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ABSTRACT. A variant of Jessen’s inequality for superquadratic functions is proved. This is a
refinement of a variant of Jessen’s inequality of Mercer’s type for convex functions. The result is
used to refine some comparison inequalities of Mercer's type between functional power means
and between functional quasi-arithmetic means.
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1. INTRODUCTION

Let £ be a nonempty set andbe a linear class of real valued functiofis £ — R having
the properties:

Ll: f,ge L= (af + Bg) € Lforalla,3 € R,

L2:1€ L,ie.iff(t)=1fort € E,thenf € L.
An isotonic linear functional is a functional : L — R having the properties:

Al: A(af + Bg) = aA(f) + BA(g) for f,g € L, a, 8 € R (Ais linear);

A2: fe L, f(t) >00onE = A(f) > 0 (A is isotonic).

The following result is Jessen’s generalization of the well known Jensen’s inequality for
convex functions [10] (see also [12, p. 47]):
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2 S. ABRAMOVICH, J. BARIC, AND J. PECARIC

Theorem A. Let L satisfy propertied.1, L2 on a nonempty sef, and lety be a continuous
convex function on an intervdl C R. If A is an isotonic linear functional o with A(1) = 1,
then for allg € L such thatp (¢) € L, we haveA(g) € I and

p(A(g)) < Alv(9)).
Similar to Jensen’s inequality, Jessen’s inequality has a converse [7] (see also [12, p. 98]):

Theorem B. Let L satisfy propertied.1, L2 on a nonempty sef, and letp be a convex function
on an intervall = [m, M|, —oo < m < M < oo. If Ais an isotonic linear functional o
with A(1) = 1, then for allg € L such thaty (¢g) € L so thatm < g(t) < M forall t € E, we

have e A(g
M —A(g g)—m
< =TT .
Alp(9)) = —pp— = ~elm) + — —
Inspired by l.Gavrea’s [9] result, which is a generalization of Mercer’s variant of Jensen’s
inequality [11], recently, W.S. Cheung, A. Matkévand J. Péaric, [8] gave the following

extension on a linear clagssatisfying propertied.1, L2.

(M).

Theorem C. Let L satisfy propertied.1, L2 on a nonempty sef, and lety be a continuous
convex function on an intervdl = [m, M], —co < m < M < co. If Ais an isotonic linear
functional onLZ with A(1) = 1, then for allg € L such thaty (¢), (m + M — g) € L so that
m < g(t) < M for all t € E, we have the following variant of Jessen’s inequality

(1.1) p(m+M—A(g) <p(m)+e(M)—Alp(g))-
In fact, to be more specific we have the following series of inequalities
p(m+M—A(g))
< A(p(m+M —g))

< VA o+ AL )

<@ (m)+¢ M) —A(e(9)).
If the functiony is concave, inequalitie@l. 1)) and (1.2)) are reversed.

In this paper we give an analogous result for superquadratic function (see also different anal-
ogous results ir_[6]). We start with the following definition.

(1.2)

Definition A ([1, Definition 2.1]) A functiony : [0,00) — R is superquadraticprovided that
forall x > 0 there exists a constant(z) € R such that

(1.3) ey) —p@) —e(y—2) = C()(y — =)
for all y > 0. We say thaf is subquadraticif — f is a superquadratic function.

For example, the functiop(z) = z” is superquadratic fop > 2 and subquadratic for

p € (0,2].
)) dyi (s)

Theorem D ([1, Theorem 2.3]) The inequality
holds for all probability measureg and all non-negative.—integrable functiong, if and only

f(/gdu) S/(f(g(S))—f(’g(S)—/gdu
if fis superquadratic.

The following discrete version that follows from the above theorem is also used in the sequel.
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Lemma A. Suppose thaf is superquadratic. Let, > 0,1 <r <nandletz =3 ", \ .z,
where), > 0and)"_, A\, = 1. Then

D Af(@) = f(@) + Y Af(ln — 7).
r=1 r=1
In [3] and [4] the following converse of Jensen’s inequality for superquadratic functions was
proved.

Theorem E. Let({2, A, ;1) be a measurable space with< p(r) < oo and letf : [0,00) — R
be a superquadratic function. §f: Q@ — [m, M] < [0, c0) is such thatg, fog € Li(u), then
we have

1 M—g
m/gf(g)dMSM_mf(m)+M

BN
w() M —m

g—m

~p(m)

/Q((M—g)f(g—m)+(9—m)f(M—g))du,

- 1
forg = o] Jo, 9dp.
The discrete version of this theorem is:

Theorem F. Let f : [0, 00) — R be a superquadratic function. Lét;, ..., z,) be ann—tuple
in [m, M]" (0 <m < M < o0), and (py,...,p,) be a non-negative—tuple such that®, =
>y pi > 0. Denoter = 5- 37| pix;, then

M-z T—m

By o ) S 3 ) g )

n

B pn(Ml—_m) ZpiKM_xi)f(xi—m)—F(&Ei—m)f(M—xi)].

