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1. INTRODUCTION

The General Inequalities meetings have a long tradition extending to almost thirty years. The
first 7 meetings were held in the Mathematical Research Institute at Oberwolfach. The 7th
meeting was organized in 1995. Due to the long time having elapsed since this meeting and
the growing interest in inequalities, the Scientific Committee of GI7 (consisting of Professors
Catherine Bandle (Basel), W. Norrie Everitt (Birmingham), Laszl6 Losonczi (Debrecen), and
Wolfgang Walter (Karlsruhe)) agreed that the 8th General Inequalities meeting be held in Hun-
gary. It took place from September 15 to 21, 2002, at the De La Motte Castle in Noszvaj and
was organized by the Institute of Mathematics and Informatics of the University of Debrecen.

The Scientific Committee of GI8 consisted of Professors Catherine Bandle (Basel), Laszl6
Losonczi (Debrecen), Michael Plum (Karlsruhe), and Wolfgang Walter (Karlsruhe) as Honorary
Member.

The Local Organizing Committee consisted of Professors Zoltan Dardczy, Zsolt Péles, and
Attila Gilanyi as Secretary, The Committee Members were ably assisted by Mihaly Bessenyei,
Borbéla Fazekas, and Attila Hazy.

The 36 participants came from Australia (4), Canada (1), Czech Republic (1), Germany (4),
Hungary (9), Japan (2), Poland (3), Romania (3), Switzerland (2), Sweden (3), United Kingdom
(1), and the United States of America (3).
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2 COMPILED BY ZSOLT PALES

Professor Walter opened the Symposium on behalf of the Scientific Committee. Professor
Péles then welcomed the participants on behalf of the Local Organizing Committee.

The talks at the symposium focused on the following topics: convexity and its generaliza-
tions; mean values and functional inequalities; matrix and operator inequalities; inequalities
for ordinary and partial differential operators; integral and differential inequalities; variational
inequalities.

A number of sessions were, as usual, devoted to problems and remarks.

Onthe evening of Tuesday, September 17, the Gajdos Band performed Hungarian Folk Music
which was received with great appreciation.

On Wednesday, the participants visited the Library and Observatory of the Eszterhdzy Col-
lege of Eger and the famous fortress of the city. The excursion concluded with a dinner in
Eger.

The scientific sessions were followed on Thursday evening by a festive banquet in the De La
Motte Castle. The conference was closed on Friday by Professor Catherine Bandle.

Abstracts of the talks are in alphabetical order of the authors. These are followed by the
problems and remarks (in approximate chronological order), two addenda to earlier Gl volumes,
and finally, the list of participants. In the cases where multiple authors are listed, the talk was
presented by the first named author.

2. ABSTRACTS

TSUYOSHI ANDO
Lowner Theorem of Indefinite Type

ABSTRACT

The most familiar form of the Léwner theorem on matrices says that B > 0 implies
Az > Bz. Here A > B means the Léwner ordering, that is, bothand B are Hermitian and
A — B is positive semidefinite.

We will show that if bothA and B have only non-negative eigenvalues ahid an (indefinite)
Hermitian involution thenJA > JB implies JA2 > JBz.

We will derive this as a special case of the following result. If a real valued fungtion
on [0, c0) is matrix-monotone of all order in the sense of Léwner théd > JB implies
J-f(A) > J- f(B). Heref(A) is defined by usual functional calculus.

The classical Léwner theorem shows thats matrix-monotone of all order.

CATHERINE BANDLE
Rayleigh-Faber-Krahn Inequalities and Auasilinear Boundary Value Problems

ABSTRACT

The classical Rayleigh-Faber-Krahn inequality states that among all domains of given area
the circle has the smallest principal frequency. The standard proof is by Schwarz symmetriza-
tion. This technique extends to higher dimensions and to the best Sobolev constants. For
weighted Sobolev constants symmetrization doesn’t apply. In this talk we propose a substitute.
Emphasis is put on the case with the critical exponent. As an application we derib®unds
for Emden type equations involving theLaplacian.
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SORINA BARZA
Duality Theorems Over Cones of Monotone Functions in Higher Dimensions

ABSTRACT

Let f be a non-negative function defined &1 which is monotone in each variable sepa-
rately. If1 < p < oo, g > 0 andv a product weight, then equivalent expression for

jﬁi,fg
<fR1 / p”) '

are given, where the supremum is taken over all such funcfions
The same type of results over the cone of radially decreasing functions, but in this case for
general weight functions will be also considered.

Applications of these results in connection with boundedness of Hardy type operators will be
pointed out.

sup

MIHALY BESSENYEI AND ZSOLT PALES
Higher-order Generalizations of Hadamard’s Inequality

ABSTRACT
Let I C R be a proper interval. A functiofi : I — R is said to be:-monotone, if

f(xo) .o flzn)
1 1
(_1)” Zo . T > 0’
xg_l cooant
wheneverr, < ... < x,, xo, ..., 2, € I. Obviously, a functiory is 2-monotone if and only if

it is convex. According to Hadamard’s classical result, the inequalities

f(a—Zl—b) - bia/abf(x)dxg f(a);f(b)

hold for any convex, i.e., fo2-monotone functiory : [a,b] — R. Our goal is to generalize this
result forn-monotone functions and present some applications. For instance, if the function
f :[a,b] — R is supposed to b&monotone, one can deduce that

fl@)+3f (%) 1 F(b) +3f (2tt)
T Sb—a/af(:'“")dxS T
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MALCOLM BROWN
Everitt's HELP Inequality and Its Successors

ABSTRACT
In 1971 Everitt introduced the inequality

—b ) 2 b b )
([ e vare) <& [wfds [u o) +an)ia
for functionsf from

{f +]a,b) = Rf,pf € ACicla, b) f,w™ (=(pf") + af) € L*(a, byw)}.

He showed that the validity of the inequality, (ie. finft§ and cases of equality were dependent
on the spectral properties of the operator defined ftgm(—(pf’)’ + ¢f)) in the Hilbert space
L2a,b).

The talk will explore the class of inequalities

AX(f) < KB(f)C(f)

which have associated with them a self-adjoint operator acting in a domain of a Hilbert space.
This class will generate examples of inequalities between members of infinite sequences and
also inequalities between a function and its higher order derivatives.

R.C. BROWN

Some Separation Criteria and Inequalities Associated with Linear Differential and Partial
Differential Operators

ABSTRACT

In a series of remarkable papers between 1971 and 1977 W. N. Everitt and M. Giertz deter-
mined several sufficient conditions feeparationi.e., given a second order symmetric differ-
ential operatoV/, [y] = w=(—(py')’ + qy) defined inL?(w; I), I = (a,b) with one or both
end-points singular, the property thati/,,[y] € L*(w; 1) = w'qy € L*(w;I). Here we
trace some recent developments concerning this problem and its generalizations to the higher
order case and classes of partial differential operators due to the Russian school, D. B. Hinton,
and the author.

Several new criteria for separation are given. Some of these are quite different than those of
Everitt and Giertz; others are natural generalizations of their results, and some can be extended
so that they yield separation for partial differential operators. We also point out a separation
problem for non-selfadjoint operators due to Landau in 1929 and study the connection between
separation and other spectral propertiedQf and associated operators.

