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ABSTRACT. A multivariate Jensen-type inequality is generalized.
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1. I NTRODUCTION

The following theorem was proved in [1] withS = (0,∞)n, g1, . . . , gn real-valued functions
on S, f (x) =

∑n
i=1 xigi (x) for any column vectorx = (x1, . . . , xn)T ∈ S, andei the ith unit

column vector inRn.

Theorem 1.1.Letg1, . . . , gn be convex onS, and letX = (X1, . . . , Xn)T be a random column
vector inS with E (X) = µ = (µ1, . . . , µn)T andE

(
XXT

)
= Σ + µµT for covariance matrix

Σ. Then,

E (f (X)) ≥
n∑

i=1

µi gi

(
Σ ei

µi

+ µ

)
and the bound is sharp.
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2 R.A. AGNEW AND J.E. PEČARIĆ

2. GENERALIZED RESULT

Theorem 2.1. Let g1, . . . , gn be convex onS, F convex onRn and nondecreasing in each
argument, andf (x) = F (x1g1 (x) , . . . , xngn (x)) . Let X = (X1, . . . , Xn)T be a random
column vector inS with E (X) = µ = (µ1, . . . , µn)T andE

(
XXT

)
= Σ+µµT for covariance

matrixΣ. Then,

(2.1) E (f (X)) ≥ F (µ1g1 (ξ1) , . . . , µngn (ξn))

whereξi = E
(

XXi

µi

)
= Σ ei

µi
+ µ and the bound is sharp.

Proof. By Jensen’s inequality, we haveE (f (X)) ≥ F (E (X1g1 (X)) , . . . , E (Xngn (X)))
and it is proved in [1] thatE (Xigi (X)) ≥ µigi (ξi) is the best possible lower bound for eachi.
SinceF is nondecreasing in each argument, (2.1) follows and the bound is obviously attained
whenX is concentrated atµ. �

Theorem 1.1 is a special case of Theorem 2.1 withF (u1, . . . , un) =
∑n

i=1 ui. A simple
generalization puts

F (u1, . . . , un) =
n∑

i=1

ki (ui)

where eachki is convex nondecreasing onR. Alternatively, we can put

F (u1, . . . , un) = max
i

ki (ui)

since convexity is preserved under maxima.
Drawing on an example in [1], let

gi (x) = ρi

n∏
j=1

x
−γij

j

with ρi > 0 andγij > 0 where thegi represent Cournot-type price functions (inverse demand
functions) for quasi-substitutable products.xi is the supply of producti andgi (x1, . . . , xn) is
the equilibrium price of producti, given its supply and the supplies of its alternates. Then,
xi gi (x) represents the revenue from producti andf (x) = maxi xi gi (x) represents maximum
revenue across the ensemble of products. Then, with probabilistic supplies, we have

E (f (X)) ≥ max
i

µi gi

(
Σei

µi

+ µ

)
= max

i
µi ρi

n∏
j=1

(
σij

µi

+ µj

)−γij

,

whereσij is theij th element ofΣ.
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