

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 5, Article 168, 2006

ISOMETRIES ON LINEAR n-NORMED SPACES

CHUN-GIL PARK AND THEMISTOCLES M. RASSIAS

DEPARTMENT OF MATHEMATICS
HANYANG UNIVERSITY
SEOUL 133-791
REPUBLIC OF KOREA
baak@hanyang.ac.kr

DEPARTMENT OF MATHEMATICS
NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ZOGRAFOU CAMPUS
15780 ATHENS, GREECE
trassias@math.ntua.gr

Received 05 December, 2005; accepted 25 April, 2006 Communicated by K. Nikodem

ABSTRACT. The aim of this article is to generalize the Aleksandrov problem to the case of linear n-normed spaces.

Key words and phrases: Linear n-normed space, n-isometry, n-Lipschitz mapping.

2000 Mathematics Subject Classification. Primary 46B04, 46B20, 51K05.

1. Introduction

Let X and Y be metric spaces. A mapping $f: X \to Y$ is called an isometry if f satisfies $d_Y(f(x), f(y)) = d_X(x, y)$

for all $x, y \in X$, where $d_X(\cdot, \cdot)$ and $d_Y(\cdot, \cdot)$ denote the metrics in the spaces X and Y, respectively. For some fixed number r > 0, suppose that f preserves distance r; i.e., for all x, y in X with $d_X(x, y) = r$, we have $d_Y(f(x), f(y)) = r$. Then r is called a conservative (or preserved) distance for the mapping f. Aleksandrov [1] posed the following problem:

Remark 1.1. Examine whether the existence of a single conservative distance for some mapping T implies that T is an isometry.

The Aleksandrov problem has been investigated in several papers (see [3] – [10]). Th.M. Rassias and P. Šemrl [9] proved the following theorem for mappings satisfying the strong distance one preserving property (SDOPP), i.e., for every $x, y \in X$ with ||x - y|| = 1 it follows that ||f(x) - f(y)|| = 1 and conversely.

ISSN (electronic): 1443-5756

© 2006 Victoria University. All rights reserved.

Theorem 1.2 ([9]). Let X and Y be real normed linear spaces with dimension greater than one. Suppose that $f: X \to Y$ is a Lipschitz mapping with Lipschitz constant $\kappa = 1$. Assume that f is a surjective mapping satisfying (SDOPP). Then f is an isometry.

Definition 1.1 ([2]). Let X be a real linear space with $\dim X \geq n$ and $\|\cdot, \dots, \cdot\| : X^n \to \mathbb{R}$ a function. Then $(X, \|\cdot, \dots, \cdot\|)$ is called a linear n-normed space if

$$||x_1,\ldots,x_n||=0 \iff x_1,\ldots,x_n$$
 are linearly dependent

$$(nN_2)$$
 $||x_1,\ldots,x_n||=||x_{j_1},\ldots,x_{j_n}||$ for every permutation (j_1,\ldots,j_n) of $(1,\ldots,n)$

$$||\alpha x_1, \dots, x_n|| = |\alpha| ||x_1, \dots, x_n||$$

$$||x+y, x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||y, x_2, \dots, x_n||$$

for all $\alpha \in \mathbb{R}$ and all $x, y, x_1, \dots, x_n \in X$. The function $\|\cdot, \dots, \cdot\|$ is called the *n*-norm on X.

In [3], Chu *et al.* defined the notion of weak n-isometry and proved the Rassias and Šemrl's theorem in linear n-normed spaces.

Definition 1.2 ([3]). We call $f: X \to Y$ a weak n-Lipschitz mapping if there is a $\kappa \geq 0$ such that

$$||f(x_1) - f(x_0), \dots, f(x_n) - f(x_0)|| \le \kappa ||x_1 - x_0, \dots, x_n - x_0||$$

for all $x_0, x_1, \ldots, x_n \in X$. The smallest such κ is called the weak n-Lipschitz constant.

Definition 1.3 ([3]). Let X and Y be linear n-normed spaces and $f: X \to Y$ a mapping. We call f a weak n-isometry if

$$||x_1-x_0,\ldots,x_n-x_0|| = ||f(x_1)-f(x_0),\ldots,f(x_n)-f(x_0)||$$

for all $x_0, x_1, \ldots, x_n \in X$.

