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Abstract: We introduce the classH(α, β) of analytic functions with negative coefficients.
In this paper we give some properties of functions in the classH(α, β) and we
obtain coefficient estimates, neighborhood and integral means inequalities for the
function f(z) belonging to the classH(α, β). We also establish some results
concerning the partial sums for the functionf(z) belonging to the classH(α, β).
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1. Introduction

Let A denote the class of functions of the form

(1.1) f(z) = z +
∞∑

k=2

akz
k,

which are analytic in the unit discU = {z : |z| < 1}. And letS denote the subclass
of A consisting of univalent functionsf(z) in U.

A functionf(z) in S is said to be starlike of orderα if and only if

Re

(
zf ′(z)

f(z)

)
> α (z ∈ U),

for someα (0 ≤ α < 1). We denote byS∗(α) the class of all functions inS which
are starlike of orderα. It is well-known that

S∗(α) ⊆ S∗(0) ≡ S∗.

Further, a functionf(z) in S is said to be convex of orderα in U if and only if

Re

(
1 +

zf
′′
(z)

f ′(z)

)
> α (z ∈ U),

for someα (0 ≤ α < 1). We denote byK(α) the class of all functions inS which
are convex of orderα.

The classesS∗(α), andK(α) were first introduced by Robertson [8], and later
were studied by Schild [10], MacGregor [4], and Pinchuk [7].

Let T denote the subclass ofS whose elements can be expressed in the form:

(1.2) f(z) = z −
∞∑

k=2

akz
k (ak ≥ 0).
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We denote byT ∗(α) andC(α), respectively, the classes obtained by taking the in-
tersections ofS∗(α) andK(α) with T,

T ∗(α) = S∗(α) ∩ T and C(α) = K(α) ∩ T.

The classesT ∗(α) andC(α) were introduced by Silverman [11].
Let H(α, β) denote the class of functionsf(z) ∈ A which satisfy the condition

Re

(
αz2f

′′
(z)

f(z)
+

zf ′(z)

f(z)

)
> β

for someα ≥ 0, 0 ≤ β < 1, f(z)
z
6= 0 and z ∈ U.

The classesH(α, β) andH(α, 0) were introduced and studied by Obraddovic and
Joshi [5], Padmanabhan [6], Li and Owa [2], Xu and Yang [14], Singh and Gupta
[13], and others.

Further, we denote byH(α, β) the class obtained by taking intersections of the
classH(α, β) with T , that is

H(α, β) = H(α, β) ∩ T.

We note that
H(0, β) = T ∗(β) (Silverman [11]).
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2. Coefficient Estimates

Theorem 2.1. A functionf(z) ∈ T is in the classH(α, β) if and only if

(2.1)
∞∑

k=2

[(k − 1)(αk + 1) + (1− β)]ak ≤ 1− β.

The result is sharp.

Proof. Assume that the inequality (2.1) holds and let|z| < 1. Then we have∣∣∣∣αz2f
′′
(z)

f(z)
+

zf ′(z)

f(z)
− 1

∣∣∣∣ =

∣∣∣∣−∑∞
k=2(k − 1)(αk + 1)akz

k−1

1−
∑∞

k=2 akzk−1

∣∣∣∣
≤
∑∞

k=2(k − 1)(αk + 1)ak

1−
∑∞

k=2 ak

≤ 1− β.

This shows that the values ofαz2f
′′
(z)

f(z)
+ zf ′(z)

f(z)
lie in the circle centered atw = 1

whose radius is1− β. Hencef(z) is in the classH(α, β).
To prove the converse, assume thatf(z) defined by (1.2) is in the classH(α, β).

Then

(2.2) Re

(
αz2f

′′
(z)

f(z)
+

zf ′(z)

f(z)

)
= Re

(
1−

∑∞
k=2[αk(k − 1) + k)]akz

k−1

1−
∑∞

k=2 akzk−1

)
> β

for z ∈ U. Choose values ofz on the real axis so thatαz2f
′′
(z)

f(z)
+ zf ′(z)

f(z)
is real. Upon
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clearing the denominator in (2.2) and lettingz → 1− through real values, we have

β

(
1−

∞∑
k=2

ak

)
≤ 1−

∞∑
k=2

[αk(k − 1) + k]ak,

which obviously is the required result (2.1).
Finally, we note that the assertion (2.1) of Theorem2.1is sharp, with the extremal

function being

(2.3) f(z) = z − 1− β

[(k − 1)(αk + 1) + (1− β)]
zk (k ≥ 2).

Corollary 2.2. Letf(z) ∈ T be in the classH(α, β). Then we have

(2.4) ak ≤
1− β

[(k − 1)(αk + 1) + (1− β)]
(k ≥ 2).

Equality in (2.4) holds true for the functionf(z) given by (2.3).
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3. Some Properties of the ClassH(α, β)

Theorem 3.1. Let0 ≤ α1 < α2 and0 ≤ β < 1. ThenH(α2, β) ⊂ H(α1, β).