In Section 2 we give the main result of our paper which is an analogue of Thédrem C for
superquadratic functions. In Section 3 we use that result to derive some refinements of the in-
equalities obtained in [8] which involve functional power means of Mercer’s type and functional
guasi-arithmetic means of Mercer’s type.

2. MAIN RESULTS

Theorem 2.1. Let L satisfy propertied 1, L2, on a nhonempty set, ¢ : [0,00) — R be a
continuous superquadratic function, afd< m < M < oo. Assume thatl is an isotonic
linear functional onL with A(1) = 1. If ¢ € L is such thatn < ¢(¢) < M, forall t € E, and
such thatp(g), o(m + M — g), (M — g)p(g —m), (g — m)p(M — g) € L, then we have

p(m+ M — A(g))

1
M—-—m

<

S 57 — (M)

[(A(g) —m)p(M — A(g)) + (M — A(g))p(A(g) — m)]
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(21) < p(m)+ M) - Alp(g))

L Ay — m)p(M — g) + (M — g)o(g —m))

M — m
[(A(g) — m)p(M — A(g)) + (M — A(g))p(A(g) —m)] .

1
If the functiony is subquadratic, then all the inequalities above are reversed.

C M-—m

Proof. From Lemma A fom = 2, as well as from Theorefr F, we get that o m <t < M,

. < — — —
(22)  o(t) < 3r—w(m) + 37— (M) = o7t =m) — 77—
Replacingt with M + m — ¢t in (2.2) it follows that

t—m M —t

M
P (M)
t—m M —t

T G(M =) = o (t = m)

= i)+ 0) — | F= ) + 3 =g

t—m M —t
— M—t)— —m).
M—mgp( ) M —m(’p(t m)
Sincem < g(t) < M forall t € E, it follows thatm < A(g) < M and we have

A(g) _mmSO(M) N MM—_Aqif)

M —
Alg) —m M — A(g)
A M= Alg) = —
On the other hand, sinee < ¢(t) < M for all t € E it follows that

M —t t—m M —t t—m

(M —t).

oM +m—t) <

QS)wm+M—A@D§wmﬂwﬂﬂ—{ wmﬂ

¢(A(g) —m).

M — g(t) m
o) < = #m + S5
9(t)

e (M = ().

Using functional calculus we have

M — A(g)
(2.4) Ap(g)) < M —m

7 AU = g(t)p(g(t) —m))
1

m
7 A g(t) —m)p(M —g(2))).
Using inequalities| (2]3) and (2.4), we obtain the desired inequality (2.1).

The last statement follows immediately from the fact that is subquadratic ther ¢ is a
superquadratic function. O

Remark 1. If a functiony is superquadratic and nonnegative, then it is convex [1, Lema 2.2].
Hence, in this case inequalifg.1]) is a refinement of inequalitfl. ).

On the other hand, we can get one more inequality i} (2.1) if we use a result of .d®hi
S. Varosnec[[5] on Jessen’s inequality for superquadratic functions:
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Theorem 2.2([5, Theorem 8, Remark 1])Let L satisfy propertied.1, L2, on a nonempty set
E, and lety : [0,00) — R be a continuous superquadratic function. Assume thas an
isotonic linear functional orl with A(1) = 1. If f € L is nonnegative and such that f),
o(lf — A(f)]) € L, then we have

(2.9) P(A(f) < Ale(f)) = Ale(lf = AND)-

If the functiony is subquadratic, then the inequality above is reversed.

Using Theorem 2]2 and some basic properties of superquadratic functions we prove the next
theorem.

Theorem 2.3. Let L satisfy propertied.1, L2, on a nonempty sé€t, and lety : [0, 00) — R be
a continuous superquadratic function, andet m < M < co. Assume tha#l is an isotonic
linear functional onL with A(1) = 1. If g € L is such thatn < ¢(¢) < M, forall t € E, and

such thatp(g), o(m + M — g), (M — g)e(g —m), (g — m)p(M — g), p(lg — A(g)]) € L,
then we have

p(m+ M — A(g))
(26) < A(p(m+ M —g)) — A(e(lg — A(g)]))

@7 < AP oAy
1

Ay =m)e(M = g) + (M = g)p(g —m)) — Alp(lg — Ag)]))
(2.8) < p(m)+ (M) —A(p(9))

L A9~ m)p(M — g) + (M — g)elg —m)) ~ Al(lg — Alg))

If the functiony is subquadratic, then all the inequalities above are reversed.

