtained that

$$\ln x - \psi(x+1) = \int_0^\infty \left(\frac{1}{e^t - 1} - \frac{1}{t}\right) e^{-xt} dt,$$

for each $x \in (0, +\infty)$. Differentiating here we get that

$$\frac{1}{x} - \psi'(x+1) = \int_0^\infty \left(1 - \frac{t}{e^t - 1}\right) e^{-xt} dt,$$

for each $x \in (0, +\infty)$.

Then we have

$$\begin{split} &\frac{1}{x} - \psi'(x+1) - \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9} \\ &= \int_0^\infty \left(1 - \frac{t}{\mathrm{e}^t - 1} - \frac{t}{2} + \frac{t^2}{12} - \frac{t^4}{720} + \frac{t^6}{30240} - \frac{t^8}{1209600}\right) \mathrm{e}^{-xt} \, \mathrm{d}t \\ &= \int_0^\infty \frac{1}{1209600(\mathrm{e}^t - 1)} [1209600(\mathrm{e}^t - 1) - 1209600t - 604800t(\mathrm{e}^t - 1) \\ &\quad + 100800t^2(\mathrm{e}^t - 1) - 1680t^4(\mathrm{e}^t - 1) + 40t^6(\mathrm{e}^t - 1) - t^8(\mathrm{e}^t - 1)] \mathrm{e}^{-xt} \, \mathrm{d}t \\ &= \int_0^\infty \frac{1}{1209600(\mathrm{e}^t - 1)} \left[1209600 \sum_{n=2}^\infty \frac{t^n}{n!} - 604800 \sum_{n=1}^\infty \frac{t^{n+1}}{n!} \right. \\ &\quad + 100800 \sum_{n=1}^\infty \frac{t^{n+2}}{n!} - 1680 \sum_{n=1}^\infty \frac{t^{n+4}}{n!} + 40 \sum_{n=1}^\infty \frac{t^{n+6}}{n!} - \sum_{n=1}^\infty \frac{t^{n+8}}{n!} \right] \mathrm{e}^{-xt} \, \mathrm{d}t \\ &= -\int_0^\infty \frac{\sum_{n=11}^\infty \frac{(n-3)(n-5)(n-7)(n-9)(n-10)(n+4)(n^2+2n+32)}{n!} t^n}{1209600(\mathrm{e}^t - 1)} \cdot \mathrm{e}^{-xt} \, \mathrm{d}t < 0, \end{split}$$

for each $x \in (0, +\infty)$.

Remark 4. In fact, these inequalities from Lemma 3.1 come from the asymptotic formulae (see, for example, [1, pp. 259, 260])

$$\psi(x) \sim \ln x - \frac{1}{2x} - \sum_{n=1}^{\infty} \frac{B_{2n}}{2nx^{2n}}$$
$$= \ln x - \frac{1}{2x} - \frac{1}{12x^2} + \frac{1}{120x^4} - \frac{1}{252x^6} + \cdots$$

and

$$\psi'(x) \sim \frac{1}{x} + \frac{1}{2x^2} + \sum_{n=1}^{\infty} \frac{B_{2n}}{x^{2n+1}}$$

$$= \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9} + \cdots,$$

where B_{2n} is the Bernoulli number of inde

Theorem 3.2. Let $a \in (0, +\infty)$. We consider the sequence $(y_n)_{n \in \mathbb{N}}$ from the statement of Theorem 2.1, the limit of which we denoted by $\gamma(a)$.

Then

$$\frac{1}{2(a+n-1)+\alpha} \le y_n - \gamma(a) < \frac{1}{2(a+n-1)+\beta},$$

for each $n \in \mathbb{N} \setminus \{1, 2\}$, with $\alpha = \frac{1}{y_3 - \gamma(a)} - 2(a+2)$ and $\beta = \frac{1}{3}$.

Moreover, the constants α and β are the best possible with this property.

Proof. The inequalities from the statement of the theorem can be rewritten in the form

$$\beta < \frac{1}{y_n - \gamma(a)} - 2(a + n - 1) \le \alpha,$$

for each $n \in \mathbb{N} \setminus \{1, 2\}$.