This paper is published online lattp://jipam.vu.edu.au/v4n3/130_02.html
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CONSTANTIN BUSE
A Landau-Kallman-Rota’s Type Inequality For Evolution Semigroups

ABSTRACT

Let X be a complex Banach spade, the set of all non-negative real numbers andJlet
be either, orR or R,. The Banach space of aN-valued, bounded and uniformly continu-
ous functions onJ will be denoted byBUC(J, X) and the Banach space of all-valued,
almost periodic functions ofi will be denoted byAP(J, X). Cy(R,, X) is the subspace of
BUC(R,, X) consisting of all functions for whichim, ... f(t) = 0 andCy(R,, X) is the
subspace of’y(R ., X) consisting of all functionsf for which f(0) = 0. It is known that
AP(J, X) is the smallest closed subspace®¥C'(J, X) containing functions of the form:
t — ey € R,z € X,t € J. The set of allX-valued functions oR . for which there
existt; > 0 andFy in AP(R, X) such thatf(t) = 0if t € [0,t;] and f(t) = F¢(t) if t > t;
will be denoted byA,(R., X). The smallest closed subspace Bf/C(R,, X) which con-
tains Ao (R, X) will be denoted byAP,(R,, X). AAP,(R, X) denotes here the subspace
of BUC(R,, X) consisting of all functions: : R, — X for which there exist; > 0 and
Fy e AP(Ry, X) suchthatt = f 4+ g and(f + ¢)(0) = 0. Let X one of the following spaces:
Coo(Ry, X), APy (R, X)), AAPy (R, X). The main result can be formulated as follows:

Theorem. Let f be a function belonging t& andU = {U(t,s) : t > s > 0} be anl-
periodic evolution family of bounded linear operators actingon If U is bounded (i.e.,

SUPi>.>0 [|U(,s)]| = M < oo) and the functiong)(-) := [U(-,s)f(s)ds and h(-) :=
0

J(- = s)U(, 5)f(s)ds belong toX then||g||-c < 4M2[| f]x][P]]x-

0

PIETRO CERONE
On Some Results Involving Tﬁ?ebyéev Functional and Its Generalizations

ABSTRACT

Recent results involving bounds of tﬁ}!abyéev functional to include means over different
intervals are extended to a measurable space setting. Sharp bounds are obtained for the re-
sulting expressions of the generalizédbysSev functionals where the means are over different
measurable sets.

This paper is published online fattp://jipam.vu.edu.au/v4n3/124 _02.html

PETER CZINDER AND ZSOLT PALES
Minkowski-type Inequalities For Two Variable Homogeneous Means

ABSTRACT
There is an extensive literature on the Minkowski-type inequality
(1) Map(21 + y1, 2 +y2) < Map(21, 22) + May(y1, 12)

and its reverse, whet, , stands for the Gini mean

a a ﬁ
Gus(z1,2) = (‘““”2) (a—b+£0),

28 + 28
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or for the Stolarsky mean

b b

sa,b(xl,m):(ff_x% b )” (ab(a—b) #0)

with positive variables. (These mean values can be extended for any real paranaetebs
A possibility to generalizg (1) is that each appearancl/gf is replaced by a different mean,
that is, we ask for necessary and/or sufficient conditions such that

Moo o (21 + Y1, 22 + y2) < My, b, (21, 22) + May b, (Y1, Y2)

or the reverse inequality be valid for all positive, s, y1, ys.
We summarize our main results obtained in this field.

ZOLTAN DAROCZY AND ZSOLT PALES
On The Comparison Problem For a Class of Mean Values

ABSTRACT

Let I C R be a non-empty open interval. The functibh: /2 — [ is called a strict pre-mean
on/ if
(i) M(z,z) =xforallz € I and
(i) min{z,y} < M(z,y) < max{z,y} if z,y € [ andx # y.
The function) : I? — I is called a strict mean ohif M is a strict pre-mean ohand )/ is
continuous on’.
Denote byCM(!) the class of continuous and strictly monotone real functions defined on the
interval I.
Let L : I*> — I be a fixed strict pre-mean andq €]0,1]. We callM : 1> — I an L-
conjugated mean of ordép, ¢) on [ if there exists a» € CM(/) such that

M(z,y) = ¢~ [po(x) + ap(y) + (1 = p = Qp(L(z,y)] = L&D (2, y)
forallz,y € I.
In the present paper we treat the problem of comparison (and equalityoofljugated means
of order(p, q), that is, the inequalitt.?"? (z, y) < LY (x,y) wherez,y € I; ¢, € M(I)
andp, ¢ €]0, 1]. Our results include several classical cases such as the weighted quasi-arithmetic
and the conjugated arithmetic means.

SILVESTRU SEVER DRAGOMIR
New Inequalities of Gruss Type For Riemann-Stieltjes Integral

ABSTRACT

New inequalities of Gruss type for Riemann-Stieltjes integral and applications for different
weights are given.

This paper is published online http://rgmia.vu.edu.au/v5n4.htmi as Article
3.
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A.M. FINK
Best Possible Andersson Inequalities

ABSTRACT
Andersson has shown thatfif are convex and increasing wifh(0) = 0, then

/Ol(fl---fn)dx > 2 (/ )z ) -+ (/Olfm)da:) .

We turn this into a “best possible inequality” which cannot be generalized by expanding the set
of functionsf; and the measures.

This paper is published online lattp://jipam.vu.edu.au/v4n3/106_02.html

ROMAN GER
Stability ofy)—Additive Mappings and OrlicA,-Condition

ABSTRACT
We deal with a functional inequality of the form
1) 1 (z+y) = f(x) = W)l < elllzl) + Lyl

showing, among others, that given two selfmappipgs of the halfline[0, co) enjoying the
celebrated Orlicz\, conditions:

(2t) < ke(t),  (2t) < )(t)

forall t € [0, 00), with some constants, ¢ € [0, 2), for every mapf between a normed linear
space(X, || - ||) and a Banach spad#’, || - ||) satisfying inequality[ (1) there exists exactly one
additive mapz : X — Y such that

1£@) — a(a)]| < = (lel) + 5wl

forall z € X. This generalizes (in several simultaneous directions) a result of G. Isac & Th. M.
RassiasJ. Approx. Theory72(1993), 131-137); see also the monogr&pability of functional
equations in several variabldsy Donald H. Hyers, George Isac and Themistocles M. Rassias
(Birkh&auser, Boston-Basel-Berlin, 1998, Theorem 2.4).

ATTILA GILANYI AND ZSOLT PALES
On Convex Functions of Higher Order

ABSTRACT

Higher-order convexity properties of real functions are characterized in terms of Dinghas-
type derivatives. The main tool used is a mean value inequality for those derivatives.

J. Inequal. Pure and Appl. Math4(3) Art. 49, 2003 http://jipam.vu.edu.au/
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ATTILA HAZY AND ZSOLT PALES
On Approximately Midconvex Functions

ABSTRACT

A real valued functionf defined on an open convex sbtis called (e, §)-midconvex if it
satisfies

+ele—yl+o6 forxzye D.

7 (x;y) <@ -QF f)

The main result states that ffis locally bounded from above at a point 6f and is (e, J)-
midconvex then it satisfies the convexity-type inequality

FOz+ (1 =Ny) <Af(x)+ (1= N)f(y) + 26+ 2ep(N)|x —y| forz,ye D, Xel0,1],
wherey : [0, 1] — Ris a continuous function satisfying
max (— Aogy A, —(1 = A)logy(1 — X)) < ()
< cmax (— Alogy A, —(1 — ) logy(1 — A))

with 1 < ¢ < 1.4. The particular case = 0 of this result is due to Nikodem and Ng [1], the
specializatiors = § = 0 yields the theorem of Bernstein and Doet<sch [2].

REFERENCES

[1] C.T. NG AND K. NIKODEM, On approximately convex functionBroc. Amer. Math. Soc1181)
(1993), 103-108.

[2] F. BERNSTEINAND G. DOETSCH, Zur Theorie der konvexen Funktiondgth. Annalen,76
(1915), 514-526.

