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We introduce the clasH («, 3) of analytic functions with negative coefficients.

In this paper we give some properties of functions in the cléés, 3) and we
obtain coefficient estimates, neighborhood and integral means inequalities for the
function f(z) belonging to the class7(a, 3). We also establish some results
concerning the partial sums for the functiffx) belonging to the clas#f (., 3).
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1. Introduction

Let A denote the class of functions of the form

(1.1) f) =24
k=2

which are analytic in the unit disé = {z : |z| < 1}. And letS denote the subclass

of A consisting of univalent functiong(z) in U.
A function f(z) in S is said to be starlike of order if and only if

Re (i{é?) >a  (z€0),

for somea (0 < a < 1). We denote byS*(«) the class of all functions i§ which
are starlike of ordet. It is well-known that

S*(a) € S*(0) = S™.
Further, a functiorf(z) in S is said to be convex of orderin U if and only if

2f"(2)
f’(z))>a (zeU),

for somea (0 < o < 1). We denote byK («) the class of all functions i which
are convex of ordett.

The classesS*(a), and K («) were first introduced by Robertso8][ and later
were studied by Schildlf0], MacGregor #], and PinchukT].

Re (1—!—

Let 7' denote the subclass 6fwhose elements can be expressed in the form:

(1.2) f(z)=2z— iakzk (ar, > 0).
k=2
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We denote byl™(«) andC'(«), respectively, the classes obtained by taking the in-
tersections o6*(«) and K («) with 7',

T (o) =S ()T and C(a)=K(a)NT.

The classe§™(«) andC(«) were introduced by Silvermani {].
Let H(«a, 3) denote the class of functiorfz) € A which satisfy the condition

() >

for somea > 0,0< 3 <1, {2 £ 0 and z € U.

The classe$/ («, 3) andH («, 0) were introduced and studied by Obraddovic and
Joshi p], Padmanabharf], Li and Owa ], Xu and Yang [L4], Singh and Gupta
[13], and others.

Further, we denote by (o, 3) the class obtained by taking intersections of the
classH («, 3) with T', that is

H(a,B) = H(a,8) NT.

We note that
H(0,3)=T*)  (Silverman [L1)).
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2. Coefficient Estimates

Theorem 2.1. A functionf(z) € T is in the classi («, ) if and only if

(2.1) D Ik =1D(ak+1)+ (1 - B)lar <1- 5.

00
k=2

The result is sharp.

Proof. Assume that the inequality (1) holds and letz| < 1. Then we have

az?f(2) N zf'(2) = > (k—1)(ak + 1)agz*!

1| = .
f(z) f(z) ' ‘ 1= i yapzht
< Y peo(k— 1)ogak: + 1)ay <1_5
I Zk:Q Qg
This shows that the values O?Z;{Z)(z) + Z}C(S) lie in the circle centered at = 1

whose radius is — 3. Hencef(z) is in the classi («, 3). o
To prove the converse, assume tfiat) defined by (.2) is in the class («, ).
Then

af'(2) | 2f(2)
@ f(Z)>
e (1 =S ok (k — 1) + k)]axzh ) =

o0 —
1 =2 azh!

(2.2)  Re (

z

for z € U. Choose values of on the real axis so théﬁ% + J{/(z) is real. Upon

(2)
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clearing the denominator i2 (2) and lettingz — 1~ through real values, we have

o0

I <1 - Zak> <1 [ak(k—1) + K,
k=2 k=2
which obviously is the required resufi.().

Finally, we note that the assertion {) of Theoren?.1is sharp, with the extremal
function being

1-p i

(2.3) f(z)=2— (k- D(ak+1)+(1-8)]

(k> 2).

Corollary 2.2. Let f(z) € T be in the clasgi(«a, 3). Then we have

1-p
0 “EGeneknra-g F2P

Equality in (2.4) holds true for the functiorf(z) given by £.3).
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3. Some Properties of the Clas$/ (a, 3)

Theorem 3.1. Let0 < a1 < ap and0 < 3 < 1. ThenH (aw, 3) C H(ay, 3).
Proof. It follows from Theoren?.1. That

S k= 1)tk +1) + (1 — B)]a

2

k=
<) (k= 1D(azk + 1)+ (1= B)lap <1 -3
k=2
for f(z) € H(aw, 3). Hencef(z) € H(ay, 3).