For a mapping $f: X \to Y$, consider the following condition which is called the *weak n-distance one preserving property*: For $x_0, x_1, \ldots, x_n \in X$ with $||x_1 - y_1, \ldots, x_n - y_n|| = 1$, $||f(x_1) - f(x_0), \ldots, f(x_n) - f(x_0)|| = 1$.

Theorem 1.3 ([3]). Let $f: X \to Y$ be a weak n-Lipschitz mapping with weak n-Lipschitz constant $\kappa \leq 1$. Assume that if x_0, x_1, \ldots, x_m are m-colinear then $f(x_0), f(x_1), \ldots, f(x_m)$ are m-colinear, m = 2, n, and that f satisfies the weak n-distance one preserving property. Then f is a weak n-isometry.

In this paper, we introduce the concept of n-isometry which is suitable for representing the notion of n-distance preserving mappings in linear n-normed spaces. We prove also that the Rassias and Šemrl theorem holds under some conditions when X and Y are linear n-normed spaces.

2. THE ALEKSANDROV PROBLEM IN LINEAR n-NORMED SPACES

In this section, let X and Y be linear n-normed spaces with dimension greater than n-1.

Definition 2.1. Let X and Y be linear n-normed spaces and $f: X \to Y$ a mapping. We call f an n-isometry if

$$||x_1 - y_1, \dots, x_n - y_n|| = ||f(x_1) - f(y_1), \dots, f(x_n) - f(y_n)||$$

for all $x_1, \ldots, x_n, y_1, \ldots, y_n \in X$.

For a mapping $f: X \to Y$, consider the following condition which is called the *n*-distance one preserving property: For $x_1, \ldots, x_n, y_1, \ldots, y_n \in X$ with $||x_1 - y_1, \ldots, x_n - y_n|| = 1$, $||f(x_1) - f(y_1), \ldots, f(x_n) - f(y_n)|| = 1$.

Lemma 2.1 ([3, Lemma 2.3]). Let x_1, x_2, \ldots, x_n be elements of a linear n-normed space X and γ a real number. Then

$$||x_1, \dots, x_i, \dots, x_j, \dots, x_n|| = ||x_1, \dots, x_i, \dots, x_j + \gamma x_i, \dots, x_n||.$$

for all $1 \le i \ne j \le n$.

Definition 2.2 ([3]). The points x_0, x_1, \ldots, x_n of X are said to be n-colinear if for every i, $\{x_j - x_i \mid 0 \le j \ne i \le n\}$ is linearly dependent.

Remark 2.2. The points x_0, x_1 and x_2 are 2-colinear if and only if $x_2 - x_0 = t(x_1 - x_0)$ for some real number t.

Theorem 2.3. Let $f: X \to Y$ be a weak n-Lipschitz mapping with weak n-Lipschitz constant $\kappa \leq 1$. Assume that if x_0, x_1, \ldots, x_m are m-colinear then $f(x_0), f(x_1), \ldots, f(x_m)$ are m-colinear, m = 2, n, and that f satisfies the weak n-distance one preserving property. Then f satisfies

$$||x_1 - y_1, \dots, x_n - y_n|| = ||f(x_1) - f(y_1), \dots, f(x_n) - f(y_n)||$$

for all $x_1, \ldots, x_n, y_1, \ldots, y_n \in X$ with x_1, y_1, y_j 2-colinear for $j = 2, 3, \ldots, n$.

Proof. By Theorem 1.3, f is a weak n-isometry. Hence

$$(2.1) ||x_1 - y, \dots, x_n - y|| = ||f(x_1) - f(y), \dots, f(x_n) - f(y)||$$

for all $x_1, \ldots, x_n, y \in X$.