GERD HERZOG
Semicontinuous Solutions of Systems of Functional Equations

ABSTRACT

For a metric spac®, and functiong” : Q x R+™n" — R™ andg; : Q — € the following
functional equation is considered:

Fw, uw), u(gi(@)), ., ul(gm(w))) = 0.

We assume thak" is ordered by a cone and prove the existence of upper and lower semicon-
tinuous solutions under monotonicity and quasimonotonicity assumptions &or example,
the results can be applied to systems of elliptic difference equations.

J. Inequal. Pure and Appl. Math4(3) Art. 49, 2003 http://jipam.vu.edu.au/
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JOZSEF KOLUMBAN
Generalization of Ky Fan’s Minimax Inequality

ABSTRACT
We give a generalization of the following useful theorem:

Theorem. (Ky Fan, 1972) LetX be a nonempty, convex, compact subset of a Hausdorff topo-
logical vector spac# and letf : X x X — R such that

Yy e X, f(-,y): X — Ris upper semicontinuous

Vee X, f(z,-): X — Ris quasiconvex
and
Vee X, f(z,x)>0.
Then there exists an element € X, such thatf(z,,y) > 0 for eachy € X.

ALOIS KUFNER
Hardy’s Inequality and Compact Imbeddings

ABSTRACT

Itis well known that the valug* = NN—QJ is the critical value of the imbedding &F 7(£2) into

L(Q), Q2 c RY. Inthe talk, an analogue of this critical value for imbeddings betwegighted
spaces will be determined. More precisely, a valtie= p*(p, q, u, v) will be determined such
that the Hardy inequality

(/ab |f (@) *u(t) dt)‘ll <C (/ab FOPu) dt);

with 1 < p < oo and f(b) = 0 expresses an imbedding which is compactsfer p* and does
not hold forg > p*.

Applications to the spectral analysis of certain nonlinear differential operators will be men-
tioned.

ROLAND LEMMERT AND GERD HERZOG
Second Order Elliptic Differential Inequalities in Banach Spaces

ABSTRACT

We derive monotonicity results for solutions of partial differential inequalities (of elliptic
type) in ordered normed spaces with respect to the boundary values. As a consequence, we get

an existence theorem for the Dirichlet boundary value problem by means of a variant of Tarski’s
Fixed Point Theorem.
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LASZLO LOSONCZI
Sub- and Superadditive Integral Means

ABSTRACT

If f: I — Ris continuous and strictly monotonic on the interyahen for everyz,, z, €
I, x1 < x5 there is a point €]z, x| such that

— —le f(u) du thus s = f! (

2 £ (u) du
f(s) prp—— Lo f(w) du ) .

To — T

This numbes is called thentegral f-mean ofz, andz, and denoted by;(x;, z2). Clearly, (re-
quiring I to have the mean property or be continuous) we have for equal arguments) =
x (z € I). By the help of divided differences; can easily be defined for more than two
variables.

Here we completely characterize the sub- and superadditive integral means on suitable inter-
vals/, that is we give necessary and sufficient conditions for the inequality

I(x1 4+ 1, +un) < Ip(za,.ooxn) + Ly, -y yn) (T, ys € 1)
and its reverse.

RAM N. MOHAPATRA
Griuss Type Inequalities and Error of Best Approximation

ABSTRACT

In this paper we consider recent results on Gruss type inequalities and provide a connec-
tion between a Griss type inequality and the error of best approximation. We also consider
unification of discrete and continuous Griss type inequalities.

CONSTANTIN P. NICULESCU
Noncommutative Extensions of The Poincaré Recurrence Theorem

ABSTRACT

Recurrence was introduced by H. Poincaré in connection with his study on Celestial Mechan-
ics and refers to the property of an orbit to come arbitrarily close to positions already occupied.
More preciselyjf T is a measure-preserving transformation of a probability spgee>, i),
then for everyd € ¥ with u(A) > 0 there exists am € N* such thatu(7-"AN A) > 0.

In his famous solution to the Szemerédi theorem, H. Furstenbéerg [1], [2] was led to for-
mulate the following multiple recurrence theorem which extends the Poincaré resukyv-
ery measure-preserving transformati@hof a probability spaceé, >, i), everyA € 3 with
1(A) > 0 and everyk € N*,

N
. . ]- —_n —kTL
Q) l1m1an g p(ANT"AN---NT " A) > 0.

N—oo
n=1

The aim of our talk is to discuss the formula (1) in the contex@'dfdynamical systems. Details
appear in[[4].
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KAZIMIERZ NIKODEM, MIROSEAW ADAMEK AND ZSOLT PALES
On (K, \)-Convex Set-valued Maps

ABSTRACT

Let D be a convex set) : D? — (0,1) be a given function an& be a convex cone in a
vector spacé’. A set-valued mag’ : D — n(Y) is called( K, \)-convexf

Az, y)F(x) + (1= Ma,y))Fy) € F(Ma,y)z + (1 = Mz,y))y) + K
forall z,y € D. The mapF' is said to bei -convexf
tF(z)+ (1 —1t)F(y) C F(tz+ (1 —t)y) + K, z,y € D, t €0,1].

Conditions under whichi K, \)-convex set-valued maps afé-convex are discussed. In par-
ticular, the following generalizations of the theorems of Bernstein—Doetsch and Sierpinski are
given.

Theorem 1. Let D C R" be an open convex set,: D? — (0, 1) be a function continuous in
each variableY be a locally convex space arid be a closed convex conen If a set-valued
mapF : D — ¢(Y)is (K, \)-convex and locallys-upper bounded at a point d?, then it is
K-convex.

Theorem 2. LetY, K, and D be such as in Theorem 1 and D? — (0, 1) be a continuously
differentiable function. If a set-valued madp: D — ¢(Y) is (K, A\)-convex and Lebesgue
measurable, then it is alsi' -convex.

ZSOLT PALES
Comparison of Generalized Quasiarithmetic Means

ABSTRACT

If f1,..., fr (Wherek > 2) are strictly increasing continuous functions defined on an open
interval I, then thek-variable function

Mg o) i= (fit o4 )7 (file) + -+ filan)

defines a-variable mean od. In the casef;, = --- = f, = f, the resulting mean is a so-
called quasiarithmetic megntherefore, functions of the foriv(;, _; can be considered as
generalizations of quasiarithmetic means.
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In our main results, we offer necessary and sufficient condition§ on., f, andg, ..., g
in order that the comparison inequality

be valid for allzy, ...,z € 1.
In another result, a characterization of generalized quasiarithmetic means in terms of regu-
larity properties and functional equations is also presented.

CHARLES PEARCE
On The Relative Values of Means

ABSTRACT

A consequence of the AGH inequality for a pair of distinct positive numbers is that the AG
gap exceeds the GH gap. Scott has shown that this does not extend 2maumbers and gives
a counterexample for = 4.

The question of what happens for generdlas been addressed by Lord and bgaé and
the present author, who showed that a number of analytical and statistical issues are involved.
These studies left further open questions, including explicit representations for the functional
forms of certain extrema.

The present study proceeds with these and related questions.

This paper is published online lattp://jipam.vu.edu.au/v4n3/008_03.html

LARS-ERIK PERSSON AND ALOIS KUFNER
Weighted Inequalities of Hardy Type

ABSTRACT

| briefly present some historical remarks and recent developments of some Hardy type in-
equalities and their limit (Carleman—Knopp type) inequalities. Some open questions are men-
tioned.

REFERENCES

[1] A. KUFNER AND L.E. PERSSONWeighted Inequalities of Hardy Typ@/orld Scientific (to ap-
pear).

