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ABSTRACT. We define a new class of numerical sequences. This class is wider than any one
of the classical or recently defined new classes of sequences of monotone type. Because of this
generality we can generalize only the sufficient part of the classical Chaundy-Jolliffe theorem on
the uniform convergence of sine series. We also present two further theorems having conditions
of sufficient type.

Key words and phrasesvionotone sequences, Sequence gifoup bounded variation, Sine series.

2000Mathematics Subject Classificat 086A15, 40-99, 40A05, 42A16.

1. INTRODUCTION

In [3] we defined a subclass of the quasimonotone sequénces K ¢,,,, n > m), which is
much larger than that of the monotone sequences and not comparable to the class of the classical
guasimonotone sequences (see [6]). For this new class we have extended several results proved
earlier only for monotone, quasimonotone or classical quasimonotone sequences. The definition
of this class reads as follows: A null-sequercg, — 0) belongs to the family oequences
of rest bounded variatio(in brief,c € RBV'S) if

(1.1) YAl <Ken  (Acy=cn— o)
holds for allm, whereK = K (c) is a constant depending only onHereafterk will designate
either an absolute constant or a constant depending on the indicated parameters, not necessarily
the same at each occurrence.
Recently, inl[7], we defined a new class of sequences as follows:
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2 L. LEINDLER

Let v := {v,} be a positive sequence. A null-sequemrcef real numberssatisfying the
inequalities

(1.2) > A < Ky
is said to be @equence of rest bounded variatiory RBV'S).

We emphasize that the classRBV'S is no longer a subclass of the quasimonotone se-
quences. Namely, a sequenesatisfying [1.2) may have infinitely many zero and negative
terms, as well; but this is not the case ifatisfies[(1]1).

Very recently Le and Zhou [2] defined another new class of sequences using the following
curious definition:

If there exists a natural numbér such that

2m
(1.3) ; |Ac,| < Km§?<an>f+N len|
holds for allm, thenc belongs to the clas& BV'S, in other wordsc is asequence of group
bounded variation

The classzBV' S is an ingenious generalization &fBV S, moreover it is wider than the
class of the classical quasimonotone seque(tc,gs, <cy, (1 + %)) too.

In [2], among others, they verified that the monotonicity condition in the classical theorem of
Chaundy and Jolliffe 1] can be replaced by their conditjon|(1.3). Herewith they improved our
result, namely that ir [5], we verified this by conditi¢n (1.1).

The aim of the present work is to unify the advantages of the definitions (1.2) and (1.3). We
define a further new class of sequences, to be denotedhyV'S, which is wider than any
one of the classesBV S andy RBV'S.

A null-sequence belongs toy GBV' S if

2m
1.4) Z|Acn| < K Y, m=1,2,...
holds, wherey is a given sequence of nonnegative numbers.

We underline that the sequengesatisfying [1.4) may have infinitely many zero terms, too;
but not in [1.2). We also emphasize that the condition (1.4) gives the greatest freedom for the
terms of the sequencesand~.

As a first application we shall give a sufficient condition for the uniform convergence of the
series

(1.5) Z b, sinnzx,
n=1

whereb := {b,,} belongs to a certain class 91ZBV'S.
Utilizing the benefits of the sequencesyafr BV S we present two further generalizations of
theorems proved earlier for sequences BV S.

2. THEOREMS
We verify the following theorems:

Theorem 2.1.Let~ := {v,} be a sequence of nonnegative nhumbers satisfying the condition
v, = o(n~1). If a sequencd := {b,} € vy GBV S, then the serieg (1.5) is uniformly conver-
gent, and consequently its sum functjffr) is continuous.

J. Inequal. Pure and Appl. Math?(1) Art. 39, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

EXTENSION OFMONOTONE SEQUENCES 3

Compare Theorein 2.1 to the mentioned theorem of Chaundy and Jolliffe and two theorems
of ours [5, Theorem A and Theorem 1] and [8, Theorem 1]. The cited theorems proved their
statements for monotone sequendes, RBV S andb € v RBV S, respectively.