If $x_1, y_1, y_2 \in X$ are 2-colinear then there exists a $t \in \mathbb{R}$ such that $y_1 - y_2 = t(y_1 - x_1)$. By Lemma 2.1,

$$||x_1 - y_1, x_2 - y_2, \dots, x_n - y_n|| = ||x_1 - y_1, (x_2 - y_1) + (y_1 - y_2), \dots, x_n - y_n||$$

$$= ||x_1 - y_1, (x_2 - y_1) + (-t)(x_1 - y_1), \dots, x_n - y_n||$$

$$= ||x_1 - y_1, x_2 - y_1, \dots, x_n - y_n||$$

for all $x_1, \ldots, x_n, y_1, \ldots, y_n \in X$ with x_1, y_1, y_2 2-colinear. By the same method as above, one can obtain that if x_1, y_1, y_j are 2-colinear for $j = 3, \ldots, n$ then

$$||x_1 - y_1, x_2 - y_2, x_3 - y_3, \dots, x_n - y_n||$$

$$= ||x_1 - y_1, x_2 - y_1, x_3 - y_3, \dots, x_n - y_n||$$

$$= ||x_1 - y_1, x_2 - y_1, x_3 - y_1, \dots, x_n - y_n||$$

$$= \dots = ||x_1 - y_1, x_2 - y_1, x_3 - y_1, \dots, x_n - y_1||$$

for all $x_1, \ldots, x_n, y_1, \ldots, y_n \in X$ with x_1, y_1, y_j 2-colinear for $j = 2, 3, \ldots, n$.

By the assumption, if $x_1, y_1, y_2 \in X$ are 2-colinear then $f(x_1), f(y_1), f(y_2) \in Y$ are 2-colinear. So there exists a $t \in \mathbb{R}$ such that $f(y_1) - f(y_2) = t(f(y_1) - f(x_1))$. By Lemma 2.1,

$$||f(x_1) - f(y_1), f(x_2) - f(y_2), \dots, f(x_n) - f(y_n)||$$

$$= ||f(x_1) - f(y_1), (f(x_2) - f(y_1)) + (f(y_1) - f(y_2)), \dots, f(x_n) - f(y_n)||$$

$$= ||f(x_1) - f(y_1), (f(x_2) - f(y_1)) + (-t)(f(x_1) - f(y_1)), \dots, f(x_n) - f(y_n)||$$

$$= ||f(x_1) - f(y_1), f(x_2) - f(y_1), \dots, f(x_n) - f(y_n)||$$

for all $x_1, \ldots, x_n, y_1, \ldots, y_n \in X$ with x_1, y_1, y_2 2-colinear. If x_1, y_1, y_j are 2-colinear for $j = 3, \ldots, n$ then $f(x_1), f(y_1), f(y_j)$ are 2-colinear for $j = 3, \ldots, n$. By the same method as above, one can obtain that if $f(x_1), f(y_1), f(y_j)$ are 2-colinear for $j = 3, \ldots, n$, then

$$(2.3) ||f(x_1) - f(y_1), f(x_2) - f(y_2), f(x_3) - f(y_3), \dots, f(x_n) - f(y_n)||$$

$$= ||f(x_1) - f(y_1), f(x_2) - f(y_1), f(x_3) - f(y_3), \dots, f(x_n) - f(y_n)||$$

$$= ||f(x_1) - f(y_1), f(x_2) - f(y_1), f(x_3) - f(y_1), \dots, f(x_n) - f(y_n)||$$

$$= \dots = ||f(x_1) - f(y_1), f(x_2) - f(y_1), f(x_3) - f(y_1), \dots, f(x_n) - f(y_1)||$$

for all $x_1, \ldots, x_n, y_1, \ldots y_n \in X$ with x_1, y_1, y_j 2-colinear for $j = 2, 3, \ldots, n$. By (2.1), (2.2) and (2.3),

$$\|x_1 - y_1, \dots, x_n - y_n\| = \|f(x_1) - f(y_1), \dots, f(x_n) - f(y_n)\|$$
 for all $x_1, \dots, x_n, y_1, \dots y_n \in X$ with x_1, y_1, y_j 2-colinear for $j = 2, 3, \dots, n$.

Now we introduce the concept of n-Lipschitz mapping and prove that the n-Lipschitz mapping satisfying the n-distance one preserving property is an n-isometry under some conditions.

Definition 2.3. We call $f: X \to Y$ an n-Lipschitz mapping if there is a $\kappa \ge 0$ such that

$$||f(x_1) - f(y_1), \dots, f(x_n) - f(y_n)|| \le \kappa ||x_1 - y_1, \dots, x_n - y_n||$$

for all $x_1, \ldots, x_n, y_1, \ldots, y_n \in X$. The smallest such κ is called the *n*-Lipschitz constant.