MICHAEL PLUM, H. BEHNKE, U. MERTINS, AND Ch. WIENERS
Eigenvalue Enclosures Via Domain Decomposition

ABSTRACT

A computer-assisted method will be presented which provides eigenvalue enclosures for the
Laplacian with Neumann boundary conditions on a donfaia R2. While upper eigenvalue
bounds are easily accessible via the Rayleigh-Ritz method, lower bounds require much more
effort. On the one hand, we propose an appropriate setting of Goerisch’s method for this pur-
pose; on the other hand, we introduce a new kind of of homotopy to obtain the spectral a priori
information needed for Goerisch’s method (as for any other method providing lower eigenvalue
bounds). This homotopy is based on a decompositidn ofto simpler subdomains and their
“continuous” rejoining. As examples, we consider a bounded dofauith two “holes”, and
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an acoustic waveguide, whefkeis an infinite strip minus some compact obstacle. Moreover,
we discuss an application to the (nonlinear) Gelfand equation.

SABUROU SAITOH, V.K. TUAN AND M. YAMAMOTO
Reverse Convolution Inequalities and Applications

ABSTRACT

Reverse convolution norm inequalities and their applications to various inverse problems are
introduced which are obtained in the references.

At first, for some general principle, we show that we can introduce various operators in
Hilbert spaces through by linear and nonlinear transforms and we can obtain various norm
inequalities, by minimum principle.

From a special case, we obtain weightednorm inequalities in convolutions and we can
show many concrete applications to forward problems.

On the basis of the elementary proof in the weightgcconvolution inequalities, by using
reverse Hoélder inequalities, we can obtain reverse weighfedonvolution inequalities and
concrete applications to various inverse problems.

By elementary means, we can obtain reverse Hdlder inequalities for weak conditions which
have very important applications and related reverse weighjednvolution inequalities. We
show concrete applications to inverse heat source problems.

We recently found that the theory of reproducing kernels is applied basically in Statistical
Learning Theory. See, for example, F. Cucker and S. Smale, On the mathematical foundations
of learning,Bull. Amer. Math. Sa¢ 39 (2001), 1-49. When we have time, | would like to
present our recent convergence rate estimates and related norm inequalities whose types are
appeared in Statistical Learning Theory.

REFERENCES

[1] S. SAITOH, Various operators in Hilbert space introduced by transfolmtex,nat. J. Appl. Math 1
(1999), 111-126.

[2] S. SAITOH, WeightedL,-norm inequalities in convolutionsSurvey on Classical Inequalities
Kluwer Acad. Publ., 2000, pp. 225-234.

[3] S. SAITOH, V.K. TUAN AND M. YAMAMOTO, Reverse weighted.,,-norm inequalities in convo-
lutions and stability in inverse problem,Inequal. Pure Appl. Math1(1) (2000), Art. 7. [ONLINE
http://jipam.vu.edu.au/vin1/018_99.html ]

[4] S. SAITOH, V.K. TUAN AND M. YAMAMOTO, Reverse convolution inequalities and applications
to inverse heat source problems, (in preparation).

[5] S. SAITOH, Some general approximation error and convergence rate estimates in statistical learning
theory (in preparation).

This paper is published online fattp://jipam.vu.edu.au/v4n3/138_02.html
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ANTHONY SOFO
An Integral Approximation in Three Variables

ABSTRACT

In this presentation | will describe a method of approximating an integral in three independent
variables. The Ostrowski type inequality is established by the use of Peano kernels and improves
a result given by Pachpatte.

This paper is published online fattp://jipam.vu.edu.au/v4n3/125 02.html

SILKE STAPELKAMP
The Brézis-Nirenberg Problem dfi* and Sobolev Inequalities

ABSTRACT

We consider the equatiofAg»u + wiz' + ) = 0 in a domainD’ in hyperbolic space
H", n > 3 with Dirichlet boundary conditions. For different values)ofve search for positive
solutionsu, € Hy?*(D").

Existence holds foA* < A < \;, where we can compute the value Xdfexactly if D' is a
geodesic ball. For this result we should derive some Sobolev type inequalities.

The existence result will be used to develop some results for more general equations of the
form A,u + uir 4 = 0. Here A, = p~"V(p"2Vu) denotes the Laplace-Beltrami
operator corresponding to the conformal metkic= p(z)|dx|.

Itturns out that ifo = p;p, you can find an inequality fgr, andp, that gives you an existence
result.

JACEK TABOR
On Localized Derivatives and Differential Inclusions

ABSTRACT

It often happens that a function is not differentiable at a given point, but to some extent it
seems that the "nonexistent derivative" has some properties.

Let us look for example at the functiar(t) := |¢t|. Thenz is not differentiable at zero, but
there exist left and right derivatives, which equakH® and1, respectively. Thus in a certain
sense, which we make formal below, we may say that the derivative belongs to {helsé}.

Let us now consider another example. As we now there exist a Banach.Spaue a lipschitz
with constantl function which is nowhere differentiable. This suggest that the "nonexistent
derivative" of this function belongs to the unit ball.

The above ideas lead us to the following definition. We assumd tised subinterval of the
real line and thakX is a Banach space.

Definition. Letz : I — X and letV be a closed subset &f. We say that the derivative afat
t is localized inV/, which we writeDx(t) € V/, if

lim d (J:(t—i— h) — x(t);v) o,
h—0 h

whered(a; B) denotes the distance of the poinfrom the setB
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One of the main results we prove is:

Theorem. Letz : I — X and letV be a closed convex subset®f We assume thdbz(t) € V
fort € I. Then
z(q) — z(p)
q—7p
As a direct corollary we obtain a local characterization of increasing functions.

eV forp,qel.

Corollary. Letx : I — R. Thenz is increasing iffDxz(t) € Ry fort € 1.

WOLFGANG WALTER
Infinite Quasimonotone Systems of ODEs With Applications to Stochastic Processes

ABSTRACT
We deal with the initial value problem for countably infinite linear systems of ordinary dif-

ferential equations of the formi(¢) = A(t)y(t) whereA(t) = (a;;(t) : 4,7 > 1) is an infinite,
essentially positive matrix, i.eq,;;(t) > 0 for i # j. The main novelty of our approach is the
systematic use of a classical theorem on sub- and supersolutions for finite linear systems which
leads easily to the existence of a unique nonnegative minimal solution and its properties. Ap-
plication to generalized stochastic birth and death processes leads to conditions for honest and
dishonest probability distributions. The results hold forcoefficients. Our method extends to
nonlinear infinite systems of quasimonotone type.

ANNA WEDESTIG
Some New Hardy Type Inequalities and Their Limiting Carleman-Knopp Type Inequalities

ABSTRACT

New necessary and sufficient conditions for the weighted Hardy'’s inequality is proved. The
corresponding limiting Carleman-Knopp inequality is also proved and also the corresponding
limiting result in two dimensions is pointed out.

3. PROBLEMS AND REMARKS

3.1. Problem.
Investigating the stability properties of convexity, Hyers and Ulam [1] obtained the following
result:

Theorem 1. Let D C R™ be a convex set. Then there exists a constastich that if a function
f: D — Rise-convex onD, i.e., if it satisfies

ftr+ (1 —t)y) <tf@) +(1-Dfy) +=c  (ryeD te0,1])

(wheres is a nonnegative constant), then it is of the fofra g+ h, whereg is a convex function
andh is a bounded function withha|| < c,e.

