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ABSTRACT. This note gives a simple method for obtaining inequalities for ratios involving3-
log-convex functions. As an example, an inequality for Wallis’s ratio of Gautchi-Kershaw type
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1. I NTRODUCTION

This paper studies inequalities for positive real valued3-log-convex (and3-log-concave)
functions. As has become customary (see for instance [23] and [31]), we refer to a function
f as3-log-convex on the interval(a, b) if f is positive and3-times differentiable on(a, b) and
[ln(f(t))]′′′ ≥ 0 for t ∈ (a, b) (f is referred to as3-log-concave if instead[ln(f(t))]′′′ ≤ 0). In
particular, suppose thatg is a positive differentiable function defined on the interval(a, b), and
let h be the logarithmic derivative ofg, i.e.

(1.1) h(x) =
g′(x)

g(x)

for x ∈ (a, b).
We will prove the following.

Theorem 1.1. Suppose that fora < x < b, g(x) > 0, h = g′/g is twice differentiable and
h′′(x) > 0. SetR(x) = g(a + b− x)/g(x). Then

(1.2) R(b−)e2h(a+b
2 )(b−x) ≤ R(x) ≤ R(a+)e2h(a+b

2 )(a−x)
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2 KENNETH S. BERENHAUT AND DONGHUI CHEN

and

(1.3) R(a+)e(h(a+)+h(b−))(a−x) ≤ R(x) ≤ R(b−)e(h(a+)+h(b−))(b−x).

for a < x < b, where it is assumed that all four of the one-sided limits,h(a+), R(a+), h(b−)
andR(b−) exist and are finite.

In addition, if insteadg(x) > 0 andh′′(x) < 0 for a < x < b then the inequalities in (1.2)
and (1.3) are reversed.

To see where one might apply Theorem 1.1, consider the functiong defined viag(x) =
Γ(A+x), whereA > 0 andΓ is the well-known Euler’s gamma function. We haveg′(x)/g(x) =
Ψ(A + x), whereΨ is the digamma function (cf. [2, 3]). It is well-known (see for instance [9])
thatΨ is concave on(0,∞). Hence Theorem 1.1 is applicable. In Section 3, below, we will
prove the following.

Theorem 1.2.Suppose that0 < s < 2 andv > 0, then

(1.4)
(
v +

s

2

)
e−Ψ(v+ s+1

2 )s ≤ Γ(v + 1)

Γ(v + s)
≤ 1

v + s
2

e2Ψ(v+ s+1
2 )(1− s

2)

and

1

v + s
2

e

(
2Ψ(v+ s

2)+ 1
v+ s

2

)
(1− s

2) ≤ Γ(v + 1)

Γ(v + s)
(1.5)

≤
(
v +

s

2

)
e
−

(
2Ψ(v+ s

2)+ 1
v+ s

2

)
s
2 .

Note that the inequalities in (1.4) and (1.5) hold in the range0 < s < 2 which is somewhat
uncustomary for results of this type for the ratioΓ(v+1)

Γ(v+s)
which tend to hold for0 < s < 1

(although reversed inequalities hold for1 < s < 2) (see [10, 13]). Some comparisons are
provided in Section 3.

We remark that recently many functions have been shown to be logarithmically completely
monotone (see for instance [4, 7, 8, 19, 20, 24, 25, 27]). Such functions have, in particular,
convex (or concave) logarithmic derivatives and hence Theorem 1.1 is applicable in these cases.

The remainder of the paper proceeds as follows. In Section 2, we provide a simple proof
of Theorem 1.1. Section 3 is devoted to applications including a proof of Theorem 1.2 and an
inequality for generalized means.

2. PROOF OF THEOREM 1.1

In this short section we provide a proof of Theorem 1.1.

Proof of Theorem 1.1.First, supposeh′′(x) > 0 for x ∈ (a, b), and forW ∈ R, definefW via

fW (x) = R(x)eWx.

