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1. INTRODUCTION

Let X andY be metric spaces. A mappirfg: X — Y is called an isometry if satisfies

dy (f(2), f(y)) = dx(z,y)

forall z,y € X, wheredx(-,-) anddy (-, -) denote the metrics in the spac¥sandY’, respec-
tively. For some fixed number > 0, suppose thaf preserves distance i.e., for allz, y in X
with dx (z,y) = r, we havedy (f(z), f(y)) = r. Thenr is called a conservative (or preserved)
distance for the mapping. Aleksandrov/[1] posed the following problem:

Remark 1.1. Examine whether the existence of a single conservative distance for some map-
ping T" implies thatl" is an isometry.

The Aleksandrov problem has been investigated in several papers (see [3] — [10]). Th.M.
Rassias and P. Semil [9] proved the following theorem for mappings satisfying the strong dis-
tance one preserving property (SDOPP), i.e., for evegy € X with ||z — y|| = 1 it follows
that||f(x) — f(y)|| = 1 and conversely.
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2 CHUN-GIL PARK AND THEMISTOCLESM. RASSIAS

Theorem 1.2([9]). Let X andY be real normed linear spaces with dimension greater than
one. Suppose thgt: X — Y is a Lipschitz mapping with Lipschitz constant= 1. Assume
that f is a surjective mapping satisfying (SDOPP). Tlfeis an isometry.

Definition 1.1 ([2]). Let X be a real linear space withim X > nand|-,..., ]| : X - Ra
function. Then(X, |-, ..., ||) is called a linear.-normed space if

(nN7) |z1,...,2,|| =0 <= x4,...,z, are linearly dependent

(nN3) |z1, ..., 20| = ||z}, - .., z;,| for every permutatiofjy, . .. j,) of (1,...,n)
(nN3) oy, .. @ = [elfla, ... 2]

(nNy) e+ y,xo, ..., xn|| < @, 20, 20| + |y, 2o, - o 20|

forall« € Randallx,y, x4, ...,z, € X. The function||-, ..., || is called then-norm onX.

In [3], Chuet al. defined the notion of weak-isometry and proved the Rassias and Semrl’s
theorem in linean-normed spaces.

Definition 1.2 ([3]). We call f : X — Y a weakn-Lipschitz mapping if there is a > 0 such
that

1 (1) = F(xo), -, fwn) = [@o)| < Kllwr = o, 20 — o]

forall xg, x4, ...,2z, € X. The smallest such is called the weak-Lipschitz constant.

Definition 1.3 ([3]). Let X andY be linearn-normed spaces anfl: X — Y a mapping. We
call f a weakn-isometry if
21 = @0, .y 2 — 20|l = || f(21) = f(20), .-, f(zn) — f(0)]]
forall zg, x41,...,2, € X.
For a mappingf : X — Y, consider the following condition which is called tixeakn-
distance one preserving propertior xg, z1,...,z, € X With |1 — y1,..., 2, — yn|| = 1,
[ (21) = flzo), -, flan) = flao)| = L.

Theorem 1.3([3])). Let f : X — Y be a weakn-Lipschitz mapping with weak-Lipschitz
constantx < 1. Assume that ik, zy, ..., z,, are m-colinear thenf(xo), f(z1), ..., f(zm)
are m-colinear, m = 2,n, and thatf satisfies the weak—distance one preserving property.
Thenf is a weakn-isometry.

In this paper, we introduce the conceptrefsometry which is suitable for representing the
notion of n-distance preserving mappings in lineanormed spaces. We prove also that the
Rassias and Semrl theorem holds under some conditions WhamdY™ are linearn-normed
spaces.

2. THE ALEKSANDROV PROBLEM IN LINEAR n-NORMED SPACES
In this section, lefX andY” be linearn-normed spaces with dimension greater than 1.

