INEQUALITIES FOR3-LOG-CONVEX FUNCTIONS

Received:

Accepted:
Communicated by:
2000 AMS Sub. Class.:

Key words:

Abstract:

Acknowledgements:

KENNETH S. BERENHAUT AND DONGHUI CHEN
Department of Mathematics

Wake Forest University

Winston-Salem, NC 27109

EMail: berenhks@wfu.edu chendé@wfu.edu
URL: http://www.math.wfu.edu/Faculty/berenhaut.html

07 December, 2007

13 August, 2008

S.S. Dragomir

33B15, 26A51, 26A48, 26D20.

Inequalities, Logarithmic derivative, Convexity, Gamma function, Digamma
function, Extended means.
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1. Introduction

This paper studies inequalities for positive real valieldg-convex (and3-log-
concave) functions. As has become customary (see for inst@3teard [31]),
we refer to a functiornf as3-log-convex on the intervala, b) if f is positive and
3-times differentiable orja, b) and[In(f(¢))]” > 0 fort € (a,b) (f is referred to
as3-log-concave if insteafn(f(¢))]” < 0). In particular, suppose thatis a posi-
tive differentiable function defined on the interyal b), and leth be the logarithmic
derivative ofg, i.e.

(1.1) hz) = £

for z € (a,b).
We will prove the following.

Theorem 1.1.Suppose thatfat < = < b, g(z) > 0, h = ¢’/g is twice differentiable
andh”(z) > 0. SetR(z) = g(a+b—x)/g(z). Then

)
(1.2) R(b—)e**(5)0=) < R(z) < R(a+)e?(F"))
and
(1.3)  R(at)e®@H+htDe=s) < R(z) < R(b—)ePet)HhE=)0=),

for a < = < b, where it is assumed that all four of the one-sided limits;+),
R(a+), h(b—) and R(b—) exist and are finite.

In addition, ifinsteady(z) > 0 andh”(z) < 0fora < x < bthen the inequalities
in (1.2) and (L.3) are reversed.

To see where one might apply Theorém, consider the functiong defined via

g(x) = T'(A+ ), whereA > 0 andT is the well-known Euler's gamma function.
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We havey'(x)/g(z) = V(A + z), whereV is the digamma function (cf2[ 3]). Itis
well-known (see for instanc®]) that ¥ is concave or{0, oo). Hence Theorem.1
is applicable. In Sectiof, below, we will prove the following.

Theorem 1.2. Suppose thal < s < 2 andv > 0, then

A8 (oe ) s < 0D L )

2 “Tw+s) " v+
and
sV 1 V({_s
vy L) s
v+ B F('U + S)
< (v+ g) €—<2\D<v+%)+%>%'

Note that the inequalities in.(4) and (L.5) hold in the rang® < s < 2 which is
somewhat uncustomary for results of this type for the r%%‘@g which tend to hold
for 0 < s < 1 (although reversed inequalities hold for< s < 2) (see [LO, 13)).
Some comparisons are provided in Secfion

We remark that recently many functions have been shown to be logarithmically
completely monotone (see for instandeT, 8, 19, 20, 24, 25, 27]). Such functions
have, in particular, convex (or concave) logarithmic derivatives and hence Theorem
1.1is applicable in these cases.

The remainder of the paper proceeds as follows. In Secijone provide a
simple proof of Theorem.1. Section3 is devoted to applications including a proof
of Theoreml.2and an inequality for generalized means.
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2. Proof of Theoreml1l.1

In this short section we provide a proof of Theorém.

Proof of Theorem..1. First, supposé”(z) > 0 for z € (a,b), and forlW € R,
define fi via

Then, we have

log(fw(x)) =log(g(a+b—x)) —log(g(z)) + Wz

and
d
(2.1) %bg(fw(x)) =W —(h(z)+h(a+b—2x)) =W = V(z),
whereV (z) = h(z) + h(a+ b — x).
Now, forz € (a,%t), < a + b — z and hence since”(z) > 0, K (z) <
h'(a+ b — z) and thus

(2.2) V'(z) =h'(z) = W(a+b—1z)<0.
Similarly, forz € (%2,b), 2 > a 4+ b — z and hence
(2.3) V() =h(z)—h(a+b—1z)>0.

Combining ¢.2) and @.3) gives that forz € (a,b),

b
1% (a; ) <V(z) < V(at) = V(b-).
Employing ¢.1) we then have thafy is nondecreasing ofu, b) for W = V' (a+)
and nonincreasing ofu, b) for W =V (“T“’) The inequalities in1.2) and (L.3)
then follow. The casé”(x) < 0 follows similarly, and the result is proven. [
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3. Applications

3.1. Inequalities of Gautschi-Kershaw type

Inequalities for the ratid'(v + 1) /I'(v + s) have been studied extensively by many

authors; for results and useful references, 8¢6,[10, 12, 14, 15, 18, 20, 21, 22, 25,
27, 30, 32.