Proof. Notice that(m + M — g) € L. Sincem < g(t) < M for all t € E, it follows that
m <m+ M —g(t) < M forall ¢t € E. Applying (2.5) to the functiorf = m + M — g we get

o(A(m + M — g))
=p(m+ M — A(g)
)

)
< A(p(m + M = g)) = A(p(jm + M — g — A(m + M — g)|))
= A(p(m+M — g)) — Alp(Im + M — g —m — M + A(g)]))
= A(p(m + M —g)) = Ale(lg — Al9)]),

which is the inequality{ (2]6).
From the discrete Jensen’s inequality for superquadratic functions we getiforaltt < M,

_ — M — -
(29) o(z) < ]]\\J/I_Zgo(m) + AZ_ZSD(M) — M_:lSD(x—m) - ]\Z_W;,L

Replacingz in (2.9) withm + M — g(t) € [m, M| for all t € E, we have

(M — z).

plm+ M — g(t) < To—"o(m) + = —Lo(M)
IO r gt~ 2D (1) )
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SinceA is linear, isotonic and satisfies(1) = 1, from the above inequality it follows that

M — A(g)
M—-—m

A((g —m)p(M —g) + (M — g)p(g —m)).

Alg) —m

2:10) Afp(m + M —g)) < 57—

p(m) + (M)

1
M—-—m

Adding —A(¢(]g — A(g)|)) on both sides of (2.10) we get

Alg) —m
M —m M—m

A((g —m)p(M — g) + (M — g)p(g —m)) — A(e(lg — A(g)])),

(2.11) A(p(m+ M —g)) — A(e(lg — Ag)])) <
1
M — m

which is the inequality{ (2]7).
The right hand side of (2.11) can be written as follows

~ ket -

—A (g —=m)e(M —g) + (M — g)p(g —m)) — Ale(lg — A(g)]))-

(2.12) ¢(m) + (M)

1
M —

On the other hand, replacing in (2.9), withg(t) € [m, M], for allt € E, we get

213)  o(g(t) < %__gg)sﬁ(m + QE>:$¢(M )
A gy —m) — D00 (1)

Applying the functionald on (2.13) we have

@1)  Alplg) < LAy A0y
- Ml_mA((M—g)w(g—m) + (g —m)p(M - g)),

The inequality[(Z2.14) can be written as follows

By - ALy
< ~A(plg)) — A (g~ m)p(M — ) + (M ~ g)plg — m)).
Using (2.12) we get
A =y 4 XA
— Ay = m)g( — g)+ (O — g)plg — m)) — Alg(lg — Alg))
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< @(m) + (M) — Alp(g))

- L —A((g = m)e(M = g) + (M = g)plg —m)

~ 1_ —A(lg =m)p(M — g) + (M — g)p(g —m)) — A(e(]g — Al9)]))
= @(m) + o(M) — A(»(9))

Ay~ m)e(M — g) + (M — g)plg — m)) — Alp(lg — Alg)])).

Now, it follows that

A;j)__mmw(m) N MM— A(g)

i 1_ —A(lg =m)p(M — g) + (M — g)p(g —m)) = A(e(]g — Al9)]))

< p(m) +p(M) — A(p(g))

— o A(g — m)p(M — g) + (M~ g)plg — m)) — Alpllg — AG)),

which is the inequality[ (2]8). O

—m

3. APPLICATIONS

Throughout this section we suppose that:
() Lis alinear class having propertiéd, .2 on a nonempty sef.

(i) Ais an isotonic linear functional oh such thatA(1) = 1.

(i) ¢ € L is a function ofE to [m, M] (0 < m < M < co) such that all of the following
expressions are well defined.

Let ¢) be a continuous and strictly monotonic function on an intefval [m, M|, (0 < m <
M < ).
For anyr € R, a power mean of Mercer’s type functional

1
T

[m"+ M"— A(g")]", r#0
Q(Tv g) = mM
exp (A(logg))’
and a quasi-arithmetic mean functional of Mercer’s type
My(g, 4) = &7 ((m) + (M) = A((9)))

are defined in[8] and the following theorems are proved.

r =0,

Theorem G. If r,s € Randr < s, then

Qr,9) < Q(s,9).
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Theorem H.