Remark 2.2. It is easy to see that if, = n~! and~, = n !, then{b,} € yGBV S and the
series) does not converge uniformly. This shows that the assumptiern(n~!) cannot
be weakened generally.

Theorem 2.3.Let 5 := {n,} be a sequence of nonnegative humbers satisfying the condition
n. = O(n~1). If a sequencd := {b,} € 3 RBV S, then the partial sums of the seri¢s (1.5)
are uniformly bounded.

We note that for a monotone null-sequemgenoreover forb € RBV S andb € v RBV' S,
the assertion of Theorem 2.3 can be found in [10, Chapter V, §1]/in [5, Theorem 2]land [8,
Theorem 2].

Before formulating Theorein 3.4 we recall the following definition. A sequehcee {3, }
of positive numbers is called quasi geometrically increasing (decreasing) if there exist natural
numbersy and K = K(3) > 1 such that for all natural numbens

1
611—&—;1, Z 2671 andﬁn S Kﬁn—i—l (ﬂn—s—p, S 5671 andﬁn—l—l S Kﬁn) .

Theorem 2.4.1f c := {¢,} € BGBV S, or belongs toy GBV S, wheres and~ have the same
meaning as in Theorems 2.1 and]2.3, furthermore the sequengk is quasi geometrically
increasing, then the estimates

oo |njr1—l

(2.1) Z Z cr sinkx| < K(c,{nn,}),

j=1| k=n;
or

(2.2) Z Z ¢ sinkzx| = o(1), m — 00,

hold uniformly inz, respectively.

The root of (2.1) goes back to Telyakovsfd, Theorem 2] and two generalizations of it can
be found in[[5] and [8].

We note that, in genera], (2.1) does not imply [(2.2), see the Remairk in [8].

It is clear that the “smallest” classG BV S which includes a given sequence= {¢,} is

the one, where
2n

Tn ::Z\AckL n=12...

k=n

In regard to this, it is plain, that our theorems convey the following consequence.

Corollary 2.5. The assertions of our theorems for an individual sequéniceld true under the
assumptions

2n
(2.3) > A = o(n™")
k=n
and
2n
D A b =0(n™),
k=n
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respectively.

However, in my view, our theorems give a better perspicuity than Cordllajy 2.5 does; the
arrangement of the proofs are more convenient with our method, furthermore the assumptions of
Corollary[2.5 give conditions only for an individual sequence, and not for a class of sequences.

We also remark that e.g. the conditipn (2.3) is not a necessary one for uniform convergence.

See the series .
Z 27 "sin 2™ x.
n=1

3. LEMMAS

Lemma 3.1([4]). For any positive sequendgs,, } the inequalities
Y B<KpB,, m=12..K=>1,

hold if and only if the sequende?, } is quasi geometrically decreasing.

Lemma 3.2. Letp := {p,} be a nonnegative sequence with= O(n"!), and letd := {4, }
belong top GBV' S. If a complex serie§ " | a, satisfies the Abel condition, i.e., if there exists
a constantA such that for allm > 1,

<A

m
D> an
n=1

then for anyu > m,

(3.1) <6K(p)Ae,m ™,

E a”l’L?’L

whereK (p) denotes the constant appearing in the definitiop 6IBV'S, furthermore

Ep = supk py.
k>n

Consequently, if,, = o(m), then the serie§ "> | a, 0,, converges.

