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ABSTRACT. In this note, using the strict convexity and concavity of the funcfign) = Hﬁ
on |0, co) and(—oo, 0] respectively, we prove Ky Fan’s inequality by separating the left and right
hands of it byz— -
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Letzy,...,x, in (0,1/2] @and Ay, Ao, ..., A\, > Owith >°° | \; = 1. We denote by4,, and
G,, the arithmetic and geometric meanswf. . . , x,, respectively, i.e.

1) An = N, Gn =[],
=1 =1
and also byA’, andG], the arithmetic and geometric meanslof x4, ..., 1 — x, respectively,
i.e.
2) A=) (), G, =] — ).
=1 =1

In 1961 the following remarkable inequality, due to Ky Fan, was published for the first time in
the well-known booknequalitiesby Beckenbach and Bellman [2, p. 5]:
If z; € (0,1/2], then

Al A
3 In 1
®) G~ G,
with equality holding ifand only ity = - - - = z,,.

Inequality [1) has evoked the interest of several mathematicians and in numerous articles new
proofs, extensions, refinements and various related results have been published; see the survey
paper([1]. Also, for some recent results, s€e [6] = [10].
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In this note, using the strict convexity and concavity of the function) = 1+ez on [0, o)
and(—o0, 0] respectively, we prove Ky Fan’s inequalify (3) by separating the left and right hand

sides of ') bye—tar:

Al 1 A
4 < —
@) G’_G+G’_Gn
Moreover, we show equality holds in each inequality in (4), if and only= - - - = x,,.

Itis noted that, since far, b, ¢, d > 0 the inequality; < < impliesy < gjg g <, considering
A, + A =1,the inequalities{]3) andl|(4) are equivalent.
Indeed, sincef”(z) = <- el TP U the functionf has the foregoing convexity properties. Now,

(+e®
f(}:AWJfEE:%f@%
i=1 i=1

using Jensen’s inequality
for y; = In = =4 >0 (1 < i < n), we get the right hand OEK4) with equality holding if and

only if In 1= ””1 = ... =In% orequivalentlyr; = --- = z,,. The left hand ofl4) is handled
by using Jensens mequallty for the convex functreyi on (—oo, 0] with y; = In {#- < 0
(1 <i<mn).

It might be noted that it suffices to prove either of the two inequalitie§|in (4) &s ¢ is

equivalent to botf < ¢¢ and s < ¢,

It was pointed out by a referee that the use of the funcfipor rather its inversg(z) =
In((1 — z)/z), to prove Ky Fan's inequality can be found in the literature; see[4], [3, pp. 31,
154], [B].
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