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ABSTRACT. In this note our aim is to present some Jordan-type inequalities for generalized
Bessel functions in order to extend some recent results concerning generalized and sharp versions
of the well-known Jordan’s inequality.
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1. I NTRODUCTION AND PRELIMINARIES

The following inequality is known in the literature as Jordan’s inequality [8, p. 33]

2

π
≤ sin x

x
< 1, 0 < x ≤ π

2
.

This inequality plays an important role in many areas of mathematics and it has been studied

by several mathematicians. Recently many authors including, for example A. McD. Mercer, U.

Abel and D. Caccia [7], F. Yuefeng [17], F. Qi and Q.D. Hao [10], L. Debnath and C.J. Zhao [5],

S.H. Wu [15], J. Sándor [12], X. Zhang, G. Wang and Y. Chu [18], L. Zhu [19, 20], A.Y. Özban

[9], S. Wu and L. Debnath [16], W.D. Jiang and H. Yun [6] (see also the references therein)

have improved Jordan’s inequality. For the history of this the interested reader is referred to the

survey articles of J. Sándor [13] and F. Qi [11].

In a recent work [2] we pointed out that the improvements of Jordan’s inequality can be con-

fined as particular cases of some inequalities concerning Bessel and modified Bessel functions.
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Our aim in this paper is to continue our investigation related to extensions of Jordan’s inequal-

ity. The main motivation to write this note is the publication of S. Wu and L. Debnath [16],

which we wish to complement. For this let us recall some basic facts about generalized Bessel

functions.

The generalized Bessel function of the first kindvp is defined [4] as a particular solution of

the generalized Bessel differential equation

x2y′′(x) + bxy′(x) +
[
cx2 − p2 + (1− b)p

]
y(x) = 0,

whereb, p, c ∈ R, andvp has the infinite series representation

vp(x) =
∑
n≥0

(−1)ncn

n!Γ
(
p + n + b+1

2

) · (x

2

)2n+p

for all x ∈ R.

This function permits us to study the classical Bessel functionJp [14, p. 40] and the modified

Bessel functionIp [14, p. 77] together. Forc = 1 (c = −1 respectively) andb = 1 the

functionvp reduces to the functionJp (Ip respectively). Now the generalized and normalized

(with conditionsup(0) = 1 andu′p(0) = −c/(4κ)) Bessel function of the first kind is defined

[4] as follows

up(x) = 2pΓ (κ) · x−p/2vp(x
1/2) =

∑
n≥0

(−c/4)n

(κ)n

xn

n!
for all x ∈ R,

whereκ := p+(b+1)/2 6= 0,−1,−2, . . . , and(a)n = Γ(a+n)/Γ(a), a 6= 0,−1,−2, . . . is the

well-known Pochhammer (or Appell) symbol defined in terms of Euler’s gamma function. This

function is related in fact to an obvious transform of the well-known hypergeometric function

0F1, i.e. up(x) = 0F1(κ,−cx/4), and satisfies the following differential equation

xy′′(x) + κy′(x) + (c/4)y(x) = 0.

Now let us consider the functionλp : R → R, defined by

λp(x) := up(x
2) =

∑
n≥0

(−c/4)n

(κ)n

x2n

n!
.

It is worth mentioning that ifc = b = 1, thenλp reduces to the functionJp : R → (−∞, 1],

defined by

Jp(x) = 2pΓ(p + 1)x−pJp(x).

Moreover, ifc = −1 andb = 1, thenλp becomesIp : R → [1,∞), defined by

Ip(x) = 2pΓ(p + 1)x−pIp(x).
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For later use we note that in particular (forp = 1/2, p = 3/2 respectively) the functionsJp and

Ip reduce to some elementary functions, like [14, p. 54]

J 1
2
(x) =

√
π

2x
· J 1

2
(x) =

sin x

x
,(1.1)

J 3
2
(x) =

3

x

√
π

2x
· J 3

2
(x) = 3

(
sin x

x3
− cos x

x2

)
,

I 1
2
(x) =

√
π

2x
· I 1

2
(x) =

sinh x

x
,(1.2)

I 3
2
(x) =

3

x

√
π

2x
· I 3

2
(x) = −3

(
sinh x

x3
− cosh x

x2

)
.

2. EXTENSIONS OF JORDAN ’ S I NEQUALITY TO BESSEL FUNCTIONS

The following theorems are extensions of Theorem 1 due to S. Wu and L. Debnath [16] to

generalized Bessel functions of the first kind.