An analogous result was obtained fer §)-convex real functions in [2]:
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Theorem 2. Let D C R be an open interval. Assume that D — R is (e, )-convex onD,
i.e., if it satisfies

D) flz+A=-t)y) <itf(x)+ A=) f(y)+e+ot(A-t)c -yl  (z,y D, tel0,1])

(wheree and§ are nonnegative constants), then it is of the fofre= ¢ + h + ¢, whereg is a
convex function and is a bounded function withh|| < ¢/2 and/ is a Lipschitz function with
Lipschitz modulus not greater than

Problem. Let D C R™ be an open convex set. Do there exist constaptandd, so that
whenever a functiorf : D — R satisfies (1) then it must be of the forfn= g + h + ¢, whereg

is convex,h is bounded with|h|| < ¢,e, and/ is Lipschitz with Lipschitz modulus not greater
thand,,é.

REFERENCES

[1] D.H.HYERSAND S.M. ULAM, Approximately convex function§roc. Amer. Math. Soc3(1952),
821-828.

[2] Zs. PALES, On approximately convex functiompc. Amer. Math. Soc131(2003), 243-252.

Zsolt Péales.

3.2. Problem and Remark.

Laszlo Fuchs and I, working then as now mainly in algebra and analysis, respectively, wrote
55 years ago a paper in geometry, that Fuchs considers a “folly of his youth” - | don’t - and that
was called “beautiful” by L. E. J. Brouwer (maybe because it contained no proof by contradic-
tion) and published in his journal Compositio MathemaBdd 950), 61-67. The result was as
follows.

Inscribe a convex (not necessarily regutaon into a circle and by drawing tangents at the
vertices, also a circumscribedgon. The sum of areas of these two polygons has an absolute
(from n independent) minimum at the pair of squares. The proof was analytic.

The problem has been raised repeatedly of finding a geometric proof. No such proof has been
found up to now and the problem seems to be rather difficult.

The above result implies that there is no minimumsegon pairs with fixed» > 5. Paul
Erdds asked in 1983 whether the pair of regular triangles yields the minimal area-sum for in-
scribed and circumscribed triangles. The answer is yes, as proved by Jirg Ratz and by me
independently. Both of us used analytic methods.

Of course, again a search for a geometric proof was launched immediately. This proved
easier to find. With P. Schopf (Univ. Graz, Austria) we found an essentially geometric proof in
2000 and it appeared recently in Praxis der Mathem®(2002), 133-135.

Janos Aczél.
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3.3. Problem.
Let f be an increasing continuous function mapping a unit intejval] onto itself. Let
n € N.

Definition. LetV be a subset of a vector spake We say thal’ is (n, f)-convex if for every
ag,...,a, € [0,1] such thatf(ay) + -+ + f(a,) = 1 and everyvy,...,v, € V we have
v + -+ apu, €V

Problem. Find (characterize) alf such that every2, f)-convex set ign, f)-convex for arbi-
traryn € N.

Jacek Tabor.

3.4. Problem.
(i) The implication
W,P(Q) — LI(Q) = WyP(Q) — LI(Q) for §<gq
follows easily by Hélder’s inequality, provided

(1) mead) < cc.
(i) For weighted Sobolev spaces, 6 weight functions), the implication
2 WoP(Qa) — LUQ0) = WeP(Qa) — LI(Q;0)  for G<gq
follows easily by Hoélder’s inequality, provided
3 be LY.

Notice that[(1) mean$|(3) fdar= 1.

Problem. Is (3) not only sufficient, but also necessary for the implicatign (2)?

Alois Kufner.
3.5. Problem.
A classic result due to Opial|[6] says that the best congtant the inequality
1 1
(1) [ wlde <1 [@ran y0) =y =0
0 0

for all real functionsy € D, where
D = {y : y is absolutely continuous and € L*(0,1)}
IS i and that the extremals are of the form
if0<az<i,
c(l—x) if s<ax <1

wherec is a constant.
We note that the existence of an inequality of the farin (1) is quite easy to prove. For, if we
apply the Cauchy-Schwarz and a form of the Wirtinger inequiélity [4, p. 67] we see that

[ ([ ) ([l <2 [
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The nontrivial part of[(]L) is the determination of the least valuélofind the characterization

of the extremals. The original proof of Opial [6] assumed that 0. This restriction was
eliminated by Olech [5]. At least six proofs are known and may be fourid in[1], [4]. In order to
get a feeling for the subtleties involved in Opial’s inequality we give a proof which is close to
Olech’s.

Proof. Fory € D satisfying the boundary conditions ¢f (1) jet (0,1) satisfy

D 1
| = [ 1.
0 p

fox /] if z €10,p]
il ifxe (p1].
vident s = = U, < s € , an
Evidently,Y (0) =Y (1) =0, [y| <Y,Y € D, and
L R YPde P da
- f01 YY'|dx — fol\yy’|d:v.

Thus an extremal of (1) (if any) will be found among the cl@sc D consisting of those
satisfyingy(0) = y(1) = 0 which are nondecreasing ¢, p], nonincreasing ofp, 1], and such

thaty(p) = 1. Thenfol lyy'| dz =1, and

1
K= inf/ ly/|? da.
0

yeD’

Define

The extremal is evidently a linear spline with a unique kngt. &loreover,

1 1

K '= inf (— + —) =4,
p l-p

By a variation of the above prodfl[3] one can show that

1 1 1
/ 'l < | / (/)2dz  whenevery(0) + y(1) = 0
0 0

fory € D. u
Now consider the inequality
1 1 1
(2) / lyy'| dx < K/ (v')? da Whenever/ ydr =0,
0 0 0

wherey € D. An upper bound for in @) is also%. If we sety = x — % a calculation shows
that a lower bound o = 1.

Conjecture. The best value of( in @) is also; and all extremals are of the form(z) =
¢ (z — 1) for any constant.

Remark. While (J) is simple in form it is much harder to handle thgh (1). As in the previous
case the main difficulty is caused by the absolute value signs on the left side, but the tech-
nique we used to provg](1) no longer seems applicable since it is hard to construct a piecewise
monotone function with the properties o¥” while preserving the conditiogfb1 sdx = 0.

However, one can verify the conjecture if certain assumptions are made about the extremals.
For instance we can suppose:

(i) The extremak is a linear spline with one knot.
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(i) The extremal up to multiplication by constants is unique.

If (i) is granted we can show that = i by an extremely laborious calculation. Since the
argument based on (ii) is fairly short we present it here.

Lemma. Assumption(ii) = K = ; ands(t) =t — 3 is an extremal.

Proof. Suppose there is an extrensaif @) Becausgfo1 s = 0, s has at least one zerc= (0, 1).
Case (1) If ¢ = % we know from a standard “half interval” Opial inequality [4, Theorgimn

p. 114] that
3 1 1 [3
(3) / |ss'|dx < = - —/ s dx
0 2 2 Jo
1 11 /!
(4) |ss'|doe < = - = s? dx.
% 2 2 %

From which it foIIows thats satisfies) withi < 411

Case (2) If ¢ # 3. Consider§( ) = s(1 —t). §is also an extremal oﬂZ) By hypothesis
5(t) = ks(t). Takingt = 3 shows that: = 1. Henceift = ; +u, 1 —¢t = 3 Fuandsis
symmetric with respect to = =. With no loss of generallty we can assume that (O, %)
there is then another zetbe (%, 1). Again using[[4, Theorer®] yields that

/]55|d:(:< / s dx

L_ ¢ 3
/]33|dgn<2 /S/2d£C
c 2 0

which implies [(8). The argument fdr|(4) is similar usu‘:fg
Thus in either Case (1) or (Z) < ;. Sinces(t) = ¢ — 3 gives equality ml) angfO s =0,
K=1 O

4

However, neither (i) nor (ii) is evident (although a calculus of variations argument will show
thats is at least piecewise linear).