Corollary 3.2. H(a, 3) C T*(p).

The proof is now immediate because> 0.
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4. Neighborhood Results

Following the earlier investigations of Goodmdt &nd Ruscheweyd], we define

the — neighborhood of functionf(z) € T by:

Ns(f) = {gET g(z —Z—Zbkz Zk‘|ak—bk|<5}

In particular, for the identity function
e(z) = z,

we immediately have

(4.1) Ns(e) = {geTg —Z—Zbkz Zk|bk|<5}

Theorem 4.1. H («, 3) C Ns(e), wheres = 204—1&—2/6?3)

Proof. Let f(z) € H(a, 3). Then, in view of Theorera.1, since[(k — 1)(ak + 1) +

(1 — B)] is an increasing function df (k > 2), we have

Ga+2-5) o< Sk — Dak+1)+ (- Hlax <15,

k=2 k=2

which immediately yields

s ~ 5
(4.2) 2 a S e
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On the other hand, we also find from.{)

(a+1)) kay— B a Z (k—1) 4 Dk — 3)]ax
k=2 k=2 k=
@3) = S M0k~ 1)k 1)+ (1 Blag < 1- 5
k=2

From (4.3) and (4.2), we have

(a+1)2kak§(1—ﬁ)+62ak

g
<(1-7) +5m
_ 2o+ 1)(1-5)
- (2a+2-0) 7
that is,
S 20-p)  _

which in view of the definition4.1), prove Theoremd.1.

Lettinga = 0, in the above theorem, we have:

Corollary 4.2. T*(3) C Ns(e), wheres = 275))
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5. Integral Means Inequalities

We need the following lemma.

Lemma 5.1 ([B]). If f andg are analytic inU with f < g, then

2 5 27 5
/ }g(r6i9)| d@g/ |f(7"ei9)‘ de,
0 0

whered > 0, z = re?? and0 < r < 1.
Applying Lemmabs.1, and @.1), we prove the following theorem.

Theorem 5.2. Let§ > 0. If f(2) € H(a, 3), then forz = re?, 0 < r < 1, we have

27 27
/ \f(rei9)|‘5deg/ | fa(re®)| b,
0 0

where

o 0-p
2a+2-0)"

Proof. Let f(z) defined by (.2) and f5(z) be given by §.1). We must show that

(5.1) fa(z) =

2w o0 0 21 d
_ 1-p)
1-— a2t d9</ 1— ( z| de.
/o Z ¢ = Jo (20 +2- )

By Lemmab.1, it suffices to show that

ke (1-0)
1—;&k2k 1<1—m2
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Setting
(5.2) 1— Zakzk_l =1- &w z
From (6.2) and ¢.1), we obtain

i 204+2 ﬁ) k—1

apz
k=2

<|Z|Z ak+ 1) + (1 - 9)

CLk<Z.
5 2|

This completes the proof of the theorem.

Letting o = 0 in the above theorem, we have:

Corollary 5.3. Letd > 0. If f(z) € T*(8), thenforz = e, 0 < r < 1, we have
2 ) s 2 ) s
/ ‘f(rew)| do < / |f2(re”9)‘ de,
0 0

-,
b =257

where
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6. Partial Sums

In this section we will examine the ratio of a function of the forhj to its sequence
of partial sums defined by, (2) = z andf,(z) = z — >_,_, axz* when the coef-
ficients of f are sufficiently small to satisfy the conditioh.{). We will determine

sharp lower bounds fdRe (Jf:f%) . Re (’;?(ZZ)) Re (fn Z)> andRe (f" )> .

