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ABSTRACT. A multivariate Jensen-type inequality is generalized.
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1. INTRODUCTION

The following theorem was proved inl[1] with = (0, c0)", g1, . . ., g, real-valued functions
onS, f(z) = 327, z.g; (x) for any column vector: = (z,...,z,)" € S, ande; thei™ unit
column vector inR™.

Theorem 1.1.Letg,, ..., g, be convex o, and letX = (X;,... ,Xn)T be arandom column
vector inS with £ (X) = p = (u1,...,p1,)" andE (XXT) = X + uu” for covariance matrix
Y. Then,

£ =Yoo (5240)

)

and the bound is sharp.
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2. GENERALIZED RESULT

Theorem 2.1. Let ¢4, ..., g, be convex onS, F' convex onR™ and nondecreasing in each
argument, andf (z) = F (19, (z),...,Zngn (z)). L&t X = (X1,...,X,)" be a random
column vector irs with E (X) =y = (i1, ..., )" andE (XXT) = S+ uuT for covariance
matrix 2. Then,

(2.1) E(f(X))>F (g1 (1), ngn (&)

where¢; = E (%) = =% 4 pand the bound is sharp.

Proof. By Jensen’s inequality, we havé (f (X)) > F(E (X191 (X)),..., E(Xngn (X)))

and itis proved inl[1] thaty (X,g; (X)) > w:g; (&) is the best possible lower bound for each
SinceF is nondecreasing in each argumept, (2.1) follows and the bound is obviously attained
whenX is concentrated at. O

Theoren{ 111 is a special case of Theofen) 2.1 withu,, ..., u,) = >/, u;. A simple
generalization puts

F(ul,...,un)zzk‘i(ui)

where eaclt; is convex nondecreasing dn Alternatively, we can put
F(uy, ... u,) = max k; (u;)

since convexity is preserved under maxima.
Drawing on an example in[1], let

9i (x) = pi H 'Tj_%j
j=1

with p; > 0 and~;; > 0 where theg; represent Cournot-type price functions (inverse demand
functions) for quasi-substitutable products.is the supply of productandg; (x1, ..., z,) is

the equilibrium price of product, given its supply and the supplies of its alternates. Then,
x; g; (x) represents the revenue from prodiuahd f (z) = max; z; g; (x) represents maximum
revenue across the ensemble of products. Then, with probabilistic supplies, we have

Zei - Oij K
E(f (X)) = max p; g; ( P +u> = max ji; p; 1T (ﬁﬂh) :

K ]:1 7

whereo;; is theij* element ofy.
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