Definition 2.1. Let X andY be linearn-normed spaces and: X — Y a mapping. We calf
ann-isometry if

|21 = y1, - 2 =yl = |f (1) = f(y1), - f(@n) = F(a)l

forall z(,...,z,,y1,...,y, € X.
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For a mappingf : X — Y, consider the following condition which is called thedistance
one preserving property For xy, ..., vy1,. .., yn € X With ||y — y1,..., 2 — yul| = 1,

1f(z1) = f(yr), -, flan) = flun)ll = 1.

Lemma 2.1([3, Lemma 2.3]) Letzq, zo, ..., z, be elements of a lineat-normed spaceX
and~ a real number. Then

|Z1, o @iy gy Tl = 21, Ty T YT T
forall 1 <i#j <n.
Definition 2.2 ([3]). The pointsxzg, x4, ..., x, of X are said to be:-colinear if for everyi,
{x; —x; | 0 < j#1i<n}islinearly dependent.
Remark 2.2. The pointszg, z; andz, are 2-colinear if and only ifxy — xy = t(x; — ) for
some real number.

Theorem 2.3.Let f : X — Y be a weak:-Lipschitz mapping with weak-Lipschitz constant
rk < 1. Assume that ik, z1, ..., z,, are m-colinear thenf(z), f(z1), ..., f(z,,) are m-
colinear, m = 2, n, and thatf satisfies the weak—distance one preserving property. Thén
satisfies

21 =150 = yall = (1 (1) = Foa), s fan) = Fyn)l

forall z1,...,2,,y1,...yn € X Withzy, 31, y; 2-colinear forj = 2,3,...,n
Proof. By Theorenj 1.3/ is a weakn-isometry. Hence
(2.1) a1 =y, s =yl = [1f(21) = FQ), - Flan) = )]

forall z{,...,z,,y € X.
If x1,91,y, € X are 2-colinear then there exist$ & R such thaty; — y» = t(y; — x1). By

Lemmd 2.1,
H$1 — Y1, T2 —Y2,...,Tp —?JnH = ||961 — Y1, ($2 - yl) + (y1 - yz),---,xn - ynll
= |lz1 —y1, (x2 — 1) + (=) (1 — 1), - -, Tn — Ya|

= [lz1 =y, 12— Y1, .., Tn — Yn|

forall x1,..., 2., 41,...,y. € X With 1, y1, yo 2-colinear. By the same method as above, one
can obtain that ifc1, y,, y; are 2-colinear foy = 3,...,n then
(2.2) |21 = y1, 22 — Y2.23 — Y3, -, T — Ya|

= |lz1 — Y1, 20 — Y1, 73 — Y35+, T — Ya|

= |lz1 —y1, %2 — Y1, T3 — Y1, -, T — Ynl|

= =T =y, T2 — Y1, 13— Y1, ., Tn — Y1
forall zy,..., 2., y1,. ..y, € X With 2, y;,y; 2-colinear forj = 2,3,...,n

By the assumption, ift1,y;,y2 € X are 2-colinear therf(z), f(y1), f(y2) € Y are 2-
colinear. So there existstac R such thatf(y;) — f(y2) = ¢(f(y1) — f(x1)). By Lemma

1 (@1) = fQyn), fz) = f(ya), o flan) = S ya)

= [ (1) = Fyn), (f(w2) = Fy)) + (F(yn) = F(w2)), -5 f(n) = Fyn)

= [ (x1) = fly), (f(2) = fly) + (O (@1) = Fa), - flan) = Fyn)l
= [[f (@) = (), f2) = flyr), - flan) = Syl
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forall z1,...,zn,y1,...,yn € X With 2,y;,y, 2-colinear. Ifzq,y,,y; are 2-colinear for
Jj=3,....,nthenf(xy), f(v1), f(y;) are 2-colinear foyj = 3,...,n. By the same method as
above, one can obtain thatfifz,), f(v1), f(y,) are 2-colinear foy = 3,...,n, then

f

(23) Hf(xl) - f(y1)7 f(x2> - f(y2)7 (1‘3) - f(y3)7 s 7f( ) f(yn>H
= ||f(z1) = fly), f(z2) = flyn), f(x3) — fyz), -y fxn) = f(yn)]l
= If(z1) = f(y1), f(z2) = f(wn), flxs) = fya), - flan) = fyn)ll