In what follows, we will use the well known result that

1
Reﬂ>0, zeU,

1+ w(2)
if and only if
w(z) = Z crzk
k=1

satisfies the inequalityv(z)| < |z].
Theorem 6.1. If f(z) € H(«, 3), then

f(2) 1
6.1 Re >1-— zeUneN
( ) fn(z) - Cn+1 ( )
and

fn(z) Cn+1

: >

(6.2) Re(f(z) Z 1o (zeU,neN),

where(ck — [(k‘l)(o"jf}g)+(1_ﬁ)]) . The estimates ir5(1) and (5.2) are sharp.
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Proof. We employ the same technique used by Silvernizh [The functionf(z) €
H(a,3),ifand only if Y2, crar, < 1. Itis easy to verify thaty.; > ¢, > 1. Thus,

n o0 o
(63) Zak + Cn+1 Z Qg < chak < 1.
k=2 k=n+1 k=2
We may write
y Subclass of Starlike
c f(Z) _ (1= 1 _ 1— 2222 Clka_l — Cpa1 ZZO:TLJA akz’“_l Functions.
n+1 fn(z) Cntl 1— ZZ:Z akzk—l A. Y. Lashin
I. 10, iss. 2, art. 40, 2009
1+ D(z) vol. 10, 1ss. 2, art. 40,
1+ E(2)

Set Title Page
Lt D(Z) (Z) Contents
1+ E(2) 1+w@y

so that <4« (33

w(z) = g2 DD <
2+ D(z)+ E(z)
Then Page 13 of 18
00 k—1
w(z) = B kzlk:’”l - — Go Back
2-—-2§:k:2akz N ——cn+1§:k:n+1akz -
and Full Screen
Cnt1 Zzi”“ Ok Close

w(2)] <

< 2=2) ko~ Cat1 D ey ar

Now [w(z)| < 1 if and only if journal of inequalities
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which is true by §.3). This readily yields the assertiof.() of Theoremt. 1.
To see that

Zn+1
(6.4) f(z)=2z—
Cn+1
gives sharp results, we observe that
fe) _,_ =
j%(Z) Cn+1
Letting = — 1, we have
f) 1
fn(z) Cn+1 ’

which shows that the bounds ia.() are the best possible for eaeghe N. Similarly,
we take

YNGR 1+ 1= S0 apeht

1 —w(z2)
1+ w(z)’
where
- (1 4+ ) S
T2-23 0 sar+ (1 —cupn) ZZinH ar,
Now |w(z)| < 1if and only if

jw(2)

n oo
g ag + Cpt1 E ar < 1,
k=2 k=n+1
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which is true by ¢.39). This immediately leads to the assertian4) of Theoremt. 1.
The estimate inq.2) is sharp with the extremal functiof{z) given by ©.4). This
completes the proof of Theoreml O

Letting o = 0 in the above theorem, we have:
Corollary 6.2. If f(z) € T*(/3), then

Subclass of Starlike

f(Z) n Functions
R > : eU
¢ fn(Z) - (n +1—- B) (Z ) A. Y. Lashin
and vol. 10, iss. 2, art. 40, 2009
fu(2) n+1-pz
Re > , zelU).
f(2) (n+2-20) ( ) Title Page
The result is sharp for eveny, with the extremal function Contents
(6.5) fz)=2z— 128 en « >
' (n+1-7) '
. . o < >
We now turn to the ratios involving derivatives. The proof of Theofefbelow
follows the pattern of that in Theorefnl, and so the details may be omitted. Page 15 of 18
Theorem 6.3.1f f(z) € H(«, 3), then Go Back
! 1 Full S
(6.6) Rl ) 5 ntl (z € U), o sereen
fu(2) c
n n+l1 Close
and
(2) journal of inequalities
n\% Cn+1 in pure and applied
v > N).
©- fe (f’(2)> T nt+l4cen (z€l,neN) mathematics

The estimates ir5(6) and (6.7) are sharp with the extremal function given liy4). 1ssni MSSSTER
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Letting o = 0 in the above theorem, we have:
Corollary 6.4. If f(z) € T*(/3), then

G o

>

e R

e f) -
'(z n+1—
Re == > , zeU).
P Zari-pmry Y
The result is sharp for eveny, with the extremal function given b§.{).
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