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ABSTRACT. We introduce the clasB («, 3) of analytic functions with negative coefficients. In
this paper we give some properties of functions in the clags, 3) and we obtain coefficient
estimates, neighborhood and integral means inequalities for the furfgtignbelonging to the
class H (o, 3). We also establish some results concerning the partial sums for the furi¢tipn
belonging to the clas# («, 3).
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1. INTRODUCTION

Let A denote the class of functions of the form
(1.1) fz) =24 w2,
k=2

which are analytic in the unit disE = {z : |z| < 1}. And let S denote the subclass of
consisting of univalent functions(z) in U.
A function f(z) in S is said to be starlike of order if and only if

Re (Z]{(S)) >a  (zeU),

for somea (0 < a < 1). We denote byS*(«) the class of all functions i which are starlike
of ordera. It is well-known that

S*(a) € S*(0) = S*.
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Further, a functiory(z) in S is said to be convex of orderin U if and only if

2f'(2)
Re(l—i— ) >>a (z€U),
for somea (0 < a < 1). We denote byK («) the class of all functions i§' which are convex
of ordera.

The classess*(«), and K («) were first introduced by Robertsan [8], and later were studied
by Schild [10], MacGregotr [4], and Pinchuki [7].

Let T denote the subclass Sfwhose elements can be expressed in the form:

(1.2) f(z)=2z— i a2 (ar, > 0).
k=2

We denote byl™(«) andC(«), respectively, the classes obtained by taking the intersections of
S*(a) and K («) with T,

T"(a) =S (a)NT and C(a)=K(a)NT.

The classe8™(«) andC'(«) were introduced by Silverman [11].
Let H (o, B) denote the class of functiorf§z) € A which satisfy the condition

(S ) >

for somea >0,0< <1, 12 £0 and z € U.
The classe$i(«, ) andH(a 0) were introduced and studied by Obraddovic and Joshi [5],
Padmanabhan[[6], Li and Owa [2], Xu and Yang![14], Singh and Gupta [13], and others.
Further, we denote b¥f («, 3) the class obtained by taking intersections of the clags, 3)
with 7', that is

H(a,p) = H(a,, 3) NT.
We note that
H(0,8)=T*(3)  (Silverman[11]).

2. COEFFICIENT ESTIMATES
Theorem 2.1. A functionf(z) € T is in the classH (a, 3) if and only if

(2.1) Ik —1)(ak + 1)+ (1 B)lap < 1— 6.

The result is sharp.

Proof. Assume that the inequalitly (2.1) holds and|tgt< 1. Then we have
a2f"(2) | =['(2) = 22 (k = 1ok 4 a2
f(2) f(2) 1= >0, apzht
L Sk Dlekt Day o
1- Zk 2 Ak
This shows that the values c?FZ f Z) + Zf ) lie in the circle centered ab = 1 whose radius
is1 — (. Hencef(z) isin the classll(oz 5)

-
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To prove the converse, assume tliét) defined by) is in the clag#(a, 3). Then

(0P 2R | g (L Eialok(k = 1) + k)t
(2.2) R ( e + ) ) - R ( = e >>6

for z € U. Choose values of on the real axis so théf;{z% + Z}C(S) is real. Upon clearing the

denominator in[(2]2) and letting— 1~ through real values, we have

15} (1 — iak> <1- i[ak(k — 1) + klag,

k=2 k=2
which obviously is the required result (2.1).
Finally, we note that the assertign (2.1) of Theofen 2.1 is sharp, with the extremal function
being

(2.3) f) =z~

1—-0 &
(k= Dak+ 1)+ (1-5)]

(k> 2).

Corollary 2.2. Let f(z) € T be in the class1 (o, 3). Then we have
1-p
[(k = 1)(ak +1) + (1 = )]
Equality in {2.4) holds true for the functiof(z) given by |[(2.B).
3. SOME PROPERTIES OF THE CLASS H(a, /3)
Theorem 3.1. Let0 < a3 < ap and0 < 3 < 1. ThenH (o, 3) C H(ay, 3).
Proof. It follows from Theorenj 2/1. That

(k > 2).

(e 9]

D (k= D(ark + 1) + (1= B)lax < i[(k — )k +1)+(1—pF)a, <1-5

k=2
for f(z) € H(as, 3). Hencef(z) € H(ay, 3). O

Corollary 3.2. H(a, 3) C T*(p).

The proof is now immediate because> 0.

4. NEIGHBORHOOD RESULTS

Following the earlier investigations of Goodman [1] and Ruscheweyh [9], we define-the
neighborhood of functionf(z) € T by:

Ns(f) = {geT:g(z) =z b2¥, Y kag — byl §5}-
K2 K2

In particular, for the identity function

e(z) = z,
we immediately have
(4.2) Ng(e)—{geT:g(z)—z—Zbkzk, Zk\bk|§6}.
k=2 k=2
Theorem 4.1. H(a, 3) C Nj(e), wheres = (2%-5;%)'
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Proof. Let f(2) € H(a, ). Then, in view of Theorerh 2|1, sin¢gt — 1)(ak + 1) + (1 — )]
is an increasing function df (k > 2), we have

2a+2—-0)) a < (k=1 (ak+1)+ (1= 0F)]ar <1-7,
k=2 k=2
which immediately yields
(4.2) ;ak < m

On the other hand, we also find from (2.1)
a—l—leak—ﬁZak<Z kE—1)4+ 1)k — 8)]ax

(4.3) =Y [(k—=1D(ak+1)+ (1 —=B)axr <1-3.

k=2

8

From [4.3) and[(4]2), we have

(@+1)) kay < (1—ﬂ)+62ak

g
<(1-5) Jfﬁm
< 20+ 1)(1-p)
(2a+2-0) ’
that is,
N 20-08)  _
which in view of the definition[(4]1), prove Theor¢mi4.1. O