== Hf(xl) - f(y1)af($2) - f(?h)?f(l'?;) - f(y1)7 - '7f(xn) - f(yl)”
forall zy,..., 2., y1,. ..y, € X With 2, y;,y; 2-colinear forj = 2,3,...,n

By (2.3), (2.2) and[(Z]3),
lor =y, = all = 1f (1) = Fya)s s flan) = Flya)

forall zy,...,z,,y1,...y, € X With 2, y;, y; 2-colinear forj = 2,3, ..., n. 0

Now we introduce the concept afLipschitz mapping and prove that thelipschitz map-
ping satisfying the:-distance one preserving property israirsometry under some conditions.

Definition 2.3. We call f : X — Y ann-Lipschitz mapping if there is a > 0 such that

1f (@) = f(ya)s -, f(@n) = flun)ll < 6ller =1, 20 — val
forall x1,..., 2., y1,...,y, € X. The smallest such is called then-Lipschitz constant.

Lemma 2.4 ([3, Lemma 2.4]) For =1,z € X, if z; andz] are linearly dependent with the
same direction, that i3r;'1 = aux; for somea > 0, then

|

forall zo,..., 2, € X.

T +£U,1,$2,...,£L'n = ||z1, 29, ..., x| + H:zcll,xQ,...,:zan

Lemma 2.5. Assume that ifcy, z; and z, are 2-colinear thenf(zo), f(x1) and f(z,) are 2-
colinear, and thatf satisfies then-distance one preserving property. Thérpreserves the
n-distancek for eachk € N.

Proof. Suppose that there exist, z; € X with zy # x; such thatf(xq) = f(z;). Since
dim X > n, there arer,,...,x, € X such thatr; — zo, 22 — g, ..., x, — xo are linearly
independent. Sinckr, — zg, x2 — 2o, ..., T, — xo|| # 0, we can set

o — X

29 1= To + .
2 0 |x1 — zo, xa — xo, .. ., Tp — To|

Then we have
||£701 — X, 22 — Lo, L3 — To,...,Tn —1‘0||

T2 — T

T1 — Xo, T3 = T0y---5Tn — T

|x1 — 2o, T — o, .. ., Tp — To|
Sincef preserves the-distance 1,

1 (21) = f (o), f(22) = f(@o), ., flan) = flzo)l] = 1.
But it follows from f(x¢) = f(z;) that

[f(z1) = f(@0), f(22) = fl@o), ... fan) — flzo)|| =0,
which is a contradiction. Hencgis injective.
Letzy,...,z0,y1,...,yn € X, k € Nand

|lz1 — 1,22 — Y2, .., 0 — Y| = .
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We put
1 )
Zz:yl_l'%(xl_yl)a i=0,1,...,k.
Then
| Zig1 — 2is®2 — Y2, - - - s T — Yn||
1+1 1
2 (r1 — 1) — y1+E($1—yl) y X2 = Y2505 Tn — Yn
1
= HE(% — Y1), T2 = Y2y T — Yn
1 k
= EHiCl—yl,mg—yg,...,l'n—ynH = E =1
foralli =0,1,...,k — 1. Sincef satisfies the:-distance one preserving property,
(2.4) 1f(zis1) = fzi), f(m2) = f(y2), s flan) — Flyn)l =1

foralli = 0,1,...,k — 1. Sincez, z; andz, are 2-colinearf(z), f(z1) and f(z») are also
2-colinear. Thus there is a real numbgsuch that