Lemma 2.4 ([3, Lemma 2.4]). For $x_1, x_1' \in X$, if x_1 and x_1' are linearly dependent with the same direction, that is, $x_1' = \alpha x_1$ for some $\alpha > 0$, then

$$\|x_1 + x_1', x_2, \dots, x_n\| = \|x_1, x_2, \dots, x_n\| + \|x_1', x_2, \dots, x_n\|$$

for all $x_2, \ldots, x_n \in X$.

Lemma 2.5. Assume that if x_0, x_1 and x_2 are 2-colinear then $f(x_0), f(x_1)$ and $f(x_2)$ are 2-colinear, and that f satisfies the n-distance one preserving property. Then f preserves the n-distance k for each $k \in \mathbb{N}$.

Proof. Suppose that there exist $x_0, x_1 \in X$ with $x_0 \neq x_1$ such that $f(x_0) = f(x_1)$. Since $\dim X \geq n$, there are $x_2, \ldots, x_n \in X$ such that $x_1 - x_0, x_2 - x_0, \ldots, x_n - x_0$ are linearly independent. Since $\|x_1 - x_0, x_2 - x_0, \ldots, x_n - x_0\| \neq 0$, we can set

$$z_2 := x_0 + \frac{x_2 - x_0}{\|x_1 - x_0, x_2 - x_0, \dots, x_n - x_0\|}.$$

Then we have

$$||x_1 - x_0, z_2 - x_0, x_3 - x_0, \dots, x_n - x_0||$$

$$= ||x_1 - x_0, \frac{x_2 - x_0}{||x_1 - x_0, x_2 - x_0, \dots, x_n - x_0||}, x_3 - x_0, \dots, x_n - x_0|| = 1.$$

Since f preserves the n-distance 1,

$$||f(x_1) - f(x_0), f(z_2) - f(x_0), \dots, f(x_n) - f(x_0)|| = 1.$$

But it follows from $f(x_0) = f(x_1)$ that

$$||f(x_1) - f(x_0), f(z_2) - f(x_0), \dots, f(x_n) - f(x_0)|| = 0,$$

which is a contradiction. Hence f is injective.

Let
$$x_1, \ldots, x_n, y_1, \ldots, y_n \in X$$
, $k \in \mathbb{N}$ and

$$||x_1 - y_1, x_2 - y_2, \dots, x_n - y_n|| = k.$$

We put

$$z_i = y_1 + \frac{i}{k}(x_1 - y_1), \ i = 0, 1, \dots, k.$$

Then

$$||z_{i+1} - z_i, x_2 - y_2, \dots, x_n - y_n||$$

$$= \left| \left| y_1 + \frac{i+1}{k} (x_1 - y_1) - \left(y_1 + \frac{i}{k} (x_1 - y_1) \right), x_2 - y_2, \dots, x_n - y_n \right| \right|$$

$$= \left| \left| \frac{1}{k} (x_1 - y_1), x_2 - y_2, \dots, x_n - y_n \right| \right|$$

$$= \frac{1}{k} ||x_1 - y_1, x_2 - y_2, \dots, x_n - y_n|| = \frac{k}{k} = 1$$

for all $i = 0, 1, \dots, k - 1$. Since f satisfies the n-distance one preserving property,

$$||f(z_{i+1}) - f(z_i), f(x_2) - f(y_2), \dots, f(x_n) - f(y_n)|| = 1$$

for all $i=0,1,\ldots,k-1$. Since z_0,z_1 and z_2 are 2-colinear, $f(z_0),f(z_1)$ and $f(z_2)$ are also 2-colinear. Thus there is a real number t_0 such that

$$f(z_2) - f(z_1) = t_0(f(z_1) - f(z_0)).$$

By (2.4),

$$||f(z_1) - f(z_0), f(x_2) - f(y_2), \dots, f(x_n) - f(y_n)||$$

$$= ||f(z_2) - f(z_1), f(x_2) - f(y_2), \dots, f(x_n) - f(y_n)||$$

$$= ||t_0(f(z_1) - f(z_0)), f(x_2) - f(y_2), \dots, f(x_n) - f(y_n)||$$

$$= |t_0|||f(z_1) - f(z_0), f(x_2) - f(y_2), \dots, f(x_n) - f(y_n)||.$$

So we have $t_0 = \pm 1$. If $t_0 = -1$, $f(z_2) - f(z_1) = -f(z_1) + f(z_0)$, that is, $f(z_2) = f(z_0)$.