Taking into account that $\psi(x+1) = \psi(x) + \frac{1}{x}$, for each $x \in (0,+\infty)$, we can write that

$$\psi(a+n) - \psi(a) = \frac{1}{a} + \frac{1}{a+1} + \dots + \frac{1}{a+n-1},$$

for each $n \in \mathbb{N}$ (see, for example, [1, p. 258]).

It is known that we have the series expansion (see, for example, [9, p. 336])

$$\psi(x) = \ln x - \sum_{k=0}^{\infty} \left[\frac{1}{x+k} - \ln \left(1 + \frac{1}{x+k} \right) \right],$$

for each $x \in (0, +\infty)$. So, we are able to write the following relation between $\gamma(a)$ and the logarithmic derivative of the gamma function:

$$\gamma(a) = \ln a - \psi(a)$$

(see [6, Theorem 7], [11, Theorem 4.1, Remark 4.2]).

Then

$$y_n - \gamma(a) = \psi(a+n) - \psi(a) - \ln \frac{a+n-1}{a} - [\ln a - \psi(a)]$$

= $\psi(a+n) - \ln(a+n-1)$,

for each $n \in \mathbb{N}$. It means that, in fact, we have to prove that

$$\beta < \frac{1}{\psi(a+n) - \ln(a+n-1)} - 2(a+n-1) \le \alpha,$$

for each $n \in \mathbb{N} \setminus \{1, 2\}$, and that the constants α and β are the best possible with this property. We consider the function $f:(0,+\infty)\to\mathbb{R}$, defined by

$$f(x) = \frac{1}{\psi(x+1) - \ln x} - 2x,$$

for each $x \in (0, +\infty)$. Differentiating, we get that

$$f'(x) = \frac{\frac{1}{x} - \psi'(x+1) - 2[\psi(x+1) - \ln x]^2}{[\psi(x+1) - \ln x]^2},$$

for each $x \in (0, +\infty)$. Using the inequalities from Lemma 3.1, we are able to write that

$$\begin{split} &\frac{1}{x} - \psi'(x+1) - 2[\psi(x+1) - \ln x]^2 \\ &< \frac{1}{2x^2} - \frac{1}{6x^3} + \frac{1}{30x^5} - \frac{1}{42x^7} + \frac{1}{30x^9} - 2\left(\frac{1}{2x} - \frac{1}{12x^2} + \frac{1}{120x^4} - \frac{1}{252x^6}\right)^2 \\ &= -\frac{1}{72x^4} + \frac{1}{60x^5} + \frac{1}{360x^6} - \frac{1}{63x^7} - \frac{221}{151200x^8} + \frac{1}{30x^9} + \frac{1}{7560x^{10}} - \frac{1}{31752x^{12}} \\ &=: g(x), \end{split}$$

for each $x \in (0, +\infty)$. It is not difficult to verify that g(x) < 0, for each $x \in \left[\frac{3}{2}, +\infty\right)$ ($\frac{3}{2}$ not being the best lower value possible with this property). It follows that f'(x) < 0, for each $x \in \left[\frac{3}{2}, +\infty\right)$. So, the function f is strictly decreasing on $\left[\frac{3}{2}, +\infty\right)$. This means that the sequence $(f(a+n-1))_{n\geq 3}$ is strictly decreasing. Therefore

$$\lim_{k \to \infty} f(a+k-1) < f(a+n-1)$$

$$\leq f(a+2)$$

$$= \frac{1}{y_3 - \gamma(a)} - 2(a+2),$$

for each $n \in \mathbb{N} \setminus \{1, 2\}$.

The asymptotic formula for the function ψ , mentioned in Remark 4, permits us to write that

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\frac{1}{6} + O\left(\frac{1}{x^2}\right)}{\frac{1}{2} + O\left(\frac{1}{x}\right)} = \frac{1}{3}.$$

Theorem 3.3. Let $a \in [\frac{1}{2}, +\infty)$. We consider the sequence $(y_n)_{n \in \mathbb{N}}$ from the statement of Theorem 2.1, the limit of which we denoted by $\gamma(a)$.

Then

$$\frac{1}{2(a+n-1)+\alpha} \le y_n - \gamma(a) < \frac{1}{2(a+n-1)+\beta},$$

for each $n \in \mathbb{N} \setminus \{1\}$, with $\alpha = \frac{1}{y_2 - \gamma(a)} - 2(a+1)$ and $\beta = \frac{1}{3}$.