Another route to the solution of the problem may be to use a technique devised by Boyd
[2] to find best constants in general Opial-like inequalities. Boyd considers the opérator
L*(0,1) — L?(0,1) defined by

Kﬂwzlkwwmwmw

wherek(z,t) is nonnegative and measurable @n1) x (0,1), ando is a positive a.e. mea-
surable function. It is then showhnl[2, Theorem 1] that the best conétaftthe inequality

(5) /ur D)o m<c/Wf|2>

is an eigenvalue of K + K*)/2. Boyd uses this method to find the best constants of a family
of higher order generalizations ¢f (1). However the calculations needed to put the inequality in
the format|($) and to solve the eigenvalue problem are challenging.
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Richard Brown.

3.6. Remark.

Let/ C R be aninterval and’, g : I — R be given functionsf < g. It is well known that
if fis concave ang is convex (or conversely), then there exists an affine functiod — R
such thatf < h < g onI. Of course these conditions are sufficient but not necessary for the
existence of such a function. A full characterization of functions which can be separated by an
affine one gives the following theorem [5] (cf. also [2], [4] for further generalizations).

Theorem. Let f,g : I — R. There exists an affine function: / — R suchf < h < g if and
only if
flte + (1 =t)y) < tg(x) + (1 —t)g(y)
and
g(tr + (1 —=t)y) > tf(x) + (1 —1)f(y)
forall z,y € I andt € [0, 1].

The first of the above inequalities is equivalent to the separability ahd g by a convex
function (cf. [1]). From this result one can obtain (taking= f + ¢) the classical (one
dimensional) Hyers-Ulam stability theorem [3] stating thafif I — R is e-convex, i.e., it
satisfies the condition

flz+ A =t)y) <if(x)+ A=) f(y) +e  zyeltel01]
then there exists a convex functibn / — R such thatf < h < f 4.
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Kazimierz Nikodem.

3.7. Problems.
Concerning Hardy type inequalities, we have posed the following problems.

Problem 1. Letp > 1, 0 < A< 1, 0 < b < ocandg € C§°[0,b]. Find necessary and sufficient
conditions on the weights = u(x), 0 < z < b, andv = v(z,y), 0 < z,y < b, so that

1

® (Aﬂmmvuumm) sz¥<Ab ”ﬂftl%%ﬁwamew>p

o |z—yl
holds for some finite’ > 0 andA # -

Remark 1. The (lower fractional order Hardy) inequality] (1) holds, e.g4(f) = = and
v(z,y) = 1 except fork = % where a counterexample can be found.

Problem 2. Letp > 1, 0 < A <1, 0 < b < ocoandg € AC|0,b]. Find necessary and sufficient
conditions on the weights = v(x), 0 < = < b, andu = u(z,y), 0 < z,y < b, so that

1

b () — p » b 5
@ ([ [t ) <k ([ e o)
o Jo |z —uy| 0
holds for some finitd< > 0.

Remark 2. The (upper fractional order Hardy) inequalify (2) holds e.a.(if, y) = 1, v(x) =
20-VP and K = 2 AL (p(1 — \)) 7.

Problem 3 (A). Letg € L?*(0,00). Then

gl = llg — Hgllz2 = |lg — Sqllz2,
where

Hg(z) == —/Ozg(y)d% Sg(x) = /OO Mdy.

Z Y
Question 1. Describe all the (averaging) operatotsuch that

lgllz2 = [lg — Agl| 2

Problem 3 (B). Let g € LP([0, 00], z7°P~1) =: LP(z=*P~ 1) with p > 1 anda > —1, a # 0.
Then

G) 190l o(a-or-1 2 g — Hgl| 1o
where

Question 2. Describe all the (averaging) operatetsuch that[(B) holds witti replaced byA.

Lars-Erik Persson.
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3.8. Problem.
If numbersy,...,y, (andy, = 0) are given positive numbers so that, > 0 (k =
0,...,(n—1)), Ayr = ypy1 — yx and A2y, > 0 then there is a continuous convex function

A%f > 0suchthatf(i) = y;, (i = 0,..., k). The piecewise linear function that interpolates the
points(i, y;) will do.

Now if | add the conditions that\3y,, > 0 and ask for a continuous functighwhich inter-
polates the point§&i, y;) andA3 f > 0, then in general this cannot be done. So the problem is to
find a finite set of conditions on thig;} ensure the existence of a functigrwith the required
properties.

A.M. Fink.

3.9. Problems.
Letm > 2 an integer and

Z kzmk|

k=1

Um = min
|2|=1,z€C

Problem 1. Find y,, (as a function ofn).

Problem 2. Prove or disprove that for odd

m v
3.1 s .
(3.1) Hom = 5 80C S

Introducingz = ¢ we have

m 2 s omtN\ 2 2 . . 2

Z fom—k| _ | n 1 (sin 5 n msint — sinmt

pt 2 2\ sin} 4sin® §

which shows that.,,, > %, moreover,, = 7 if m is even as in this case the right hand side of

@32 equals(%)2 fort = .

Problemg [l anfl]2 are related to the location of zeros of self-inversive polynomials through
the following results.

(3.2)

Theorem 1. (P. Lakatog1], [2]) All zeros of reciprocal polynomiaP,,(z) = > 7" | Ax2" with
real coefficientd, € R (andA4,, #0, Ay = A,,_rforallk=1,... n)areonthe unitcircle,
provided that

m—1
(3.3) [An| > Ak = Aul.

k=1
Moreover, the zeros™ of P,, can be arranged such that

. T

3.4 Wi < ——— =1,...
(3.4) v —gl < T =1 m)
wheree; = eimt (7 =1,...,m) are the(m + 1)st roots of unity, except the robt

Theorem 2. (A. Schinze[4].) All zeros of the self-inversive polynomidl,(z) = >_,", AP
(whered, € C, A,, #0, €Ay = A, forall k =0,...,m with fixede € C, |¢| = 1) are
on the unit circle, provided that

. > — .
(3.5) [An| = igékz_o Ay — Anl
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The first theorem has been generalized by proving that its statements remainvaisdaéid
and [3.B) is replaced by

m

m
|Am| > cos® m+1) > Ap = Ay

k=1
and similarly, the second theorem remains valigkifs odd and[(3)5) is replaced by

m

m
|Amhziﬁ—§:hyh——Amy

™ k=0
(see Lakatos-Losonczil[3]).
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Laszl6 Losonczi.

3.10. Remark and Problem.
Let M and N be strict means in the usual sense, i.e.,

, { M(z,y)
min(z,y) <

N(z,y)

if © # yandM(z,x) = N(z,z) = x. Then the two sequences

} < max(z,y)

T1 =2, N =Y, Tny1 — M(l’n, yn)7 Yn+1 = N(Z’n, yn)a (n = 17 27 . )
converge to the same limit

lim z, = lim y, := Gun(z,y).

Substitutingz,,, y,, into

(1) f(M(z,y)) + f(N(z,y)) < f(z) + f(y),
iterating the inequality, and tending #0 with n, we get, if f is continuous,
(2) 2f(Gun(z,y) < f(x) + fy).

Problem. Under what conditions od/ and N does [(2) follow from[(IL) without assuming
continuity of f?

In what follows, we solve in two particular cases the correspondqations

(1=) fM(z,y)) + f(N(z,y)) = f(z) + f(y)

(22) 2f(Gun(z,y) = f(x) + f(y).
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2 .
1. M(z,y) = xTer, N(z,y) = % HereGy nv(z,y) = /Zy. Hence the continuous

solution of [2F) and thus also df (IL=) is given lfyx) = alog x + b. Without assuming

any regularity, Bruce Ebanks recently proved (to appear in Publ. Math.) that the two
equations have the same general solutfon) = ¢(x) + b, where/ is an arbitrary
solution ofl(xy) = £(x) + ((y).

