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ABSTRACT. Lety (y1,v2) = v4P (y1,y2) whereP is a polynomial function of degrelesuch
thatP (1,0) # 0. Let us be the Borel measure @ defined byu;s (E) = ng Xxe (z,¢(z)) dx

where
Vs = {2 = (z1,22) ER*: |zq| < 1,and |zy] < § |2}
and letT},; be the convolution operator with the measugeln this paper we explicitely describe

the type set
11
B~ { (5. 1) € 011 0.11: Tyl , <

for 6 small enough.
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1. INTRODUCTION

Let ¢ : R? — R be a homogeneous polynomial function of degree> 2 and letD =
{y € R?: |y| < 1}. Let u be the Borel measure d@&* given by

(1.2) u(E) = /D ve (00 (1) dy

and letT, be the operator defined, fgre S (R®), by T, f = ux f. Let E, be the set of the pairs
<}D, %) € [0,1] x [0,1] such that there exists a positive constasgtisfying||7'f[|, < c|/f]],
forall f € S (R?), where theL? spaces are taken with respect to the Lebesgue measiité on
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2 MARTA URCIUOLO

For (%, é) € E,, T can be extended to a bounded operator, still denoted, isom L? (R?)
into L4 (R?) .

Letp = ¢7'...¢5» be a decomposition af in irreducible factors withp; { ¢; for i # j. In [3]
we could give a complete description of the ggtunder the assumption that # = for each
o; of degreel. If det ¢” (y) is not identically zero and if it vanishes somewherefgn- {0},
the set of the pointg wheredet ¢” (y) vanishes is a finite union of lindsy, ..., L, through the
origin. So, after a possibly linear change of variables, we localized the problem ioatkes
and we studied the type set corresponding to meagyrdsfined by

ps (E) —/V xe (Y, ¢ (y)) dy,

whereVs = D N {(y1,y2) € R? : Jyo| < & |y1|} andd is small enough such thadtt ©” (y) only
vanishes, orVs, along ther axes. The only case left was the one corresponding to functions
of the forme (y1, y2) = y4P (y1,y2) with I = 2, P being a homogeneous polynomial function
of degred such thatP (1,0) # 0.

In this paper we characteriZg,, in this remainder case.

L? improving properties of convolution operators with singular measures supported on hy-
persurfaces ifR™ have been widely studied inl[2],/[5],/[6]. In particular, in [5], the type set was
studied under our actual hypothesis, but the endpoint problem was left open there. Our proof
of the main result involves a biparametric family of dilations and will be based on a suitable
adaptation of arguments due to M. Christ, developedlin [1], where the author studied the type
set associated to the two dimensional measure supported on the parabola.

Also, oscillatory integral estimates are involved. A very careful study of this kind of estimate
can be found in[4] where the authors study the boundedness of maximal operators associated
to mixed homogeneous hypersurfaces.

Throughout this paperwill denote a positive constant, not the same at each occurrence.

2. THE MAIN RESULT

We assumep (y1,42) = y4P (y1,42), wherel = 2 and P is a homogeneous polynomial
function of degreé such thatP (1,0) # 0. We taked; > 0 such that, foy € V5, such thaty, #
0, det ¢” (y) # 0. Moreover, since” (1,0) # 0 we can assume thdt (y) # 0 and P, (y) # 0

Iminy; [P(y1,y2)|
2maxvy |P2(y12)] !

forally € V5. Now, if maxy, [P (y1,92)| # 0, we choose) < min (

In the other case we take= 4;.
The main result we prove is the following.

Theorem 2.1.Lety (y1,y2) = y4P (y1,y2) Wherel = 22 and P is a homogeneous polynomial
function of degreé such thatP (1,0) # 0 andy, t P (v1,y2) . LetVs be defined as above and
let £y, be the corresponding type set. ThE, is the closed polygonal region with vertices
(0,0), (1,1), (2z+1 21—1) and( 3 1 ) .

20427 2142 20427 2]1+2

Standard arguments (see, for example Lemma 2 and Lemma._3 in [3]) imply the following
result.

Lemma 2.2. If (l, l) € E,, theni < >3 _92and! >
p’q q p q

11
P’ q
So, since|T);|| | < oo, by duality arguments it only remains to prove that

(2.1) 1Tosll .y ey <0
201+1°

21-1
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CONVOLUTION OPERATORS WITHHOMOGENEOUSSINGULAR MEASURES 3

We setQ, = [+,2] x [Z,2]. We take a;ru?cation functiofh € C>°(R?), 0 (y1,v2) > 0,

suppf C Qo andf (y1,y2) = 1 on [5,1] x [, &] . We define, for, v > 0, the biparametric
family of dilations onR* andR® given by(e, v) o (y1, y2) = (ey1,7y2) and(e, 7)o (y1, Y2, y3) =
(ey1, 792, €'7'y3) repectively. Also, forj, k > 0, we setQ; . = (277,27%) o Qo.