To see how Theorerm 2follows from Theoreni.. 1, set(a, b) = (0, 1) andg(x) =
I'(A+ z). Then, note thak(z) = V(A + z), h(1/2) = ¥ (A + 1),

2

1
h(0+) +h(1=) = U(A) + U(A+1) =2¥(A) + T
B MA+1—-2) 1
R(1-) Q}H{lf ['(A+x) A’
and P41 1)
. +1—-x
BOH =l “rars -4
Employing (..2) and (L.3), sinceh”(z) < 0, we have
_ NA4+1—-2) 1 _
_ 2U(A+1/2)r < L 2W(A+1/2)(1-z)
(3.1) Ae = " T(A+az) —A°
and
1 ERYZ I F(A +1-— :L‘) _ 1
) S QM+ )(A-) L 2NV 2T - 2(U(A)+4 )=
(3.2) 3¢ S A+ Ae A

for 0 < = < 1. Theoreml.2 then follows upon substitutingl = v + s/2 and
T =s/2.
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From Kershaw 14], we have that fof) < s < 1,

(3.3) a-ou(orvs) < LOAD _ aogu(orsst)
“Tv+s) —

and

s\1=s _ T(v+1) I R
(3.4) <U+§> §m§<v—§+ S“f‘z) .

In [10, 13], it was proven that the inequalities if8.¢) and (3.4) are reversed for
1 <s<2.

Computations suggest that the upper boundlif)(is an improvement on both
upper bounds in3.3) and (.4) for small s and that the lower bound inL(5) is
an improvement on the lower bounds implied By3 and (3.4) for s near2. Let
Ly,Uy, Ly, Uy denote the lower and upper boundsindf and (3.4), respectively and
Ly, Uf, L, Uy denote the lower and upper bounds indf and (L.5), respectively.
Comparison data is given in Tablefor v = 1 ands € {1/4,7/4}. We have in
particular that for(v, s) = (1,1/4)

L2<L1<L1<L2<ﬁ<U2 <U; < U, < U,
while for (v, s) = (1,7/4)
I'(v+1)
F(v+s)

Li<Uy<U <Li< < Ly < Ui <Ly <Uj.
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Table 1: Numerical comparisons

! (v,5) | @174 ] (1,7/4) \
[T(v+1)/T(v+s) | 1.103262651 | 0.6217515729 |
Ly 1.027745410 | 0.6317370766
Ly 1.092356486 | 0.6240926184 Y-
U, 1.116801087 0.6188110780 Kenneth S. Berenhaut
Us 1.151620182 | 0.6144792307 and Donghui Chen
L} 1.084327768 | 0.6118384856 vol. 9, iss. 4, art. 97, 2008
L} 0.980328638 | 0.6204985722
U; 1.150246913 | 0.6258631306 _
U3 1.109373110 | 0.6498406288 e e
Contents
Recently, there have been some improvements obtained on the inequalities in K o
(3.9. In patrticular, results in41] and [29] (see also 22, 30, 32]) give that for < >
0<s <1,
Page 8 of 19
Nv+1
(35) 6(1—8)‘1’(L(U+1,U+S)) < FEU - S§ < e(l—s)\If(I(v—&-l,v—i-s))’ Go Back
Full Screen
whereL(a,b) = (b —a)/(Inb — Ina) andI(a,b) = e~1(b*/a®)*/ =) are the log-
arithmic and exponential means, respectively. Again considering 1, it can Close
be noted that for smalk > 0, the lower bound in1.4), L7, is an improvement . - »
on that in ¢.5 and the upper bound inl.(5, Uz, is an improvement on that in el ey linEe ellin=s

in pure and applied
mathematics
issn: 1443-575k

(3.5. In fact, denoting the lower and upper bounds #n5( by L; and U, re-
spectively, we havé'(2)/I'(1) = 1 andlim, o+ L5 = 1 = lim, o+ Uf, while
limg_o L3 < 1 < lim, o+ Us. Itis interesting to note that fow, s) = (1,1/4),

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

Table 2: Numerical comparisons

’ (v, 8)

[ (1,0.02)

[ (0,0.10)

|

[T(v+1)/T(v+s) [ 1.011281653 [ 1.051137006 |

Ly 0.6986450960 | 0.8729765884
L, 1.009799023 1.044889510
Uy 1.045903237 1.076807140
U, 1.019219191 1.082081647
I 1.009075328 1.041402026
L3 0.8690926716 | 0.9139917416
Uy 1.084075243 1.113415941
Us 1.011330762 | 1.052276188
Ls 0.9941107436 | 1.038103958
Us 1.020141278 1.057551215

computations similar to those above display tiaprovides a modest improvement
onU; (Us = 1.106505726), but for (v, s) = (1, s) with s near zero we have
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<U; <Uy<Us<U <Uy.
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4. Inequalities for Functions of the Form (v* — u”) /x
In [17, 34, 33], functions of the form