2. M(z,y) = v y, N(z,y) = \/zy. In this cas&x ), y is Gauss’s medium arithmetico-

geometricum. It follows from a result of Gy. MaksRaubl. Math. Debrecer4 (1977),
25-29), again without any regularity assumption, that every solutidn ¢f (1=), that is, of

(552 + e = 1) + 1)

is constant.

Remark. The above two results would not be surprising Wvere supposed (continuous and)
strictly monotonic. Ther (2=) would become

Garnl(a,y) = <w> |

making G,y a quasi-arithmetic mean. Now,, v(z,y) = /2y iS a quasi-arithmetic mean
with f(z) = alogz + b (a # 0) while the medium arithmetico-geometricum is not quasi-
arithmetic. What is surprising is that the statemehtnd 2 hold without any regularity as-
sumption.

Janos Aczél and Zsolt Pales.

3.11. Remark.
Lars-Erik Persson has asked for an elementary proof of the identities

1f = Aifllz2(0,00) = || f1]22(0,00) (f € L*(0,00); i = 1,2),
with A; and A, denoting the averaging operators

(Af)a) =+ / Cfd, (Aof)(a) = / o

T

Indeed, forf € L*(0, ),
£ 122 0.00) = If = At fllZ2(0.00) = 2Re(ALS, F)r200.00) = 1A1F I Z2(0,00)

o0 1 xX
= [T 1 are | [ s T o - 14
0 0
© 1 d x 2 % q x 2
1] [e 21
_ [ / f@dt]
T |Jo
0
by partial integration. So it suffices to show that

! /0 seova| ! /O F#)dt

lim — = lim —
z—0 T—00 I

2
=0.
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The first limit being0 is immediate by the Cauchy-Schwarz inequality:

/O " F@)dt

For the second, we observe that, for @&y y < = < oo,

/jf(t)dt2
[Cisna [Cirona]
[Cisena] 2 [ rona]

[C1rwia] + 2@ [ropa

1 2 @
- S/ ]f(t)|2dt—>0a8x—>0.
z 0

0<

<

<

<

[Io 80 8|0 8|~ 8-

<

-/Oy|f(t)|dt_ 2 [Tl

For givens > 0, choose now; such that second term is less that2, and thenzy, > y such
that the first term is less than2 (for x > x).
For the averaging operatak,, we obtain similarly

o0 [e.9] 1 .
1 B0y~ 1 = Al o = [ 2Re | [ L0t T o = Daf o
© 4 % q 2 00 % 1
% 1 27

/:o%f(t)dt2 gx/:ot%dt/:o\f(t)ﬁdt

= / |f(t)]? dt — 0 asz — oo.
To prove that the above boundary term vanishes alfplat0 < = < y < oco. Then,

/xw%f(t)dt2§2x {/:%|f(t)]dt]2+2x Uyw%yf(mdtr
§2x/zy%dt/:|f(t)|2dt+2x [/yoo%|f(t)|dtr

<2 [l dr+20 [/ym%wndtr

which is less than a given> 0 (for y sufficiently small and: sufficiently small depending on
y), similarly to the arguments fod;.

2
dx

and

X

X

Michael Plum.
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3.12. Remark.
We describe solutions to the functional inequality

1f(z+y) = f(z) = fWIl < ezl + Nyl

for f: R" — X.
Jacek Tabor.
3.13. Problem.
Let —c0 < «, 8 < oo and consider fof > 0 the (Gini) means
I f“(t)dt) =
T ) a#
< Jo fo(t)dt 7
Ga,ﬁ[f7 .Z'] = " | p
exp <f0 f £t) og f(t) t)’ 0= g
Jo fe(t)dt

Let also{p, ¢} € R% (or to some suitable subset®&f),

a) Find necessary and sufficient conditions on the weight$ andwv(z) so that, for0 <
b < o0,

1) ( / (sl anu@)dxf <c ( / b f”(x)v(x)dl‘);

for some finiteC' > 0. Find also “good” estimates of the least constanin (1)) [i.e.
good control of the corresponding operator norm].

b) The same question wher, s(f, z| is replaced by other interesting means, e.g., those
presented on this conference.

Remark 1. Forthecasev =1, 3 =0, p > 1, ¢ > 0 (d) is just a modern form of Hardy’s
inequality so we have a complete solution of our problem. Also, according to results e.g. pre-
sented in this conference we have the similar precise information for the geometric mean case
a= =0, p,q > 0. Moreover, for the power mean case> 0, 3 = 0 we also get satisfactory
results by just making an obvious substitution in the arithmetic mean (=the Hardy) case.

Remark 2. The scale of mean§,, s has the interesting property that it is increasing in both
a and 5. This means that we can get sufficient conditions wtén (1) holds by just using the
information pointed out in Remafk 1.

Alois Kufner, Zsolt Pales, and Lars-Erik Persson.

3.14. Remark.
Saborou Saitoh has asked for a simple proof of the inequality

in / fup(,t) — g, O) de < (|f]| — R)?
lgll<R J_ o

forall f € L*(R), ||f|| > R, andt > 0, where

up(z,t) = \/i?/: f(y) exp (—%) dy.
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Indeed,u; solves the Cauchy problem for the heat equation,

%:Auf (x €R, t>0), wuy(-,0)=fae.onk.
Then, forf andg in L*(R) and allt > 0,

L) —u = 2y = DYy st —
T R ) I

= <Auf('v t) - Aug('a t)v uf(" t) - ug('v t)>L2(R)
= —[[Vuys (-, t) = Vg (- 1)[|* <0
by partial integration since(-, t) andVu(-, t) decay exponentially at = +oo. Thus,
g (1) = ug (- O < flug (-, 0) = ug (- 0)|* = || f — gl
For||f|| > Randg := i f, we therefore have

ot

HfH) AP = (171 - B)

(1) — g B)2 < (

and||g|| = R, which establishes the result.
Michael Plum.

4. ADDENDA

4.1. Addenda zuGewohnliche Differentialgleichungen mit guasimonoton wachsenden rech-
ten Seiten in geordneten Banachraumermwon Alice Chaljub-Simon, Roland Lemmert, Sabina
Schmidt und Peter Volkmann, General Inequalities 6, International Series of Numerical Mathe-
matics 103, Birkh&auser, Basel, 1992, pp. 307-320.

1. InLemma 2 auf S. 311 soll II) wie folgt lauten:

II)Ausz,y € E, z <y, x, =y, folgt fo(z) < fuly).

(In dieser Form wird Il) spater benutzt; der Beweis ist ahnlich dem Beweise der urspriinglichen
Form von II).)

2. Auf S. 317, 14.-16. Z. v.o. sind die beiden Satze “In Wirklichkeit ... verfeinert werden.”
zu ersetzen durch: Fir normale Kegébrauchte nuyf : [0, 7] x U — E mit einer Umgebung
U vona vorausgesetzt zu werden, und dann konnte die Existenz einer lokalen Losung von (12)
gezeigt werden. (Vgl. die Folgerung auf S. 388 von [6]; die Normalitat korst dort den
Voraussetzungen hinzuzufugen!) Entsprechende lokale Versionen kdnnen auch fur den hier
gegebenen Satz 2 bewiesen werden.

3. Auf S. 317, 8.-1. Z. v.u. (durch den Druck entstellt) soll es heil3en:

CT(M)={z|ze€C(M), = (24)aern mit 1, >0 (v € M)}

der natirliche Ordnungskegel @Y M/).