Proof. It follows from Theorem2.1. That

∞∑
k=2

[(k − 1)(α1k + 1) + (1− β)]ak

<
∞∑

k=2

[(k − 1)(α2k + 1) + (1− β)]ak ≤ 1− β

for f(z) ∈ H(α2, β). Hencef(z) ∈ H(α1, β).

Corollary 3.2. H(α, β) ⊆ T ∗(β).

The proof is now immediate becauseα ≥ 0.
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4. Neighborhood Results

Following the earlier investigations of Goodman [1] and Ruscheweyh [9], we define
theδ− neighborhood of functionf(z) ∈ T by:

Nδ(f) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k,

∞∑
k=2

k |ak − bk| ≤ δ

}
.

In particular, for the identity function

e(z) = z,

we immediately have

(4.1) Nδ(e) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k,

∞∑
k=2

k |bk| ≤ δ

}
.

Theorem 4.1.H(α, β) ⊆ Nδ(e), whereδ = 2(1−β)
(2α+2−β)

.

Proof. Let f(z) ∈ H(α, β). Then, in view of Theorem2.1, since[(k− 1)(αk +1)+
(1− β)] is an increasing function ofk (k ≥ 2), we have

(2α + 2− β)
∞∑

k=2

ak ≤
∞∑

k=2

[(k − 1)(αk + 1) + (1− β)]ak ≤ 1− β,

which immediately yields

(4.2)
∞∑

k=2

ak ≤
1− β

(2α + 2− β)
.
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On the other hand, we also find from (2.1)

(α + 1)
∞∑

k=2

kak − β
∞∑

k=2

ak ≤
∞∑

k=2

[(α(k − 1) + 1)k − β)]ak

=
∞∑

k=2

[(k − 1)(αk + 1) + (1− β)]ak ≤ 1− β.(4.3)

From (4.3) and (4.2), we have

(α + 1)
∞∑

k=2

kak ≤ (1− β) + β
∞∑

k=2

ak

≤ (1− β) + β
1− β

(2α + 2− β)

≤ 2(α + 1)(1− β)

(2α + 2− β)
,

that is,

(4.4)
∞∑

k=2

kak ≤
2 (1− β)

(2α + 2− β)
= δ,

which in view of the definition (4.1), prove Theorem4.1.

Lettingα = 0, in the above theorem, we have:

Corollary 4.2. T ∗(β) ⊆ Nδ(e), whereδ = 2(1−β)
(2−β)

.
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5. Integral Means Inequalities

We need the following lemma.

Lemma 5.1 ([3]). If f andg are analytic inU with f ≺ g, then∫ 2π

0

∣∣g(reiθ)
∣∣δ dθ ≤

∫ 2π

0

∣∣f(reiθ)
∣∣δ dθ,

whereδ > 0, z = reiθ and0 < r < 1.

Applying Lemma5.1, and (2.1), we prove the following theorem.

Theorem 5.2. Let δ > 0. If f(z) ∈ H(α, β), then forz = reiθ, 0 < r < 1, we have∫ 2π

0

∣∣f(reiθ)
∣∣δ dθ ≤

∫ 2π

0

∣∣f2(re
iθ)
∣∣δ dθ,

where

(5.1) f2(z) = z − (1− β)

(2α + 2− β)
z2.

Proof. Let f(z) defined by (1.2) andf2(z) be given by (5.1). We must show that∫ 2π

0

∣∣∣∣∣1−
∞∑

k=2

akz
k−1

∣∣∣∣∣
δ

dθ ≤
∫ 2π

0

∣∣∣∣1− (1− β)

(2α + 2− β)
z

∣∣∣∣δ dθ.

By Lemma5.1, it suffices to show that

1−
∞∑

k=2

akz
k−1 ≺ 1− (1− β)

(2α + 2− β)
z.
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Setting

(5.2) 1−
∞∑

k=2

akz
k−1 = 1− (1− β)

(2α + 2− β)
w(z).

From (5.2) and (2.1), we obtain

|w(z)| =

∣∣∣∣∣
∞∑

k=2

(2α + 2− β)

(1− β)
akz

k−1

∣∣∣∣∣
≤ |z|

∞∑
k=2

[(k − 1)(αk + 1) + (1− β)]

1− β
ak ≤ |z| .

This completes the proof of the theorem.

Lettingα = 0 in the above theorem, we have:

Corollary 5.3. Let δ > 0. If f(z) ∈ T ∗(β), then forz = reiθ, 0 < r < 1, we have∫ 2π

0

∣∣f(reiθ)
∣∣δ dθ ≤

∫ 2π

0

∣∣f2(re
iθ)
∣∣δ dθ,

where

f2(z) = z − (1− β)

(2− β)
z2.
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6. Partial Sums

In this section we will examine the ratio of a function of the form (1.2) to its sequence
of partial sums defined byf1(z) = z andfn(z) = z −

∑n
k=2 akz

k when the coef-
ficients off are sufficiently small to satisfy the condition (2.1). We will determine

sharp lower bounds forRe
(

f(z)
fn(z)

)
, Re

(
fn(z)
f(z)

)
, Re

(
f ′(z)
f ′

n(z)

)
andRe

(
f ′

n(z)
f ′(z)

)
.