For f € S (R?), we define
(2.2)  Tinf (x1,20,23) = /f (21 — Y1, 2 — Y2, 23 — @ (y1,42)) 0 (2y1, 2’“3/2) dy,dys
soforf >0,

(2.3) T f<e ) Tl
0<j<k
Tostudy > Tj:f, we will adapt the argument developed by M. Christ (sée [1]) to the setting
0<j<k
of biparametric dilations. First of all, we prove the following

Proposition 2.3. There exists a positive constant- 0 such that for0 < j < k,

175kl 222 e0 < c

Proof.

Tjwf (1,22, 73)
= /f (z1 — Y1, 2 — Y2, 23 — © (1, 42)) 0 (201, 2’“3/2) dy1dys

= 2-Uth) /f (z1— 277y, 20 — 27 Yo, x5 — ¢ 277y, 2_ky2)) 0 (y1,y2) dydys

— 2_(j+k)T(j_k)fj,k (2jx17 2kx27 2(j+k)l$3) :
where we denote

T(j)f (71, 72,23) = /f (l‘l —Y1,T2 — Y2,X3 — yéP (y1,2jy2)) 0 (y1,1y2) dyrdys

and
Fin (@1, 20, 25) = f((27,27%) o (21, 22, 33)) .
So
(L1 i
(2.4) ITjf (21,22, 23) |, = 295520 | 200 i),
Now,

det (yéP (yl, 2j_ky2))” = 2(@2=2DG=K) (et (go)” (y1, 2j_ky2) )
so as in the proof of Lemma 4 inl[3] we obtain that there exists0 such that| 70 =")|| 5.5 5.0 <
201’211
cfor0 < j <k, and the proposition follows.

We take0 < j < k, and denote by, andu’) the measures associatedZg, and7'/)
respectively. Fog = (&.&2,8),

B () = [ im0 ) 4, 1) dydy

If for some¢ on the unit spheréléj_k) (y1,y2) = &y1 + &y +Ey5 P (y1, 27 o) has a critical
point belonging to theupp 6, then

&+ Syh Py (yh 2j7ky2) =0
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and

S+ &3 (2j_kyép2 (yl, Qj_kyz) +lyytp (yh Qj_kyz)) =0,
but then, sincé’; (y) # 0fory € V;,, from the first equation we obtain that there exist constants
a,b € Z with a < bsuch2¢ |&| < |&| < 21/, and, from the second one and the choicé of
we obtain constants d € Z? with ¢ < d such that® |&3| < |&| < 2¢|&;]. So¢ belongs to the
cone

= {€eR?: 2% |&| < |G| < 2°|&], 2°[&s| < [&of < 27(&s]}
Lemma 2.4. Suppose&’ is as above. Then the family of conﬁQﬂ', 2’“) o Co}j 1oz Das finite
overlapping (i.e.# { (4. k) € Z*: Co N ((27,2%) 0 Cp) # 0} < ).

Proof. We suppos€ € Cj and(27,2%) o & € Cp, then

2% &3] < &) < 2° €3], 2°|&5] < [&of < 2¢ &5

and ' ' '

QUFRITa |£5] < 27 |¢)] < 2UFRIHD |&)

QURITC 6] < 2% |&] < 20T |4y
)

2j |€1| < 2(j+k)l+b |£3| < 2(j+k)l+b—a |€1|
and o

2 |&5| > [&1] > 27720 R g5

)

a—b—kl<j(l—1)<b—a—kl,
analogously we obtain
c—d—jl<k(l—-1)<d—-c—jl,

thus
c=d=D+@a=tl_, (@=(-1+b-0)
12— (1—1) 12— (1—1)
and so
a—=b (d=o(l-1)+0b—-a)l . (b—a) (d=c)(I=1)+((b—-a)l
1! R RS ! E—(-1)(-1

O

We definemg (£) = n (&1, &) r (&, &) wheren andr belong toC* (R? — {0}) , are homo-
geneous of degree zero with respect to the isotropic dilations,

suppn C {(51753) 207 &) < |G < 20+! |§3|}
n>0andn = 1on{(&, &) : 216 < [&] < 2°|&]},

suppr C {(€2,€3) - 277" [€a] < |&o| < 27 |&]},

r>0andr =1on{(&, &) 2°|&] < |&] < 2¢]&]}, somg is homogeneous of degree zero
with respect to the isotropic dilations, it belongs(tér on each octant dR?, mg > 0, mg = 1
onCy and

supp mg C Co {5 eR?: 207! \53‘ < |51‘ < 2" ’f ’ 2¢7 ‘53‘ < |f2‘ < 29 ’5 ’}

For (j, k) € Z*, we definem;;, (£) = mo ((277,27%) o £) andQ; , the operator with multiplier
m; .. If € belongs to an open octant Bf then¢ belongs to(27, 2%) o C; for some(j, k) € Z*