Proof. First we show that

(3.2) (6| <) |AG] < 2K (p)emm .
Sinced,, tends to zero, the first inequality in (B.2) is obvious; and becayséds bounded, thus
0 € pGBV S implies that

) 22+1
Z|A5 <> > |As, |<ZK P)P2tm
{=0 n=2tm
(3.3) < K(p) ng@em)’l = 2K (p)m™"en,

and this proveq (3]2).
Next we verify [3.1). Using the notation
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(3.9) and the assumptions of Lemmal3.2, we get that

H p—1

D bn| =) n(0n = Gns1) + @ 6y — Q10

— -
SA(E]AM+MA+W0

< 6AK(p)enm ™,
which proves|[(3]1).
The proof is complete. O
4. PROOFS
Proof of Theorerm 2]1Denote
Ep i=supk and 7,(x) = by sin k.
Sup 3k (z) ; k

In view of the assumption,, = o(m~!) we have that, — 0 asn — oo. Thus it is sufficient
to verify that

holds for alln.
Sincer,,(kw) = 0 it suffices to prove[ (4]1) fob < = < .
Let IV be the integer for which

T m

4.2 < —.
(4.2) N+l =N
First we show that it > n then
(4.3) klbgy| < Ke,, n=12...
Sinceb,, andm ~,, tend to zero, thus the assumptiore v GBV S implies that

2k—1 1 2611

el < DA+ bkl <D0 D AL+ [bas] < -

i=k =0 =2k

(4.4) <KDY o =: 0%
=0

By the definition ofz,, andk > n we have that
kg, < en, £=1,2,...,

thus it is clear that
or < 2Ke, /k;

this and [(4.}4) proves (4.3).
Now we turn back to the proof of (4.1). Let

ro(x) = (nJFZ:_ + i ) besinkx = rM(z) +rP(z).

k=n k=n+N
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Then, by [(4.2) and (4]3),

n+N-—1
(4.5) rV@) <z Y kbl <KazNe, < Kre,.
k=n

A similar consideration as ifi (3.3) gives that for any> n

[e.9]

> 1AL < Ke,/m.

k=m

Using this, [(4.2),[(4]3) and the well-known inequality

n
E sin kx
k=1

furthermore summing by parts, we get that

Dy(z) := =

o

r®(z)] < Z |Abg| Dy () + |bry n| Dryn—1()

k=n+N
&g ™
4.6 <2K—" -~ <2Ke¢,.
(4.6) - n+ Nz~ c
The inequalities (4]5) anfl (4.6) imply (4.1), that is, the sefies (1.5) is uniformly convergent.
The proof is complete. O

Proof of Theorem 2|3ln the proof of Theorems 2.3 and 2.4 we shall use the notations of the
proof of Theorem 2/1. The conditiop, = O(n~') implies that the sequende,, } is bounded,
i.e.e, < K. This, (4.2) and[(4]3) imply that for any < N

Z by, sin kx
k=1

furthermore, ifm > N then, by [(4.1L),

i by sin kx

k=N+1

N
<> lbklkr < KaN < K,
k=1

< Jravss ()] + [rnsa (2)] < 2K &1,

The last two estimates clearly prove Theofem 2.3. O

Proof of Theorem 2|4First we verify [2.1). Let us suppose that

Sincec € 3GBV S andn, = O(n~'), we get, as in the proof of Theordm P.3 within place
of b,,, that

i—1 [nj+1—1 N i—1 nj+1—1 N
(4.8) Z Z cpsin kx| + Z cpsinkx| < Z Z lcx|kx + Z leg|kx < K.
j=11 k=n; k=n; j=1 k=n; k=n;
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Next applying Lemma 3|2 witp = 3, ¢,, = ¢, anda,, = sinnz, we get that

<K {gNH(N + 1) e 4t Z 5njnj1}

(4.9) gK{eN—l—NeNZnjl}gKeN{l—i-Nanl}.

Jj=t+1 Jj=i+1
Since the sequencgn;} is quasi geometrically increasing, 9@@;1} is quasi geometrically
decreasing, therefore, Lemina]3.1 gnd](4.7) imply that

(4.10) > n'< KN
J=i+1
whence, by[(4]9) ang,, = O(n™'),
(4.11) oy < Key < o0
follows. Herewith [(2.1L) is proved.
If ¢ € vy GBV S then, byy,, = o(n™'), ¢, — 0, thus, withm in place ofN, (4.9), [4.10) and
(4.11) immediately verify[ (2]2).

The proof is complete. O
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