Then, we have
log(fW (x)) = log(g(a + b− x))− log(g(x)) + Wx

and

(2.1)
d

dx
log(fW (x)) = W − (h(x) + h(a + b− x)) = W − V (x),

whereV (x) = h(x) + h(a + b− x).
Now, for x ∈

(
a, a+b

2

)
, x < a + b− x and hence sinceh′′(x) > 0, h′(x) < h′(a + b− x) and

thus

(2.2) V ′(x) = h′(x)− h′(a + b− x) < 0.
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Similarly, for x ∈
(

a+b
2

, b
)
, x > a + b− x and hence

(2.3) V ′(x) = h′(x)− h′(a + b− x) > 0.

Combining (2.2) and (2.3) gives that forx ∈ (a, b),

V

(
a + b

2

)
≤ V (x) ≤ V (a+) = V (b−).

Employing (2.1) we then have thatfW is nondecreasing on(a, b) for W = V (a+) and nonin-
creasing on(a, b) for W = V

(
a+b
2

)
. The inequalities in (1.2) and (1.3) then follow. The case

h′′(x) < 0 follows similarly, and the result is proven. �

3. APPLICATIONS

3.1. Inequalities of Gautschi-Kershaw type. Inequalities for the ratioΓ(v+1)/Γ(v+s) have
been studied extensively by many authors; for results and useful references, see [1, 6, 10, 12,
14, 15, 18, 20, 21, 22, 25, 27, 30, 32].

To see how Theorem 1.2 follows from Theorem 1.1, set(a, b) = (0, 1) andg(x) = Γ(A+x).
Then, note thath(x) = Ψ(A + x), h(1/2) = Ψ

(
A + 1

2

)
,

h(0+) + h(1−) = Ψ(A) + Ψ(A + 1) = 2Ψ(A) +
1

A
,

R(1−) = lim
x→1−

Γ(A + 1− x)

Γ(A + x)
=

1

A
,

and

R(0+) = lim
x→0+

Γ(A + 1− x)

Γ(A + x)
= A.

Employing (1.2) and (1.3), sinceh′′(x) < 0, we have

(3.1) Ae−2Ψ(A+1/2)x ≤ Γ(A + 1− x)

Γ(A + x)
≤ 1

A
e2Ψ(A+1/2)(1−x)

and

(3.2)
1

A
e(2Ψ(A)+ 1

A
)(1−x) ≤ Γ(A + 1− x)

Γ(A + x)
≤ Ae−2(Ψ(A)+ 1

A)x

for 0 < x < 1. Theorem 1.2 then follows upon substitutingA = v + s/2 andx = s/2.
From Kershaw [14], we have that for0 < s < 1,

(3.3) e(1−s)Ψ(v+
√

s) ≤ Γ(v + 1)

Γ(v + s)
≤ e(1−s)Ψ(v+ s+1

2 )

and

(3.4)
(
v +

s

2

)1−s

≤ Γ(v + 1)

Γ(v + s)
≤

(
v − 1

2
+

√
s +

1

4

)1−s

.

In [10, 13], it was proven that the inequalities in (3.3) and (3.4) are reversed for1 < s < 2.
Computations suggest that the upper bound in (1.5) is an improvement on both upper bounds

in (3.3) and (3.4) for smalls and that the lower bound in (1.5) is an improvement on the lower
bounds implied by (3.3) and (3.4) fors near2. Let L1, U1, L2, U2 denote the lower and upper
bounds in (3.3) and (3.4), respectively andL∗

1, U
∗
1 , L∗

2, U
∗
2 denote the lower and upper bounds

J. Inequal. Pure and Appl. Math., 9(4) (2008), Art. 97, 9 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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Table 3.1: Numerical comparisons

(v, s) (1, 1/4) (1, 7/4)

Γ(v + 1)/Γ(v + s) 1.103262651 0.6217515729

L1 1.027745410 0.6317370766
L2 1.092356486 0.6240926184
U1 1.116801087 0.6188110780
U2 1.151620182 0.6144792307

L∗
1 1.084327768 0.6118384856

L∗
2 0.980328638 0.6204985722

U∗
1 1.150246913 0.6258631306

U∗
2 1.109373110 0.6498406288

in (1.4) and (1.5), respectively. Comparison data is given in Table 3.1 forv = 1 and s ∈
{1/4, 7/4}. We have in particular that for(v, s) = (1, 1/4)

L∗
2 < L1 < L∗

1 < L2 <
Γ(v + 1)

Γ(v + s)
< U∗

2 < U1 < U2 < U∗
1 ,

while for (v, s) = (1, 7/4)

L∗
1 < U2 < U1 < L∗

2 <
Γ(v + 1)

Γ(v + s)
< L2 < U∗

1 < L1 < U∗
2 .