Letting o = 0, in the above theorem, we have:

Corollary 4.2. T*(3) C Ns(e), whered = 2((21_—;))'

5. INTEGRAL MEANS INEQUALITIES
We need the following lemma.

Lemma 5.1([3]). If f andg are analytic inU with f < g, then

27 2m
/ lgre)["do < / [F(re®)|" do,
0 0

whered > 0, z = re’’ and0 < r < 1.
Applying Lemmd5.]L, and (2. 1), we prove the following theorem.
Theorem 5.2. Let§ > 0. If f(z) € H(a, 3), then forz = re?, 0 < r < 1, we have

/% |f(re®)|’ do < /% | fa(re®®)|* b,
0 0
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where

_ . 1@=p5
(5.1) fa(2) =z Gato- ﬁ)z .
Proof. Let f(z) defined by[(1.R) and (=) be given by|(5.1l). We must show that

27 S J 2 1
_ 1-5)
- = d0</ T Chul) N )
/0 kz_;a’“z = Jo at2-0)

By Lemmd5.1, it suffices to show that

= k—1 (1 - ﬁ)
1-— ;akz <1- mz.
Setting
P (1-0)
From (5.2) and[(2]1), we obtain
Z 20é + 2 ﬁ kzkil

k=

<z !Z O‘kﬂgﬂl_m]aksxzy.

This completes the proof of the theorem. O

Letting o = 0 in the above theorem, we have:
Corollary 5.3. Letd > 0. If f(z) € T*(3), thenforz = re, 0 < r < 1, we have

/Oﬂ}f(rew){éd@g/oW{fg(rew)fde,

-8,
-5

6. PARTIAL SuMS

where

fa(2) =

In this section we will examine the ratio of a function of the fofm1.2) to its sequence of
partial sums defined by, (z) = z andf,(z) = z — Y_,_, ax2" when the coefficients of
are sufficiently small to satisfy the conditi- (R.1). We will determine sharp lower bounds for
Re <;;((Zz))> Re <f"(z)> Re <j:,((z)> andRe ( n(z ))> :
In what follows, we will use the well known result that
1 —w(z

Re#>0, zeU,
14+ w(2)

if and only if

satisfies the inequalityw(z)| < |z].
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e (2) — L z n
(6.1) R £.2) >1 - (zeU, neN)
and

fn(z) Cn+1
(6.2) Re(f(z))21+cn+1 (zeU,neN),

where(ck — [(k‘l)(“’jf;)“l_ﬁ”) . The estimates i.l) an@.Z) are sharp.

Proof. We employ the same technique used by Silvermah [12]. The fungtionc H(a, 3),
if and only if >~.7, cray, < 1. Itis easy to verify that, 1 > ¢; > 1. Thus,

(6.3) Zak + Cpy1 Z ap < chak <1.
k=2 k=n+1 k=2

We may write

c { f(z) (1 1 ) } D apz" ' — Z;O:nﬂ apzFt 14 D(z)
ntly 7y - — = =

fn(2) Cna1 1=, apzkt 1+ E(2)
Set
1+D(z) 1—-w(z)
1+ E(z)  1+w(z)
so that () - D(2)
Z) — Z
v = 5 PG+ B
Then
wlz) = o s 0
2-2 ZZ:Q agzht — Cn+1 Zl?;n-H apzh1
and

Cn+1 } :k:n+1 ay
<

= .
k=2 Ak — Cn+1 Zk:n—i—l Qg

Now |w(z)| < 1if and only if

n o0
Zak—i-an Z akgla
k=2

k=n+1

which is true by[(6.8). This readily yields the assertjon|(6.1) of The¢remn 6.1.
To see that

Zn+1
(6.4) f(z)=2z—
Cn+1
gives sharp results, we observe that
fle) 2"
fn(z) Cn+1
Letting = — 1, we have
[ 1
fn(z) Cnt1 ’
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which shows that the bounds |n (B.1) are the best possible forreaclv. Similarly, we take

(14 cpe1) fnl2) Gt _ 1= a2 ' + e > hentt apzF 1 _ 1—w(z)
TUNSGE) S e 1 =300, apzh! 1+ w(z)’
where

(1 + Car1) Dy O
jw(z)| < D S :
2-2 Zkz:? ar + (1 - Cn—i-l) Zk:n-H Ak
Now [w(z)| < 1if and only if

n o
Zak—i-anrl Z akgla
k=2

k=n+1

which is true by[(6.8). This immediately leads to the asserfion (6.2) of Theorem 6.1.
The estimate i (6]2) is sharp with the extremal functi¢n) given by [6.4). This completes
the proof of Theorerp 6 1. O

Letting o = 0 in the above theorem, we have:
Corollary 6.2. If f(z) € T*(/3), then

) . m
A e TE ) M

efn(z)> n+1-7

and

Ri > , zeU).
IECEF RO
The result is sharp for eveny, with the extremal function
1— ﬁ n+1

We now turn to the ratios involving derivatives. The proof of Theorem 6.3 below follows the
pattern of that in Theorem 8.1, and so the details may be omitted.
Theorem 6.3.1f f(z) € H(a, 3), then

f'(2) -1 n—+1

(6.6) Re St s (zeU),
and
fa(2) Cnt
(6.7) Re(f’(z)>2n+1+cn+1 (zeU, neN).

The estimates in (6.6) and (6.7) are sharp with the extremal function givén by (6.4).
Letting o« = 0 in the above theorem, we have:

Corollary 6.4. If f(z) € T*(/3), then

f'(2) Bn

TRt Y
and ) 1_ 4
(2 n+1-—
P Znra-pmry C<Y

The result is sharp for eveny, with the extremal function given Hy (6.5).
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