(i) If either y o 4y~! is convex andy is strictly increasing, ory o ¢»~! is concave ang, is
strictly decreasing, then

(i) If eithery o ¢ ~! is concave and is strictly increasing, ory o ¢! is convex and is
strictly decreasing, then the inequalify (B.1) is reversed.

Applying the inequality[(2]1) to the adequate superquadratic functions we shall give some

refinements of the inequalities in Theoremis G pnd H. To do this, we will define following
functions.

Olm, M,r,5,9,A) = ﬁfl (M= g")(g" —m")7)
bt A ) — )
bt (Al — ) (M - A
b~ A() (Alg) - )
and
Olm, M, b, x, g, A)
= A (0D s (57 (600) ~ )
b S A (00 = s (47 (001) - 69)
e (A = v(m) (57 (W) — A (2)

Now, the following theorems are valid.

Theorem 3.1.Letr, s € R.
() If0 < 2r <s,then

(32) Q(T, g) < [(Q(Sag))s - <>(m>Ma T>S7gvA)]% :
(i) If 2r < s <0, thenfor(Q(s,9))" — ¢ (M, m,r,s,g,A) >0
(33) Q(T, g) < [(Q(‘S?g))s - <>(M7m7 TS, 9, A)]% )

where we used (M, m,r, s, g, A) to denote the new function derived from the function
&$(my, M,y s, g, A) by changing the places of and M.

(i) 1f 0 < s <2r,thenfor(Q (s,9))"—0 (M, m,r,s,g,A) > 0the reverse inequality (3.2)
holds.

(iv) If s < 2r <0, then the reversed inequalify (8.3) holds.

J. Inequal. Pure and Appl. Matt9(3) (2008), Art. 62, 13 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

JESSENS INEQUALITY OF MERCER S TYPE AND SUPERQUADRACITY 9

Proof.
() ltis given that
O<m<g< M <oo.
Sincel < 2r < s, it follows that

0<m" <g"<M" < oo.

Applying Theorenj 21, or more precisely inequality {2.1) to the superquadratic function
¢(t) = tr (note that® > 2 here) and replacing, m and A/ with g", m” and M",
respectively, we have
[m" + M — A(g")]
1

T = (A(g") —m") (M" — A(g")"
e (M A(9) (Alg') — )
<m®+4+ M?®— A(g°)
- A (M = ) )Y
S A (g )M~ )Y
le.
(34) [Q(Ta g)]s < [Q(Sag)]s - <>(m7 Ma Ty 5797"4)'

Raising both sides of (3.4) to the power> 0, we get desired inequality (3.2).
(ii) Inthis case we have
0<M <g"<m" <oo.

Applying Theoren{ 2]1 or, more precisely, the reversed inequdlity (2.1) to the sub-
quadratic functionp(t) = ¢+ (note that now we have < # < 2) and replacing,
m andM with ¢", m" andM", respectively, we get

[M"+m" — Alg")])"

- A - - ).

Since2r < s < 0, raising both sides to the powsér it follows that

w =

(M7 +m" — A(g")]" < [M* +m® — A(g®) — O(M,m,r, s, g, A)]*

or

w =

Q(T’, g) < [(Q(Svg))s - O(M,m,r,s,g,A)]~ :
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(i) Inthis case we haveé < * < 2. Sincel < m" < g" < M" < oo, we can apply Theorem
, or more precisely, the reversed inequality|(2.1) to the subquadratic fupctipa:
t-. Replacingg, m and M with ¢", m” andM", respectively, it follows that

[m” + M — A(g")]

+ ﬁ (A(g") —m") (M" — A(gr))f
- M 1_ mr (M"™— A(g")) (A(g") — mr)i
>m® + M* = Ag®)
G 1_ —A(M" = g")(g" = m")")
G - —A((g" =) (M = g)7).
le.
(3:9) Q(r. g))° > [Q(s, 9)]° — O(m, M, 7, s, g, A).

Raising both sides of (3.5) to the power> 0 we get

1
s

Q(Ta g) > [(Q(Svg))s - <>(m> Ma T>S>g7A)]

(iv) Sincer < 0,from0 <m < g < M < oo it follows that) < M"™ < ¢" < m" < oo.
Now, we are applying Theore@.l to the superquadratic fungiioh= ¢+, because
* > 2 here, and analogous to the previous theorem we get

[Q(Tv g)]s < [Q(Svg)]s - O(M,m,r, SvgvA)'

Raising both sides to the pow§r< 0 it follows that

w |-

Q(T’, g) > [(Q(svg))s - Q(M,m,r,s,g,A)]~ :

Theorem 3.2.Letr, s € R.
() If 0 < 2s <r,then

(3.6) Q(r,9) > [(Q(s,9))" + O(m, M, s,7, g, A)]" ,

where we used(m, M, s,r, g, A) to denote the new function derived from the function
&$(my, M,y s, g, A) by changing the places ofandss.
(i) If 2s <r <0, then

(3.7) Q(r,9) <[(Q(s,9))" + (M, m,s,7,9,A)]

(iii) If 0 < r < 2s, then the reversed inequality (8.6) holds.
(iv) If r < 2s < 0, then the reversed inequalify (8.7) holds.

