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ABSTRACT. This note gives a simple method for obtaining inequalities for ratios invol$ing
log-convex functions. As an example, an inequality for Wallis’s ratio of Gautchi-Kershaw type
is obtained. Inequalities for generalized means are also considered.

Key words and phrasednequalities, Logarithmic derivative, Convexity, Gamma function, Digamma function, Extended
means.

2000Mathematics Subject Classificat 083B15, 26A51, 26A48, 26D20.

1. INTRODUCTION

This paper studies inequalities for positive real valdeldg-convex (and3-log-concave)
functions. As has become customary (see for instande [23] and [31]), we refer to a function
f as3-log-convex on the intervél, b) if f is positive and-times differentiable orta, b) and
[In(f(¢))]"” > 0fort € (a,b) (f is referred to ag-log-concave if instea@n(f(¢))]” < 0). In
particular, suppose thatis a positive differentiable function defined on the interivalb), and
let i be the logarithmic derivative af, i.e.

(1.1) h(x) = L4

for z € (a,b).
We will prove the following.

Theorem 1.1. Suppose that forn < = < b, g(x) > 0, h = ¢'/g is twice differentiable and
h'(z) > 0. SetR(z) = gla+b—z)/g(x). Then

a+b(p_ atb _
(1.2) R(b—)e(*2)0=2) < R(z) < R(a+)e2(*2") (=)
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and
(1.3) R(a+)e(h(a+)+h(bf))(a7w) < R(z) < R(b_>€(h(a+)+h(b7))(bfx).

for a < x < b, where it is assumed that all four of the one-sided limii{g,+), R(a+), h(b—)
and R(b—) exist and are finite.

In addition, if insteady(z) > 0 andh”(z) < 0 for a < = < b then the inequalities if (1.2)
and [1.3) are reversed.

To see where one might apply Theorem]| 1.1, consider the fungtidefined viag(z) =
I'(A+x), whereA > 0 andI' is the well-known Euler’s gamma function. We hayer)/g(x) =
V(A + x), whereV is the digamma function (cfl_[2] 3]). It is well-known (see for instance [9])
that ¥ is concave or{0, o). Hence Theorerp 1.1 is applicable. In Secfipn 3, below, we will
prove the following.

Theorem 1.2. Suppose thal < s < 2 andv > 0, then

S\ _p(vsstl I'(v+1) 1
1.4 2) el < <
(1.4) <U+2)€ " Tw+s) T v+

and
(1.5) L (vCrs)rdy) 0-5) _T+1)

< (v 3y (HerDra)s

Note that the inequalities if (1.4) arjd ([1.5) hold in the raige s < 2 which is somewhat
uncustomary for results of this type for the rati ) ) which tend to hold for) < s < 1
(although reversed inequalities hold for< s < 2) (see [10/ 1B]). Some comparisons are
provided in Sectiof]3.

We remark that recently many functions have been shown to be logarithmically completely
monotone (see for instancel [4,[7,.8] 19| 20,124, 25, 27]). Such functions have, in particular,
convex (or concave) logarithmic derivatives and hence Theprgm 1.1 is applicable in these cases.

The remainder of the paper proceeds as follows. In Seftion 2, we provide a simple proof
of Theorenj 1LJL. Sectidn 3 is devoted to applications including a proof of Thgorém 1.2 and an
inequality for generalized means.

2. PROOF OF THEOREM [1.]
In this short section we provide a proof of Theorjenj 1.1.
Proof of Theorern 1]1First, supposé”(z) > 0 for = € (a,b), and forlW € R, definefy via
fw(z) = R(z)e"™.

Then, we have
log(fw(z)) = log(g(a+b—x)) —log(g(x)) + Wz

and
2.1) <L log(fi()) = W — (h(e) + hla-+b— ) = W ~ V(z),
whereV (z) = h(z) + h(a + b — x).
Now, forz € (a, %), z < a + b — 2 and hence sinck’(z) > 0, '(z) < k'(a +b— z) and
thus
(2.2) V'(z) =h(x)—h(a+b—12) <0.
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3-LOG-CONVEX FUNCTIONS 3

Similarly, forz € (%42,b), z > a + b — z and hence
(2.3) V'(z) =h(x)—h'(a+b—1x) > 0.
Combining [2.2) and (2]3) gives that fore (a,b),

b
v(@')gw@gvmﬂ:qu.
Employing [2.1) we then have thd, is nondecreasing ofw, b) for W = V(a+) and nonin-
creasing or{a, b) for W = V (%4*). The inequalities in (1]2) anfi (1.3) then follow. The case
h"(z) < 0 follows similarly, and the result is proven. O