(4.1) F0) = funle) = [ 57 1as =

v¥ —u*

X

forv > u > 0andx # 0 were studied. Among other results, it was shown in

[33] that f is completely monotonic ofi—oco, +00) for 0 < u < v < 1. As of
the time of submission, we are unaware of any proof thgbssesses a concave
logarithmic derivative, fow > v > 0 and0 < x < 1, hence we will prove that here

and apply Theoreri.1in order to obtain some new inequalities for the ratios of the

form f(y —x)/f(x).*

In [33] It was shown that

flat) (u+v>7

f(z) 2
fory>1,z>0and0 < u < v, and
f(.%'—l-’)/) v/2
=

Here we will prove the following via Theorer 1.
Theorem 4.1. Supposé® < u < vand0 < x < 1. Then

v—U —9x M,@

42) VT (s

(4.2) In(v) — ln(u)6

< Jup(l—2) < In(v) — In(u) (1) (YT )
fu,v(aj) vV —U

IFollowing submission of the original manuscript for this paper, F. Qi and B.-N. G8cahnounced some results which
extend our Lemmd.3, below.
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and

(4-3) ln(v) — ln(u) 6(1*22)( (Bv—u) In(v)—(3u—v) In(u) 71)

2(v—u)
V—Uu

fu,v(l — l’) V—U eix((Bv—u) ln(2v(i}—7(3;¢—v) ln(“),l).
fup(z) 7 In(v) — In(u)

Plots comparing the quantities in.) and ¢.3), for (u, v) = (0.5,1) and(u, v) =
(1,20) are given in Figuret.
We first prove the following two simple lemmas.

Lemma 4.2. Definep via
l+y
=(1—-y) | —Ze®—-1].
p(y) = ( y)(l_ye )

Thenp(y) > 0fory > 0, p(y) < 0fory < 0, andp(0) = 0.

Proof. We have
Ply)=1—1+2y)e, and p'(y) =4ye .

The result follows upon noting that(y) > p'(0) = 0, and hence thai(y) is mono-
tone non-decreasing fgre R; the only root isy = 0. O

Lemma 4.3. The functionf, , defined as in4.1) has a concave logarithmic deriva-
tive (with respect ta) for 0 < v < vand0 < x < 1.

Proof. First note that by dividing through by*, it suffices to show the result for
v=1andu =t < 1. We then have
fl(x)  t"Int 1
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Figure 1: Plots ofR(z) = fu (1 — x)/f.»(z) along with the bounds given in Theorefnl for
x € (0,1) and(u,v) = (.5,1) (Figure (a)) andu, v) = (1, 20) (Figure (c)). The absolute errors are

plotted in (b) and (d), respectively.
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(Int)?t® 1

4, ) = —~2Y 2
(4.5) W (x) (1= i) + 5
e (ntpe(se) 2
g (mePEee) 2
h'(x) = 1= t) et
Note that
On"(z)  (Int)*t"(3t** — 3 — xt* Int — xInt — 4at” Int)
o (1 — t=)4
(Int)*t*q(x)
4, _ YT a)
( 6) (1_tz)4 ’
where

¢ (v) = (5t — 1 — 4at* Int — 4* — 22t** Int) Int,
and

¢"(z) = 4(Int)*t* (2 —zInt)t* — (2 +znt))

z|Int|
B 9. x| Int| I+ ==
_8(lnt)lf (1— 5 1_1“2”‘25 —-1].

Employing Lemma4.2), with y = z|Int|/2 gives thaty'(z) is increasing fol <

x < 1andhence/(z) > ¢'(0) = 0 and finallyg(z) > ¢(0) = 0.
Returning to {.6), »”(x) is monotone increasing with respect:tm (0,
The concavity of: follows upon noting that fob < = < 1, 1£r11 h'(x) =

1).
0. L]

We are now in a position to prove Theoreni.
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Proof of Theorem.1. Note that forg = f,, and(a,b) = (0, 1), in the notation of
Theoreml.1, we have

In(v) — In(u) 1
1— = =
k(1) v—u R(0+4)’
h(0+) = In(v) —;— ln(u)’
h(1-) = vin(v) —uln(u) ]
v—Uu
and
h a+b\  Vvln(v) —uln(u) L
2 N v—u '
The result then follows immediately upon applying Lem#a and Theoreni. L

]

Remarkl. The need for bounds of the sort i#.?) and ¢.3) arose recently in the
consideration of the behavior of convolution ratios under local approximation (see

[5D.
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