Since f is injective, $z_2 = z_0$, which is a contradiction. Thus $t_0 = 1$. Hence

$$f(z_2) - f(z_1) = f(z_1) - f(z_0).$$

Similarly, one can obtain that

$$f(z_{i+1}) - f(z_i) = f(z_i) - f(z_{i-1})$$

for all i = 2, 3, ..., k - 1. Thus

$$f(z_{i+1}) - f(z_i) = f(z_1) - f(z_0)$$

for all i = 1, 2, ..., k - 1. Hence

$$f(x_1) - f(y_1) = f(z_k) - f(z_0)$$

$$= f(z_k) - f(z_{k-1}) + f(z_{k-1}) - f(z_{k-2}) + \dots + f(z_1) - f(z_0)$$

$$= k(f(z_1) - f(z_0)).$$

Therefore,

$$||f(x_1) - f(y_1), f(x_2) - f(y_2), \dots, f(x_n) - f(y_n)||$$

$$= ||k(f(z_1) - f(z_0)), f(x_2) - f(y_2), \dots, f(x_n) - f(y_n)||$$

$$= k||(f(z_1) - f(z_0)), f(x_2) - f(y_2), \dots, f(x_n) - f(y_n)|| = k,$$

which completes the proof.

Theorem 2.6. Let $f: X \to Y$ be an n-Lipschitz mapping with n-Lipschitz constant $\kappa = 1$. Assume that if x_0, x_1, x_2 are 2-colinear then $f(x_0)$, $f(x_1)$, $f(x_2)$ are 2-colinear, and that if $x_1 - y_1, \ldots, x_n - y_n$ are linearly dependent then $f(x_1) - f(y_1), \ldots, f(x_n) - f(y_n)$ are linearly dependent. If f satisfies the n-distance one preserving property, then f is an n-isometry.

Proof. By Lemma 2.5, f preserves the n-distance k for each $k \in \mathbb{N}$. For $x_1, \ldots, x_n, y_1, \ldots, y_n \in X$, there are two cases depending upon whether $||x_1 - y_1, \ldots, x_n - y_n|| = 0$ or not. In the case $||x_1 - y_1, \ldots, x_n - y_n|| = 0$, $x_1 - y_1, \ldots, x_n - y_n$ are linearly dependent. By the assumption, $f(x_1) - f(y_1), \ldots, f(x_n) - f(y_n)$ are linearly dependent. Hence

$$||f(x_1) - f(y_1), \dots, f(x_n) - f(y_n)|| = 0.$$

In the case $||x_1 - y_1, \dots, x_n - y_n|| > 0$, there exists an $n_0 \in \mathbb{N}$ such that

$$||x_1 - y_1, \dots, x_n - y_n|| < n_0.$$

Assume that

$$||f(x_1) - f(y_1), \dots, f(x_n) - f(y_n)|| < ||x_1 - y_1, \dots, x_n - y_n||.$$

Set

$$w = y_1 + \frac{n_0}{\|x_1 - y_1, \dots, x_n - y_n\|} (x_1 - y_1).$$

Then we obtain that

$$||w - y_1, x_2 - y_2, \dots, x_n - y_n||$$

$$= \left| \left| y_1 + \frac{n_0}{\|x_1 - y_1, \dots, x_n - y_n\|} (x_1 - y_1) - y_1, x_2 - y_2, \dots, x_n - y_n \right| \right|$$

$$= \frac{n_0}{\|x_1 - y_1, \dots, x_n - y_n\|} ||x_1 - y_1, \dots, x_n - y_n\| = n_0.$$