In the first case, the best of the four upper bounds is given byU∗
2 (the right hand side of (1.5))

while in the second case the best lower bound is given byL∗
2 (the left hand side of (1.5)).

Recently, there have been some improvements obtained on the inequalities in (3.3). In par-
ticular, results in [21] and [29] (see also [22, 30, 32]) give that for0 < s < 1,

(3.5) e(1−s)Ψ(L(v+1,v+s)) ≤ Γ(v + 1)

Γ(v + s)
≤ e(1−s)Ψ(I(v+1,v+s)),

whereL(a, b) = (b − a)/(ln b − ln a) andI(a, b) = e−1(bb/aa)1/(b−a) are the logarithmic and
exponential means, respectively. Again consideringv = 1, it can be noted that for smalls > 0,
the lower bound in (1.4),L∗

1, is an improvement on that in (3.5) and the upper bound in (1.5),
U∗

2 , is an improvement on that in (3.5). In fact, denoting the lower and upper bounds in (3.5)
by L3 and U3, respectively, we haveΓ(2)/Γ(1) = 1 and lims→0+ L∗

2 = 1 = lims→0+ U∗
1 ,

while lims→0 L3 < 1 < lims→0+ U3. It is interesting to note that for(v, s) = (1, 1/4),
computations similar to those above display thatU3 provides a modest improvement onU∗

2

(U3 = 1.106505726), but for(v, s) = (1, s) with s near zero we have

Γ(2)

Γ(1 + s)
< U∗

2 < U2 < U3 < U1 < U∗
1 .

As noted in [21, 29],U3 is a refinement ofU1 andL3 is a refinement ofL1.
Values for(v, s) = (1, 0.02) and(v, s) = (1, 0.10) are given in Table 3.2.
Many functions related to theΓ function have recently been shown to be logarithmically

completely monotone. As mentioned earlier, strong bounds may be attained in these cases as
well, via Theorem 1.1.
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Table 3.2: Numerical comparisons

(v, s) (1, 0.02) (0, 0.10)

Γ(v + 1)/Γ(v + s) 1.011281653 1.051137006

L1 0.6986450960 0.8729765884
L2 1.009799023 1.044889510
U1 1.045903237 1.076807140
U2 1.019219191 1.082081647

L∗
1 1.009075328 1.041402026

L∗
2 0.8690926716 0.9139917416

U∗
1 1.084075243 1.113415941

U∗
2 1.011330762 1.052276188

L3 0.9941107436 1.038103958
U3 1.020141278 1.057551215

4. I NEQUALITIES FOR FUNCTIONS OF THE FORM (vx − ux)/x

In [17, 34, 33], functions of the form

(4.1) f(x) = fu,v(x) =

∫ v

u

sx−1ds =
vx − ux

x

for v > u > 0 andx 6= 0 were studied. Among other results, it was shown in [33] thatf is
completely monotonic on(−∞, +∞) for 0 < u < v < 1. As of the time of submission, we
are unaware of any proof thatf possesses a concave logarithmic derivative, forv > u > 0 and
0 < x < 1, hence we will prove that here and apply Theorem 1.1 in order to obtain some new
inequalities for the ratios of the formf(γ − x)/f(x).1

In [33] It was shown that
f(x + γ)

f(x)
≥
(

u + v

2

)γ

for γ ≥ 1, x ≥ 0 and0 < u < v, and

f(x + γ)

f(x)
≥ (uv)γ/2.

Here we will prove the following via Theorem 1.1.