Theorem 2.1. If κ > 0 andc ∈ [0, 1], then for all0 < x ≤ r ≤ π/2 we have

λp(r) +
c

2κ
x(r − x)λp+1(r) +

[
1− λp(r)

r2

]
(r − x)2

≤ λp(x) ≤ λp(r) +
c

4κ
(r2 − x2)λp+1(r)−

c

4κ
r(r − x)2λ′p+1(r).

Moreover, ifκ > 0 and c ≤ 0, then the above inequalities hold for all0 < x ≤ r, and

equality holds if and only ifx = r.

Proof. Whenx = r, clearly we have equality. Assume thatx 6= r and fixr. Let us consider the

functionsϕ1, ϕ2, ϕ3, ϕ4 : (0, r) → R, defined by

ϕ1(x) := λp(x)− λp(r)−
c

4κ
(r2 − x2)λp+1(r), ϕ2(x) :=

(
1− x

r

)2

,

ϕ3(x) := λp+1(r)− λp+1(x) and ϕ4(x) := 1− r

x
.

Then we have

ϕ′
1(x)

ϕ′
2(x)

=
cr2

4κ
· ϕ3(x)− ϕ3(r)

ϕ4(x)− ϕ4(r)
and

ϕ′
3(x)

ϕ′
4(x)

=
x2ϕ′

3(x)

r
.

Here we applied the derivative formula

(2.1) λ′p(x) = − cx

2κ
λp+1(x),

which follows immediately from the series representation ofλp. Suppose thatc ∈ [0, 1]. It is

known [3] that the functionJp is decreasing and concave on[0, π/2] whenp ≥ −1/2. On

the other hand,λp(x) = Jκ−1(x
√

c) and thusλp is decreasing and concave on[0, π/2] when

κ ≥ 1/2. From this we obtain thatϕ3 is increasing and convex whenκ > 0. Thusϕ′
3/ϕ

′
4 is

increasing too as a product of two positive and increasing functions. Using the monotone form
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of the l’Hospital rule due to G.D. Anderson, M.K. Vamanamurthy and M. Vuorinen [1, Lemma

2.2] we obtain thatϕ′
1/ϕ

′
2 is also increasing on(0, r).

Now assume thatc ≤ 0. Then clearlyϕ3 is decreasing and concave, since all coefficients

of the corresponding power series are negative. Consequentlyϕ′
3/ϕ

′
4 is decreasing and hence

ϕ′
1/ϕ

′
2 is increasing on(0, r). Using again the monotone form of the l’Hospital rule [1, Lemma

2.2] this implies that the functionφ1 : (0, r) → R, defined by

φ1(x) :=
ϕ1(x)− ϕ1(r)

ϕ2(x)− ϕ2(r)
,

is increasing. Moreover from the l’Hospital rule we obtain that

φ1(0
+) = 1− λp(r)−

cr2

4κ
λp+1(r) and φ1(r

−) = −cr3

4κ
λ′p+1(r).

Hence for allκ > 0, c ∈ [0, 1] and0 < x ≤ r ≤ π/2 we have the following inequality:

φ1(0
+) ≤ φ1(x) ≤ φ1(r

−). Moreover, whenκ > 0, c ≤ 0 and0 < x ≤ r, the above inequality

also holds, hence the required result follows. �

Theorem 2.2. If κ > 0 andc ∈ [0, 1], then for all0 < x ≤ r ≤ π/2 we have

λp(r) +
c

4κ
(r2 − x2)λp+1(r)−

c

16κr
(r2 − x2)2λ′p+1(r)

≤ λp(x) ≤ λp(r) +
c

4κ

x2

r2
(r2 − x2)λp+1(r) +

[
1− λp(r)

r4

]
(r2 − x2)2.

Moreover, ifκ > 0 and c ≤ 0, then the above inequalities are reversed for all0 < x ≤ r,

and equality holds if and only ifx = r.

Proof. The proof of this theorem is similar to the proof of Theorem 2.1, so we sketch the proof.

Let us consider the functionsϕ5, ϕ6 : (0, r) → R, defined by

ϕ5(x) :=

(
1− x2

r2

)2

and ϕ6(x) := x2 − r2.

In view of (2.1), easy computations show that

ϕ′
1(x)

ϕ′
5(x)

=
cr4

8κ
· ϕ3(x)− ϕ3(r)

ϕ6(x)− ϕ6(r)
and

ϕ′
3(x)

ϕ′
6(x)

= −
λ′p+1(x)

2x
=

c

4(κ + 1)
λp+2(x).