By Lemma 2.5,

$$||f(w) - f(y_1), f(x_2) - f(y_2), \dots, f(x_n) - f(y_n)|| = n_0.$$

By the definition of w,

$$w - x_1 = \left(\frac{n_0}{\|x_1 - y_1, \dots, x_n - y_n\|} - 1\right)(x_1 - y_1).$$

Since

$$\frac{n_0}{\|x_1 - y_1, \dots, x_n - y_n\|} > 1,$$

 $w - x_1$ and $x_1 - y_1$ have the same direction. By Lemma 2.4,

$$||w - y_1, x_2 - y_2, \dots, x_n - y_n||$$

$$= ||w - x_1, x_2 - y_2, \dots, x_n - y_n|| + ||x_1 - y_1, x_2 - y_2, \dots, x_n - y_n||.$$

So we have

$$||f(w) - f(x_1), f(x_2) - f(y_2), \dots, f(x_n) - f(y_n)||$$

$$\leq ||w - x_1, x_2 - y_2, \dots, x_n - y_n||$$

$$= n_0 - ||x_1 - y_1, x_2 - y_2, \dots, x_n - y_n||.$$

By the assumption,

$$n_{0} = \|f(w) - f(y_{1}), f(x_{2}) - f(y_{2}), \dots, f(x_{n}) - f(y_{n})\|$$

$$\leq \|f(w) - f(x_{1}), f(x_{2}) - f(y_{2}), \dots, f(x_{n}) - f(y_{n})\|$$

$$+ \|f(x_{1}) - f(y_{1}), f(x_{2}) - f(y_{2}), \dots, f(x_{n}) - f(y_{n})\|$$

$$< n_{0} - \|x_{1} - y_{1}, x_{2} - y_{2}, \dots, x_{n} - y_{n}\| + \|x_{1} - y_{1}, x_{2} - y_{2}, \dots, x_{n} - y_{n}\|$$

$$= n_{0},$$

which is a contradiction. Hence f is an n-isometry.

REFERENCES

- [1] A.D. ALEKSANDROV, Mappings of families of sets, Soviet Math. Dokl., 11 (1970), 116–120.
- [2] Y.J. CHO, P.C.S. LIN, S.S. KIM AND A. MISIAK, *Theory of 2-Inner Product Spaces*, Nova Science Publ., New York, 2001.
- [3] H. CHU, K. LEE AND C. PARK, On the Aleksandrov problem in linear *n*-normed spaces, *Nonlinear Analysis Theory, Methods & Applications*, **59** (2004), 1001–1011.
- [4] H. CHU, C. PARK AND W. PARK, The Aleksandrov problem in linear 2-normed spaces, *J. Math. Anal. Appl.*, **289** (2004), 666–672.
- [5] Y. MA, The Aleksandrov problem for unit distance preserving mapping, *Acta Math. Sci.*, **20** (2000), 359–364.
- [6] B. MIELNIK AND Th.M. RASSIAS, On the Aleksandrov problem of conservative distances, *Proc. Amer. Math. Soc.*, **116** (1992), 1115–1118.
- [7] Th.M. RASSIAS, Properties of isometric mappings, J. Math. Anal. Appl., 235 (1997), 108–121.
- [8] Th.M. RASSIAS, On the A.D. Aleksandrov problem of conservative distances and the Mazur–Ulam theorem, *Nonlinear Analysis Theory, Methods & Applications*, **47** (2001), 2597–2608.
- [9] Th.M. RASSIAS AND P. ŠEMRL, On the Mazur–Ulam problem and the Aleksandrov problem for unit distance preserving mappings, *Proc. Amer. Math. Soc.*, **118** (1993), 919–925.
- [10] Th.M. RASSIAS AND S. XIANG, On mappings with conservative distances and the Mazur–Ulam theorem, *Publications Faculty Electrical Engineering, Univ. Belgrade, Series: Math.*, **11** (2000), 1–8
- [11] S. XIANG, Mappings of conservative distances and the Mazur–Ulam theorem, *J. Math. Anal. Appl.*, **254** (2001), 262–274.
- [12] S. XIANG, On the Aleksandrov–Rassias problem for isometric mappings, in *Functional Equations*, *Inequalities and Applications*, Th.M. Rassias, Kluwer Academic Publ., Dordrecht, 2003, 191–221.