3. APPLICATIONS

3.1. Inequalities of Gautschi-Kershaw type. Inequalities for the ratid'(v+1) /T'(v+ s) have
been studied extensively by many authors; for results and useful references, see[L, 6, 10, 12,
14,15,18| 20, 21, 22, 25,127,130, 32].
To see how Theoren 1.2 follows from Theorem 1.1,(8ek) = (0,1) andg(z) = I'(A+x).
Then, note thab(z) = U(A + z), h(1/2) = ¥ (A + 1),

1
h(0+) + h(1=) = U(A) + U(A+1) =2¥(A) + T
o TA+l-a) 1
R(1-) RS A
and
B MNA+1—2)
R(0+) xlir(l)lJr D(A+z)
Employing [1.2) and (1]3), sinde’(z) < 0, we have
_ FNA+1—-xz) 1 _
_ 2U(A+1/2)z < < L 2U(A+1/2)(1-2)
(3.1) Ae - TA+a2) — A€
and
1 AN F(A +1 - ZL‘) _ 1
_ ~ QA+ () L AT T 2(T(A)+4)
(3.2) a° S Ay S '

for 0 < 2 < 1. Theorenj 12 then follows upon substitutiig= v + s/2 andz = s/2.
From Kershaw([14], we have that for< s < 1,

(3.3) (1-9v(orvs) < LD ase(urs)
['(v+s)
and

sy1= _ T(v+1) I R
(3.4) <v—|—§> SF(U+S)§<U—§+ s+1> .

In [10,[13], it was proven that the inequalities in (3.3) and](3.4) are reversdd<for < 2.

Computations suggest that the upper bounflirj (1.5) is an improvement on both upper bounds
in (3.3) and|(3.}4) for smakt and that the lower bound ifi (1.5) is an improvement on the lower
bounds implied by (3]3) andl (3.4) fernear2. Let L, U, Lo, U, denote the lower and upper
bounds in|(3.8) and (3.4), respectively abfl U}, L3, U5 denote the lower and upper bounds
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Table 3.1: Numerical comparisons

| (v, s) | (L,1/49) ] (1,7/4) |

[ T(v+1)/T(v+s)]1.103262651 | 0.6217515729 |

L, 1.027745410 | 0.6317370766
Ly 1.092356486 | 0.6240926184
U, 1.116801087 | 0.6188110780
Us 1.151620182 | 0.6144792307
Ly 1.084327768 | 0.6118384856
L 0.980328638 | 0.6204985722
Uy 1.150246913 | 0.6258631306
U 1.109373110 | 0.6498406288

in (I.4) and [(1.p), respectively. Comparison data is given in Table 3.1 fer 1 ands <

{1/4,7/4}. We have in particular that fdw, s) = (1,1/4)

L2<L1<L1<L2<F(U—+S;<UQ<U1<U2<U1,
while for (v, s) = (1,7/4)
I'(v+1)

Li<Uy<U <Li<

[(v+s)

<Ly < Uy <Ly <Uj.

In the first case, the best of the four upper bounds is givelibfthe right hand side of (11.5))
while in the second case the best lower bound is givehjfthe left hand side of (1]5)).

Recently, there have been some improvements obtained on the inequalities in (3.3). In par-
ticular, results in[[21] and [29] (see also [22] 30| 32]) give thatfer s < 1,

(3.5)

e(l—s)\D(L(’U—i—l,v—l—s)) <

F(v+1) < (1= WUH1+s)
“Tv+s) —

whereL(a,b) = (b —a)/(Inb —1na) andI(a,b) = e *(b°/a®)'/*~ are the logarithmic and
exponential means, respectively. Again considetirg 1, it can be noted that for smail> 0,

the lower bound in[(T]4)L7, is an improvement on that ifi (3.5) and the upper bounflir} (1.5),
Us, is an improvement on that i (3.5). In fact, denoting the lower and upper bour{ds]in (3.5)
by L3 and Us, respectively, we havé'(2)/I'(1) = 1 andlim, o+ L5 = 1 = lim,_ o+ U},

It is interesting to note that fofv,s) = (1,1/4),
computations similar to those above display thatprovides a modest improvement ofjf

while lim, oLs < 1 < lim5_>0+ Us.

(Us = 1.106505726), but for (v, s) = (1, s) with s near zero we have

['(2)
I'(1+s)

As noted in[21, 29]{/5 is a refinement of/; and L5 is a refinement of;.

Values for(v, s) = (1,0.02) and(v, s) = (1,0.10) are given in Tablg 3]2.

Many functions related to th€ function have recently been shown to be logarithmically
completely monotone. As mentioned earlier, strong bounds may be attained in these cases as
well, via Theorenj 1]1.