f(z2) = f(21) = to(f(21) — f(20))-
By 2.4).
1/ (z1) = f(z0),f(x2) = f(y2), -, flan) = f(yn)ll
= £ (z2) = f(z1), f@2) = f(w2), - - fl@n) = Flum)l
= llto(f(21) = f(20)): f@2) = fy2), -, f@n) = ()l
= ltolllf(21) = f(20), f22) = fy2), - flaa) = fyn)l-
Sowe have, = 1. If to = —1, f(22) — f(21) = —f(21) + f(z ) that is,
f(22) = f(20).
Sincef is injective,z, = 2y, which is a contradiction. Thug = 1. Hence
f(z2) = f(21) = f(21) = f(20)-
Similarly, one can obtain that
f(ziv1) = f(zi) = f(2) — f(zim1)
foralli =2,3,...,k— 1. Thus
f(zig1) = f(z1) = f(z1) = f(20)
foralli=1,2,...,k — 1. Hence
f(z1) = f(y1) = f(2) = f(20)
= f(2x) = f(2e-1) + f(2-1) — f(2e—2) + -+ + [(21) — f(20)

Therefore,
||f({L‘1) - f(yl)af(xQ) - f(g/Q)a cee ,f(l'n) - f(yn)H
= [[k(f(z1) = f(20)), [(22) = [(y2)s -, [(@n) — fyn)l
= k[[(f(21) = f(20)), f(w2) = f(y2)s -, fmn) — [(ya)ll = K,

which completes the proof. O
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Theorem 2.6.Let f : X — Y be ann-Lipschitz mapping witle-Lipschitz constank = 1.
Assume that ifco, 21, zo are 2-colinear thenf(zy), f(x1), f(z2) are 2-colinear, and that if
r1—Y1,..., Ty — Yy, are linearly dependent thef(x,) — f(v1), ..., f(z,) — f(y,) are linearly
dependent. If satisfies the.-distance one preserving property, théis ann-isometry.

Proof. By Lemmd 2.5 f preserves the-distance: for eachk € N. Forzy, ..., 2., y1,...,yn €

X, there are two cases depending upon whefther v, ..., x, — y,|| = 0 or not. In the case
|lz1 —v1,- 20 — Yl = 0, 21 — 1, ..., 2, — y, are linearly dependent. By the assumption,
f(z1) = fy1),..., f(zn) — f(yn) are linearly dependent. Hence

1/ (1) = (), - flan) = fya)ll = 0.

In the casé|z; — y1,...,x, — ys|| > 0, there exists an, € N such that

H$1 —Yi,...,Tn _ynH < Np.

Assume that

1) = f(y)s s Flan) = Flun)ll < llze =y =yl

Set
n
w=1y + ’ (x1 —11).
Hxl —Y1,---,Tn _ynH
Then we obtain that
||’U)—y1,l'2 —Y2,...,Tp _yTLH
n
=|ly1 + 0 (1 — 1) — Y1, T2 — Y2, -, Ty — Un
”371 — Y1, Tp — ynH
n
== 0 ||x1_y17"-axn_yn”:no-
Hxl — Y, Tp — ynH

By Lemmd 2.5,
1 (w) = (), f(22) = fy2), - flan) = fyn)l| = 1o
By the definition ofw,
Ny

w—JTl:( —1)(271—@/1).
”xl_yla"'axn_ynu

no
||$1 — Yy, Tp _ynH

w — z; andz; — y; have the same direction. By Lemina]2.4,

Since

> 1,

||w—yh$2—y2,---7$n—yn|’
= Hw_xb@_y%-'-axn_ynu +Hml_ylax2_y2>"'7xn_ynH'
So we have
[f(w) = f(21),f(22) = f(ya), s f(@n) = fya)l
S ||w—$1,172—927---7517n_?/n||

=N — ||x1—yl,xz—yQ,..-,xn—ynH-
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By the assumption,

no = |[f(w) = f(y1), f22) = f(ya), - flan) = fun)l
< [ f(w) = f(@a), f(@2) = f(y2), -, f@n) = fyn)]]
+ Hf(xl) - f(y1)7 f(x2) - f<y2>7 s 7f<xn) - f(yTL)H

<ng—||T1 =y, %2 — Yo, T — Yul| F |21 — Y1, T2 — Y2u oo 0 — Y|
= Ny,
which is a contradiction. Hencgis ann-isometry. O
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