Suppose thatc ∈ [0, 1]. Sinceλp is decreasing on[0, π/2] whenκ ≥ 1/2, we get thatϕ′
3/ϕ

′
6

is decreasing on(0, r), whenκ > 0. Thus from the monotone form of the l’Hospital rule [1,

Lemma 2.2],ϕ′
1/ϕ

′
5 is also decreasing on(0, r).

Now assume thatc ≤ 0. Then clearlyϕ′
3/ϕ

′
6 is decreasing and consequentlyϕ′

1/ϕ
′
5 is in-

creasing on(0, r). Now consider the functionφ2 : (0, r) → R, defined by

φ2(x) :=
ϕ1(x)− ϕ1(r)

ϕ5(x)− ϕ5(r)
.
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Then from the monotone form of the l’Hospital rule [1, Lemma 2.2], we conclude thatφ2 is

decreasing whenκ > 0 andc ∈ [0, 1], and is increasing whenκ > 0 andc ≤ 0. In addition,

from the usual l’Hospital rule we have thatφ2(0
+) = φ1(0

+) and4φ2(r
−) = φ1(r

−). Now for

all κ > 0, c ∈ [0, 1] and0 < x ≤ r ≤ π/2, using the inequalityφ2(0
+) ≥ φ2(x) ≥ φ2(r

−), the

asserted result follows. Finally, whenκ > 0, c ≤ 0 and0 < x ≤ r the above inequalities are

reversed. Thus the proof is complete. �

Remark 1. First note that takingc = b = 1 and p = 1/2 in Theorems 2.1 and 2.2 and

using (1.1), we reobtain the results of S. Wu and L. Debnath [16, Theorem 1], but just for

0 < x ≤ r ≤ π/2. Moreover, the inequalities in Theorem 2.2 are improvements of inequalities

established in [2, Theorem 5.14]. More precisely in [2, Theorem 5.14] we proved that ifκ > 0,

c ∈ [0, 1] and0 < x ≤ r ≤ π/2, then

(2.2) λp (r) +
[( c

4κ

)
λp+1 (r)

]
(r2 − x2) ≤ λp(x) ≤ λp (r) +

[
1− λp(r)

r2

]
(r2 − x2).

Easy computations show that

− c

16κr
(r2 − x2)2λ′p+1(r) ≥ 0,

c

4κ

x2

r2
(r2 − x2)λ′p+1(r) +

[
1− λp(r)

r4

]
(r2 − x2)2 ≤

[
1− λp(r)

r2

]
(r2 − x2),

whereκ > 0, c ∈ [0, 1] and0 < x ≤ r ≤ π/2. Thus Theorem 2.2 provides an improvement of

(2.2).

Finally takingc = −1, b = 1 andp = 1/2 in Theorems 2.1 and 2.2 and using (1.2), we

obtain the hyperbolic counterpart of Theorem 1 due to S. Wu and L. Debnath [16].

Corollary 2.3. If 0 < x ≤ r, then

sinh r

r
+

1

2

(
sinh r

r
− cosh r

) (
1− x2

r2

)
− 3

2

(
−1

3
r sinh r + cosh r − sinh r

r

) (
1− x

r

)2

≥ sinh x

x
≥ sinh r

r
+

1

2

(
sinh r

r
− cosh r

) (
1− x2

r2

)
+

3

2

(
2

3
+

cosh r

3
− sinh r

r

) (
1− x

r

)2

,

where the equality holds if and only ifx = r and the values

3

2

(
2

3
+

cosh r

3
− sinh r

r

)
and

3

2

(
−1

3
r sinh r + cosh r − sinh r

r

)
are the best constants. Moreover,

sinh r

r
+

1

2

(
sinh r

r
− cosh r

) (
1− x2

r2

)
− 3

8

(
−1

3
r sinh r + cosh r − sinh r

r

) (
1− x2

r2

)2

≥ sinh x

x
≥ sinh r

r
+

1

2

(
sinh r

r
− cosh r

) (
1− x2

r2

)
+

3

2

(
2

3
+

cosh r

3
− sinh r

r

) (
1− x2

r2

)2

,

where equality holds if and only ifx = r and the values

−3

8

(
−1

3
r sinh r + cosh r − sinh r

r

)
and

3

2

(
2

3
+

cosh r

3
− sinh r

r

)
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are the best constants.
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