<U; <Uy<Us<U <Uy.
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Table 3.2: Numerical comparisons

| (v, 5) |

(1,0.02)

[ (0,0.10)

|

| T(v+1)/T(v+s)]|1.011281653 | 1.051137006 |

L, 0.6986450960 | 0.8729765884
Ly 1.009799023 | 1.044889510
Uy 1.045903237 | 1.076807140
Uy 1.019219191 | 1.082081647
Ly 1.009075328 | 1.041402026
L 0.8690926716 | 0.9139917416
Uy 1.084075243 | 1.113415941
U 1.011330762 | 1.052276188
Ls 0.9941107436 | 1.038103958
Us 1.020141278 | 1.057551215

4. INEQUALITIES FOR FUNCTIONS OF THE FORM (v* — u®)/x

In [17,134/33], functions of the form

(4.1)

F(2) = fun(z) = / " s =

T T

v —Uu

X

forv > u > 0 andx # 0 were studied. Among other results, it was shown_in [33] tha
completely monotonic ofi—oo, +o0) for 0 < u < v < 1. As of the time of submission, we
are unaware of any proof thgtpossesses a concave logarithmic derivativepforu > 0 and
0 < z < 1, hence we will prove that here and apply Theofem 1.1 in order to obtain some new
inequalities for the ratios of the forgh(v — z)/ f(x).}|
In [33] It was shown that
flz+7) S (u+v)7
fl)  —

> (uv)/2.

fory> 1,z > 0and0 < u < v, and

f(x+7)
f(z)

Here we will prove the following via Theorem 1.1.

2

Theorem 4.1. Suppos® < u < v and0 < z < 1. Then

Vv—U —ox M,@
4.2 G e G =
(4.2) In(v) — ln(u)6
< fu,v(l - «T)
Juw(T)
< In(v) — ln(u)g(l*@(wﬁ)
v—u

IFollowing submission of the original manuscript for this paper, F. Qi and B.-N. Guo [28] announced some
results which extend our Lemrha }4.3, below.
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Figure 4.1: Plots ofR(z) = fu.(1 — x)/fu.(x) along with the bounds given in Theorgm|4.1 foe (0,1)
and (u,v) = (.5,1) (Figure (a)) and(w, v) = (1, 20) (Figure (c)). The absolute errors are plotted in (b) and (d),
respectively.

and
(4.3) n(v) —In(w) g (Er=ning-Gu—nine ;)
v—Uu
< fu,v(l - Ilf)
Juw(T)
V—U —x (Bv—u) ln(v)vi(jyfv) 1“(”),1)

= (o) —In(u)

Plots comparing the quantities in (4.2) apd [4.3), ferv) = (0.5,1) and (u,v) = (1,20)
are given in Figurg|4.
We first prove the following two simple lemmas.

Lemma 4.2. Definep via

ply) = (1 —y) (i—ZG_Qy - 1) .

Thenp(y) > 0fory > 0, p(y) < 0fory < 0, andp(0) = 0.
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Proof. We have

Py)=1-(1+2y)e™, and p'(y) =dye ™.
The result follows upon noting that(y) > p’(0) = 0, and hence thai(y) is monotone non-
decreasing foy € R; the only root isy = 0. OJ

Lemma 4.3. The functionf, ., defined as in[(4]1) has a concave logarithmic derivative (with
respect tor) for 0 < u < vand0 < z < 1.

Proof. First note that by dividing through by”, it suffices to show the result far = 1 and
u =t < 1. We then have
f'(z) t"Int 1

4.4 h(z) = __ -
(@.4) R
oy (mer 1
e (14 1) 2
)2t (1 +t*
W (z) = -
(I’) (1 _ ta:)?) ZL'3
Note that
On"(z)  (Int)*t"(3t* — 3 — xt* Int — xInt — 4at” Int)
ot (1 —te)4
(Int)*tq(x)
4.6 ="
(4.6) A=)t
where
¢ (v) = (5t* — 1 — 4at” Int — 4* — 22t** Int) Int,
and

¢"(z) = 4(Int)*t" (2 — xInt)t* — (24 xlnt))

z|Int|
_ 24 (L’|1Ilt| 1+T x
= 8(Int)“t (1— i 1_m|1nt|t -1].

2
Employing Lemma[(4]2), witly = z|Int|/2 gives thaty'(x) is increasing fob < z < 1 and
hencey/ (z) > ¢’(0) = 0 and finallyg(x) > ¢(0) = 0.
Returning to[(4 6):"(x) is monotone increasing with respecttm (0, 1).
The concavity of: follows upon noting that foé < x < 1, lim,_; A" (z) = 0. O

We are now in a position to prove Theorgm|4.1.

Proof of Theorer 4]1Note that forg = f,, and(a,b) = (0, 1), in the notation of Theorem
1.7, we have

_In(v) —In(u) 1
R(1-) = v—u  R(04)
h(0+) = w
h(l—) _ UlIl(UZ} : Zln<u> 1
and h(a+b)_ﬁ1n(v)—\/aln(u)_2
2 ) vou |
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The result then follows immediately upon applying Lenjma 4.3 and Theorgm 1.1. O
Remark 1. The need for bounds of the sort jn (4.2) ahd|(4.3) arose recently in the consideration
of the behavior of convolution ratios under local approximation (see [5]).
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