Theorem 4.1.Suppose0 < u < v and0 < x < 1. Then

v − u

ln(v)− ln(u)
e
−2x

(√
v ln(v)−

√
u ln(u)

v−u
−2

)
(4.2)

≤ fu,v(1− x)

fu,v(x)

≤ ln(v)− ln(u)

v − u
e
2(1−x)

(√
v ln(v)−

√
u ln(u)

v−u
−2

)

1Following submission of the original manuscript for this paper, F. Qi and B.-N. Guo [28] announced some
results which extend our Lemma 4.3, below.
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Figure 4.1: Plots ofR(x) = fu,v(1 − x)/fu,v(x) along with the bounds given in Theorem 4.1 forx ∈ (0, 1)
and(u, v) = (.5, 1) (Figure (a)) and(u, v) = (1, 20) (Figure (c)). The absolute errors are plotted in (b) and (d),
respectively.

and
ln(v)− ln(u)

v − u
e(1−x)( (3v−u) ln(v)−(3u−v) ln(u)

2(v−u)
−1)(4.3)

≤ fu,v(1− x)

fu,v(x)

≤ v − u

ln(v)− ln(u)
e−x( (3v−u) ln(v)−(3u−v) ln(u)

2(v−u)
−1).

Plots comparing the quantities in (4.2) and (4.3), for(u, v) = (0.5, 1) and(u, v) = (1, 20)
are given in Figure 4.

We first prove the following two simple lemmas.

Lemma 4.2. Definep via

p(y) = (1− y)

(
1 + y

1− y
e−2y − 1

)
.

Thenp(y) > 0 for y > 0, p(y) < 0 for y < 0, andp(0) = 0.
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Proof. We have
p′(y) = 1− (1 + 2y)e−2y, and p′′(y) = 4ye−2y.

The result follows upon noting thatp′(y) ≥ p′(0) = 0, and hence thatp(y) is monotone non-
decreasing fory ∈ R; the only root isy = 0. �

Lemma 4.3. The functionfu,v defined as in (4.1) has a concave logarithmic derivative (with
respect tox) for 0 < u < v and0 < x < 1.

Proof. First note that by dividing through byvx, it suffices to show the result forv = 1 and
u = t < 1. We then have

(4.4) h(x) =
f ′(x)

f(x)
= − tx ln t

1− tx
− 1

x
,

(4.5) h′(x) = − (ln t)2tx

(1− tx)2
+

1

x2
,

and

h′′(x) =
(ln t)3tx(1 + tx)

(1− tx)3
− 2

x3
.

Note that
∂h′′(x)

∂t
=

(ln t)2tx(3t2x − 3− xt2x ln t− x ln t− 4xtx ln t)

(1− tx)4

=
(ln t)2txq(x)

(1− tx)4
,(4.6)

where
q′(x) = (5t2x − 1− 4xtx ln t− 4tx − 2xt2x ln t) ln t,

and

q′′(x) = 4(ln t)2tx ((2− x ln t)tx − (2 + x ln t))

= 8(ln t)2tx
(

1− x| ln t|
2

)(
1 + x| ln t|

2

1− x| ln t|
2

tx − 1

)
.

Employing Lemma (4.2), withy = x| ln t|/2 gives thatq′(x) is increasing for0 < x < 1 and
henceq′(x) ≥ q′(0) = 0 and finallyq(x) ≥ q(0) = 0.

Returning to (4.6),h′′(x) is monotone increasing with respect tot in (0, 1).
The concavity ofh follows upon noting that for0 < x < 1, limt→1 h′′(x) = 0. �

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1.Note that forg = fu,v and(a, b) = (0, 1), in the notation of Theorem
1.1, we have

R(1−) =
ln(v)− ln(u)

v − u
=

1

R(0+)
,

h(0+) =
ln(v) + ln(u)

2
,

h(1−) =
v ln(v)− u ln(u)

v − u
− 1

and

h

(
a + b

2

)
=

√
v ln(v)−

√
u ln(u)

v − u
− 2.
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The result then follows immediately upon applying Lemma 4.3 and Theorem 1.1. �

Remark 1. The need for bounds of the sort in (4.2) and (4.3) arose recently in the consideration
of the behavior of convolution ratios under local approximation (see [5]).
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