SATZ 3. Ist M ein metrischer Raum, dessen Metrik nicht diskret ist (d.h.Mirgibt es
mindestens einen Haufungspunkt), und wirg= C'(M) geordnet durchi' = C'*(M), so gibt
es eine stetige, beschrankte, monoton wachsende Funktidh — E und eina € E derart,
dal3 das Anfangswertproblem

(37) w(0) =a, u'(t)=f(ut)) (0<t<T)
fur jedesT” > 0 unlosbar ist.
Peter Volkmannn.
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4.2. Addendum to Weak persistence in Lotka-Volterra population®y Raymond M. Redhef-
fer and Peter Volkmann, General Inequalities 7, International Series of Numerical Mathematics

123, Birkh&user, Basel, 1997, pp. 369-373.

The remark on page 371 pertaininggto— y» overlooks the fact thaf(¢) andg(¢) depend
ony. The statement of Example 1 remains unchanged but the assertidinthatt) = 1 in
Example 2 should be replaced by5 < lim inf m(t) < limsupm(t) < 3. This oversight was
brought to our attention by Dr. Roland Uhl.

Peter Volkmannn.

5. LIST OF PARTICIPANTS

Aczél, Janos
Department of Pure Mathematics
University of Waterloo,
Waterloo, Canada.
jdaczel@math.uwaterloo.ca

Ando, Tsuyoshi
Professor Emeritus
Hokusei Gakuen University
Sapporo, Japan

ando@es.hokudai.ac.jp

Bandle, Catherine
Mathematisches Institut,

UniversitatBasel,

Basel,Switzerland
bandle@math.unibas.ch

Barza, Sorina
Department of Mathematics
Div. of Eng. Sci. Phys. Math.,
Karlstad University, Karlstad, Sweden
sorina.barza@kau.se

Bessenyei, Mihaly

University of Debrecen,
Debrecen, Hungary
besse@math.klte.hu

Institute of Mathematics and Informatics

Brown, Malcolm, B.
Department of Computing Mathematics
University College Cardiff,
Cardiff, United Kingdom
malcolm@cs.cf.ac.uk

Brown, Richard
Department of Mathematics,
University of Alabama,
Tuscaloosa, United States
dicbrown@bama.ua.edu

Buse, Constantin
Department of Mathematics
West University of Timisoara
Timisoara, Romania
buse@hilbert.math.uvt.ro

Cerone, Pietro
School of Comp. Sci. & Math.
Victoria University of Technology
Melbourne, Australia
pc@csm.vu.edu.au

Czinder, Péter
Berze Nagy Janos Grammar School
Gyobngyo6s, Hungary
czinder@berze-nagy.sulinet.hu

Daroczy, Zoltan
Institute of Math. & Informatics
University of Debrecen
Debrecen, Hungary

daroczy@math.klte.hu

Dragomir, Silvestru, Sever
School of Comp. Sci. & Math.
Victoria University of Technology
Melbourne, Australia

sever.dragomir@vu.edu.au

Fazekas, Borbala
Institute of Math. & Informatics
University of Debrecen
Debrecen, Hungary

fazekasb@math.klte.hu

Fink, Arlington, M.
Department of Mathematics
lowa State University
Ames, United States
fink@math.iastate.edu

J. Inequal. Pure and Appl. Math4(3) Art. 49, 2003

http://jipam.vu.edu.au/



http://jipam.vu.edu.au/

GENERAL INEQUALITIES 8 CONFERENCEREPORT

Ger, Roman
Institute of Mathematics
Silesian University
Katowice, Poland
romanger@us.edu.pl

Gilanyi, Attila
Institute of Math. & Informatics
University of Debrecen
Debrecen, Hungary
gil@math.klte.hu

Hazy, Attila
Institute of Math. & Informatics
University of Debrecen
Debrecen, Hungary
hazya@math.klte.hu

Herzog, Gerd
Mathematisches Institut |
Universitat Karlsruhe
Karlsruhe, Germany
gerd.herzog@
math.uni-karlsruhe.de

Kersner, Rébert
Comp. & Automation Inst. (SZTAKI)
Hungarian Academy of Sciences (MTA
Budapest, Hungary
kersner@sztaki.hu

Kolumban, J6zsef
Faculty of Mathematics
Babes-Bolyai University
Cluj-Napoca, Romania

kolumban@math.ubbcluj.ro

Kufner, Alois
Mathematical Institute
Czech Academy of Sciences (AVR)
Prague, Czech Republic

kufner@math.cas.cz

Lemmert, Roland
Mathematisches Institut |
Universitat Karlsruhe
Karlsruhe, Germany
roland.lemmert@
math.uni-karlsruhe.de

Losonczi, Laszlo
Institute of Math. & Informatics
University of Debrecen
Debrecen, Hungary

losi@math.klte.hu

Mohapatra, Ram
Mathematics Department
University of Central Florida
Orlando, United States
ramm@pegasus.cc.ucf.edu

Niculescu, Constantin
Faculty of Mathematics
University of Craiova
Craiova, Romania
cniculescu@central.ucv.ro

Nikodem, Kazimierz
Department of Mathematics
University of Bielsko-Biata

Poland
knik@ath.bielsko.pl

Pales, Zsolt
Institute of Math. & Informatics
University of Debrecen
Debrecen, Hungary
pales@math.klte.hu

Pearce, Charles, Edward Miller
Department of Applied Mathematics
University of Adelaide
Adelaide, Australia
cpearce@maths.adelaide.edu.au

Persson, Lars-Erik
Department of Mathematics
Lulea University of Technology
Lulea, Sweden

larserik@sm.luth.se

Plum, Michael
Mathematisches Institut |
Universitat Karlsruhe
Karlsruhe, Germany
michael.plum@
math.uni-karlsruhe.de

Saitoh, Saburou
Department of Mathematics
Gunma University
Kiryu, Japan
ssaitoh@
svl.math.sci.gunma-u.ac.jp

Sofo, Anthony
School of Comp. Sci. & Math.
Victoria University of Technology
Melbourne, Australia
sofo@csm.vu.edu.au

J. Inequal. Pure and Appl. Math4(3) Art. 49, 2003

http://jipam.vu.edu.au/



http://jipam.vu.edu.au/

30 COMPILED BY ZSOLT PALES

Stapelkamp, Silke Tabor, Jacek
Mathematisches Institut Institute of Mathematics
Universitat Basel Jagiellonian University
Basel, Switzerland Krakow, Poland
stapels@math.unibas.ch tabor@im.uj.edu.pl
Walter, Wolfgang Wedestig, Anna
Mathematisches Institut I. Department of Mathematics
Universitat Karlsruhe Lulea University of Technology
Karlsruhe, Germany Lulea, Sweden
Wolfgang.Walter@ annaw@sm.luth.se
math.uni-karlsruhe.de

J. Inequal. Pure and Appl. Math4(3) Art. 49, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Abstracts
	References
	References
	References
	References
	3. Problems and Remarks
	3.1. Problem

	References
	3.2. Problem and Remark
	3.3. Problem
	3.4. Problem
	3.5. Problem

	References
	3.6. Remark

	References
	3.7. Problems
	3.8. Problem
	3.9. Problems

	References
	3.10. Remark and Problem
	3.11. Remark
	3.12. Remark
	3.13. Problem
	3.14. Remark

	4. Addenda
	4.1. Addenda zu Gewöhnliche Differentialgleichungen mit quasimonoton wachsenden rech-ten Seiten in geordneten Banachräumen
	4.2. Addendum to Weak persistence in Lotka-Volterra populations

	5. List of Participants 