Sl

Proof.

() Applying inequality ) to the superquadratic functipf¥) = ¢+ (note that: > 2
here) and replacing, m and M with ¢, m* andM*, (0 < m® < ¢° < M® < o0)
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respectively, we have
[m® + M* — A(g*)]*
1 r

T e (A(g°) —m®) (M* — A(g%))

— ———A((g" = m")(M* = ¢°)%),
le.
[Q(Sa g)]T S [Q(T, g>]7’ - <><m7 M7 5,7,39, A)
Raising both sides to the powér> 0, the inequality[(3.5) follows.

(i) Sinces < 0, we have) < M*® < ¢°* < m*® < oo so the function{> will be of the form
O(M,m,s,r,g,A). Since0 < £ < 2, we will apply Theoren 2]1 to the subquadratic
functiony(t) = t= and, as in previous case, it follows that

[Q(s,9)]" + (M, m,s,1,9,A) > [Q(r, 9)]".
Raising both sides to the powgr< 0, the inequality[(3.]7) follows.

(ii)) Since0 < * < 2, we will apply Theorenj 2]1 to the subquadratic functioft) = ¢

and then it follows that
[Q(s,9)]" + O(m, M, s,1,9,A) > [Q(r, 9)]".
Raising both sides to the pow§r> 0, we get

Q(r,g) < [(Q(s, )" + O(m, M, 5,7, g, A)]" .

(iv) Sincef > 2, we will apply Theorel to the superquadratic functign) = ¢- and
use the functior)(M, m, s,r, g, A) instead ok>(m, M, s,r, g, A). Then we get

[Q(s, 9)]" + O(M,m, s,1,9,A) < [Q(r, 9)]" .
Raising both sides to the powTér< 0, it follows that

Q(r,9) = [(Q(s,9))" + O(M,m, s,7,9, A)]

Sl

O

Remark 2. Notice that some cases in the last theorems have common parts. In some of them
we can establish double inequalities. For exampl®, & r» < 2s and0 < s < 2r, then for

(Q (57.9))8 - O(M,m,r, S?.gvA) >0
(Q(5,9))" + O (m, M, s,7,9,A)]" > Q(r,9) > [(Q(s,9)) = O (m, M,r, 5,9, A)]

Theorem 3.3.Lety € C([m, M]) be strictly increasing and let € C(|m, M]) be strictly
monotonic functions.
(i) If eitheryov~!is superquadratic ang is strictly increasing, oryov)~! is subquadratic
and y is strictly decreasing, then

(3:8) My (9,4) < (x (My (9, 4)) = Om. M., x,9,4))

o |
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(i) If eitheryoy—!is subquadratic ang is strictly increasing ory ot ~! is superquadratic
andy is strictly decreasing, then the inequalify (3.8) is reversed.

Proof. Suppose thaf o ¢! is superquadratic. Letting = x o ¢~ in Theorem 21 and
replacingg, m and M with v (g), '(m) andy(M) respectively, we have

X (7 (W (m) + (M) — A(¥(g))))

x (Mo (9, 4)) < x(m) +x(M) = Alx(g)) = O(m. M., x. 9, A)
(3.9) < xox (x(m) +x(M) = A(x(9))) — G(m, M., x, g, A)
<X<M (gaA)> _<>(m7M7¢7X7g7A)'

If  is strictly increasing, then the inverse functipn' is also strictly increasing and inequality
(3.9) implies the inequality (3/.8). If is strictly decreasing, then the inverse functipn' is

also strictly decreasing and in that case the reversge df (3.9) impligs (3.8). Analogously, we get
the reverse of (3]8) in the cases when ¢~ is superquadratic angdis strictly decreasing, or

x o ¢t is subquadratic ang is strictly increasing. O

Remark 3. If the functiony in Theorenj 3.3 is strictly decreasing, then the inequdlity (3.8) and
its reversal also hold under the same assumptions, butadhd M interchanged.

Remark 4. Obviously, Theorer 3|1 and Theorém|3.2 follow from Theofer 3.3 and Re¢rpark 3
by choosing)(t) = t" andx(t) = t*, or vice versa.
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