In what follows, we will use the well known result that

Re
1− w(z)

1 + w(z)
> 0, z ∈ U,

if and only if

w(z) =
∞∑

k=1

ckz
k

satisfies the inequality|w(z)| ≤ |z| .

Theorem 6.1. If f(z) ∈ H(α, β), then

(6.1) Re
f(z)

fn(z)
≥ 1− 1

cn+1

(z ∈ U, n ∈ N)

and

(6.2) Re

(
fn(z)

f(z)

)
≥ cn+1

1 + cn+1

(z ∈ U, n ∈ N) ,

where
(
ck =: [(k−1)(αk+1)+(1−β)]

1−β

)
. The estimates in (6.1) and (6.2) are sharp.
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Proof. We employ the same technique used by Silverman [12]. The functionf(z) ∈
H(α, β), if and only if

∑∞
k=2 ckak ≤ 1. It is easy to verify thatck+1 > ck > 1. Thus,

(6.3)
n∑

k=2

ak + cn+1

∞∑
k=n+1

ak ≤
∞∑

k=2

ckak ≤ 1.

We may write

cn+1

{
f(z)

fn(z)
−
(

1− 1

cn+1

)}
=

1−
∑n

k=2 akz
k−1 − cn+1

∑∞
k=n+1 akz

k−1

1−
∑n

k=2 akzk−1

=
1 + D(z)

1 + E(z)
.

Set
1 + D(z)

1 + E(z)
=

1− w(z)

1 + w(z)
,

so that

w(z) =
E(z)−D(z)

2 + D(z) + E(z)
.

Then

w(z) =
cn+1

∑∞
k=n+1 akz

k−1

2− 2
∑n

k=2 akzk−1 − cn+1

∑∞
k=n+1 akzk−1

and

|w(z)| ≤
cn+1

∑∞
k=n+1 ak

2− 2
∑n

k=2 ak − cn+1

∑∞
k=n+1 ak

.

Now |w(z)| ≤ 1 if and only if
n∑

k=2

ak + cn+1

∞∑
k=n+1

ak ≤ 1,
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which is true by (6.3). This readily yields the assertion (6.1) of Theorem6.1.
To see that

(6.4) f(z) = z − zn+1

cn+1

gives sharp results, we observe that

f(z)

fn(z)
= 1− zn

cn+1

.

Letting z → 1−, we have
f(z)

fn(z)
= 1− 1

cn+1

,

which shows that the bounds in (6.1) are the best possible for eachn ∈ N. Similarly,
we take

(1 + cn+1)

(
fn(z)

f(z)
− cn+1

1 + cn+1

)
=

1−
∑n

k=2 akz
k−1 + cn+1

∑∞
k=n+1 akz

k−1

1−
∑∞

k=2 akzk−1

:=
1− w(z)

1 + w(z)
,

where

|w(z)| ≤
(1 + cn+1)

∑∞
k=n+1 ak

2− 2
∑n

k=2 ak + (1− cn+1)
∑∞

k=n+1 ak

.

Now |w(z)| ≤ 1 if and only if

n∑
k=2

ak + cn+1

∞∑
k=n+1

ak ≤ 1,
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which is true by (6.3). This immediately leads to the assertion (6.2) of Theorem6.1.
The estimate in (6.2) is sharp with the extremal functionf(z) given by (6.4). This

completes the proof of Theorem6.1.

Lettingα = 0 in the above theorem, we have:

Corollary 6.2. If f(z) ∈ T ∗(β), then

Re
f(z)

fn(z)
≥ n

(n + 1− β)
, (z ∈ U)

and

Re
fn(z)

f(z)
≥ n + 1− β

(n + 2− 2β)
, (z ∈ U) .

The result is sharp for everyn, with the extremal function

(6.5) f(z) = z − 1− β

(n + 1− β)
zn+1.

We now turn to the ratios involving derivatives. The proof of Theorem6.3below
follows the pattern of that in Theorem6.1, and so the details may be omitted.

Theorem 6.3. If f(z) ∈ H(α, β), then

(6.6) Re
f ′(z)

f ′n(z)
≥ 1− n + 1

cn+1

(z ∈ U) ,

and

(6.7) Re

(
f ′n(z)

f ′(z)

)
≥ cn+1

n + 1 + cn+1

(z ∈ U, n ∈ N) .

The estimates in (6.6) and (6.7) are sharp with the extremal function given by (6.4).
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Lettingα = 0 in the above theorem, we have:

Corollary 6.4. If f(z) ∈ T ∗(β), then

Re
f ′(z)

f ′n(z)
≥ βn

(n + 1− β)
, (z ∈ U) ,

and

Re
f ′n(z)

f ′(z)
≥ n + 1− β

n + (1− β)(n + 2)
, (z ∈ U) .

The result is sharp for everyn, with the extremal function given by (6.5).
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