Moreover, the constants α and β are the best possible with this property.

Proof. Since $a \in \left[\frac{1}{2}, +\infty\right)$, it follows that the sequence $(f(a+n-1))_{n\geq 2}$ is strictly decreasing, where f is the function defined in the proof of Theorem 3.2.

Theorem 3.4. Let $a \in \left[\frac{3}{2}, +\infty\right)$. We consider the sequence $(y_n)_{n \in \mathbb{N}}$ from the statement of Theorem 2.1, the limit of which we denoted by $\gamma(a)$.

Then

$$\frac{1}{2(a+n-1)+\alpha} \le y_n - \gamma(a) < \frac{1}{2(a+n-1)+\beta},$$

for each $n \in \mathbb{N}$, with $\alpha = \frac{1}{y_1 - \gamma(a)} - 2a = \frac{a[2a\gamma(a) - 1]}{1 - a\gamma(a)}$ and $\beta = \frac{1}{3}$.

Moreover, the constants α and β are the best possible with this property.

Proof. Since $a \in \left[\frac{3}{2}, +\infty\right)$, it follows that the sequence $(f(a+n-1))_{n \in \mathbb{N}}$ is strictly decreasing, where f is the function defined in the proof of Theorem 3.2.

REFERENCES

- [1] M. ABRAMOWITZ AND I.A. STEGUN, *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, National Bureau of Standards Applied Mathematics Series **55**, Washington, 1964.
- [2] H. ALZER, Inequalities for the gamma and polygamma functions, *Abh. Math. Sem. Univ. Hamburg*, **68** (1998), 363–372.
- [3] C.-P. CHEN AND F. QI, The best lower and upper bounds of harmonic sequence, RGMIA **6**(2) (2003), 303–308.
- [4] D.W. DeTEMPLE, A quicker convergence to Euler's constant, *Amer. Math. Monthly*, **100**(5) (1993), 468–470.
- [5] K. KNOPP, *Theory and Application of Infinite Series*, Blackie & Son Limited, London and Glasgow, 1951.
- [6] D.H. LEHMER, Euler constants for arithmetical progressions, *Acta Arith.*, **27** (1975), 125–142.
- [7] I. NEDELCU, Problem 21753, Gazeta Matematică, Seria B, **94**(4) (1989), 136.
- [8] P.J. RIPPON, Convergence with pictures, Amer. Math. Monthly, 93(6) (1986), 476–478.
- [9] I.M. RÎJIC AND I.S. GRADŞTEIN, *Tabele de integrale. Sume, serii și produse (Tables of Integrals. Sums, Series and Products)*, Editura Tehnică, București, 1955.
- [10] A. SÎNTĂMĂRIAN, Approximations for a generalization of Euler's constant (submitted).
- [11] A. SÎNTĂMĂRIAN, About a generalization of Euler's constant, *Aut. Comp. Appl. Math.*, **16**(1) (2007), 153–163.
- [12] A. SÎNTĂMĂRIAN, A generalization of Euler's constant, *Numer. Algorithms*, **46**(2) (2007), 141–151.
- [13] T. TASAKA, Note on the generalized Euler constants, Math. J. Okayama Univ., 36 (1994), 29–34.
- [14] S.R. TIMS AND J.A. TYRRELL, Approximate evaluation of Euler's constant, *Math. Gaz.*, **55**(391) (1971), 65–67.
- [15] L. TÓTH, Problem E3432, Amer. Math. Monthly, 98(3) (1991), 264.
- [16] L. TÓTH, Problem E3432 (Solution), Amer. Math. Monthly, **99**(7) (1992), 684–685.
- [17] A. VERNESCU, Ordinul de convergență al șirului de definiție al constantei lui Euler (The convergence order of the definition sequence of Euler's constant), *Gazeta Matematică*, *Seria B*, **88**(10-11) (1983), 380–381.
- [18] E.T. WHITTAKER AND G.N. WATSON, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1996.
- [19] R.M. YOUNG, Euler's constant, *Math. Gaz.*, **75**(472) (1991), 187–190.