(indeec* ~ £ and2~/ ~ 1) and from the previous lemma, it belongs to a finite number of
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them (independent @). So > m;, () < c. Now it is easy to check that, fdr < p < oo,
(j,k)eZ?
there exists4, > 0 such that forf € L? N L? and any choice of; , = +1,

(2.5) Z g nfl] < Apllfll,-

i,k)ez?
(4:k) »

Indeed, we now show that
m(§) = Z g5k (§)
(j,k)ez?

satisfies the hypothesis of the Marcinkiewicz Theorem, as stated in Theorem 6’ in [7].
We have just observed that

Im ()] < Z m;k (€) < ec.

(4,k)€Z?

Now we want to estimat £1m (5)‘ . We recall thata%mo is homogeneous of degreel.
We pick £ in an open octant. In a small neighborhoodéobnly finitely many (j, k) € Z?
(independent of) are involved. For each one of them,

0 .0 s _ (s
8_51mj,k (&) =2 ja—&mo (277, 27Fg,, 27Ul

< 27 |27, 2786, 270G | T < 277 |27,

)

|71

SO
s+1
2 0

up [ |gm(o)] e <

and in a similar way (using the homogeneity of the derivatives.pf) we obtain that for each
ak

0<k<3,
sup / —m
€rsrts Jp | 08108k

asp ranges over dyadic rectanglesi®f and that this inequality holds for every one of the six
pemutations of the variablé&s, &, &3.

We now define: (&) € C> (R?),h > 0, h = 1onthe unitball ofR®, h;; (&) = h ((277,27%) 0 €)
andR;; the operators with multipliers; .

(6)‘ dgl S G,

Lemma 2.5. There exists a constant > 0, independent ofC, such that

> TR

0<j<k<K

Proof. Let K, be the kernel of; . R; .. A computation shows that,
Kjp (x) = 2000 (07K s V) (27, 2F) o 2)
Thus
D K@< Y 20 GUR ((27,2%) 0 ¢)|

0<j<k<K 0<j<k
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with GU*) defined by(G(J?’“))A = (/N*’“))A h. Sincej —k < 0, as in Lemma 7 ir [3] we obtain
that (GU*))" e S (R?*) with each seminorm bounded gr¥, it follows that the same holds for
GU*) . Now

S 2GR (2,2 o)| £ T aithente |Gk (21, 2k 26y)|

0<5<k 4,k,h>0

with o = 75, GUP = GUR for b = [ (j + k) andGU*") = 0 otherwise. It is well known

that from the uniform boundedness propertieg6f*") it follows that

Z oja+ka-+ha |G(j’k’h) (2j5172k§2a 2h€3)| <

Jik,h>0

¢
[STRNISTR ST

SO

S 1K (©) c

< e e I
0<j<k<K &7 |&o| T | &5
so > Tj,R;x convolvesL? (R?) into L7 (R?) for . =  — ;75 with bounds independent
0<j<k<K

of K. O

Lemma 2.6. There exists a constant > 0, independent ofC, such that

> T (I Pi) (I - Qi)

1<j<k<K

Proof. The kernelf; ;, of
> T = Pi) (I—Q;)
1<j<k<K

satisfies

Yo H (Ol Y 20 gub ((27,2%) 0 ¢))
1<j<k<K 0<j<k
with g% defined by(gi")" = (uG0=)" (1 = h) (1 — my).
Observe that, from Lemma 7 inl[3], we hafe )" (1 — h) (1 — m) € S(R?) with each
seminorm bounded ofy) k. From this fact the proof follows as in the previous lemma. [

Proof of the theoremWe have just observed that it is enough to prg2g)( Since we can
supposef > 0, by (2.3), we need only check that there exiSts> 0, independent of<’ such

that
Z E,k S Oa
0<j<h<K sis 21ts
20+1°21-1
whereT}, are defined b2). For a constagt> 0, we defineQ’, = > Qi S0,
li—j|<co

have the same properties@s, andQ’;, o Q. = 9, thus we have thaf (3.5) holds far .
Then, forl < p < oo and

F= {fj7k}j,k20 € LP <l2) )

> ki

J,k=>0

< & [[Fl ey -

p
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We decompose

S Tinf= Y, Tuld-Pu)(I-9Q)f+ > TuPixf

0<j<k<K 0<j<k<K 0<j<k<K
+ Y T (= Pu) f.
0<j<k<K
Now, proceeding as in [1], the theorem follows from Propositiof 2.3, Lenimas 25 gnd 2.6 and
the remarks in[8, p. 85] concerning the multiparameter maximal function. O
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