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1. I NTRODUCTION

The General Inequalities meetings have a long tradition extending to almost thirty years. The
first 7 meetings were held in the Mathematical Research Institute at Oberwolfach. The 7th
meeting was organized in 1995. Due to the long time having elapsed since this meeting and
the growing interest in inequalities, the Scientific Committee of GI7 (consisting of Professors
Catherine Bandle (Basel), W. Norrie Everitt (Birmingham), László Losonczi (Debrecen), and
Wolfgang Walter (Karlsruhe)) agreed that the 8th General Inequalities meeting be held in Hun-
gary. It took place from September 15 to 21, 2002, at the De La Motte Castle in Noszvaj and
was organized by the Institute of Mathematics and Informatics of the University of Debrecen.

The Scientific Committee of GI8 consisted of Professors Catherine Bandle (Basel), László
Losonczi (Debrecen), Michael Plum (Karlsruhe), and Wolfgang Walter (Karlsruhe) as Honorary
Member.

The Local Organizing Committee consisted of Professors Zoltán Daróczy, Zsolt Páles, and
Attila Gilányi as Secretary, The Committee Members were ably assisted by Mihály Bessenyei,
Borbála Fazekas, and Attila Házy.

The 36 participants came from Australia (4), Canada (1), Czech Republic (1), Germany (4),
Hungary (9), Japan (2), Poland (3), Romania (3), Switzerland (2), Sweden (3), United Kingdom
(1), and the United States of America (3).
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2 COMPILED BY ZSOLT PÁLES

Professor Walter opened the Symposium on behalf of the Scientific Committee. Professor
Páles then welcomed the participants on behalf of the Local Organizing Committee.

The talks at the symposium focused on the following topics: convexity and its generaliza-
tions; mean values and functional inequalities; matrix and operator inequalities; inequalities
for ordinary and partial differential operators; integral and differential inequalities; variational
inequalities.

A number of sessions were, as usual, devoted to problems and remarks.
On the evening of Tuesday, September 17, the Gajdos Band performed Hungarian Folk Music

which was received with great appreciation.
On Wednesday, the participants visited the Library and Observatory of the Eszterházy Col-

lege of Eger and the famous fortress of the city. The excursion concluded with a dinner in
Eger.

The scientific sessions were followed on Thursday evening by a festive banquet in the De La
Motte Castle. The conference was closed on Friday by Professor Catherine Bandle.

Abstracts of the talks are in alphabetical order of the authors. These are followed by the
problems and remarks (in approximate chronological order), two addenda to earlier GI volumes,
and finally, the list of participants. In the cases where multiple authors are listed, the talk was
presented by the first named author.

2. ABSTRACTS

TSUYOSHI ANDO

Löwner Theorem of Indefinite Type

ABSTRACT

The most familiar form of the Löwner theorem on matrices says thatA ≥ B ≥ 0 implies
A

1
2 ≥ B

1
2 . HereA ≥ B means the Löwner ordering, that is, bothA andB are Hermitian and

A−B is positive semidefinite.
We will show that if bothA andB have only non-negative eigenvalues andJ is an (indefinite)

Hermitian involution thenJA ≥ JB implies JA
1
2 ≥ JB

1
2 .

We will derive this as a special case of the following result. If a real valued functionf(t)
on [0,∞) is matrix-monotone of all order in the sense of Löwner thenJA ≥ JB implies
J · f(A) ≥ J · f(B). Heref(A) is defined by usual functional calculus.

The classical Löwner theorem shows thatt
1
2 is matrix-monotone of all order.

CATHERINE BANDLE

Rayleigh-Faber-Krahn Inequalities and Auasilinear Boundary Value Problems

ABSTRACT

The classical Rayleigh-Faber-Krahn inequality states that among all domains of given area
the circle has the smallest principal frequency. The standard proof is by Schwarz symmetriza-
tion. This technique extends to higher dimensions and to the best Sobolev constants. For
weighted Sobolev constants symmetrization doesn’t apply. In this talk we propose a substitute.
Emphasis is put on the case with the critical exponent. As an application we deriveL∞-bounds
for Emden type equations involving thep-Laplacian.
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SORINA BARZA

Duality Theorems Over Cones of Monotone Functions in Higher Dimensions

ABSTRACT

Let f be a non-negative function defined onRn
+ which is monotone in each variable sepa-

rately. If 1 < p <∞ , g ≥ 0 andv a product weight, then equivalent expression for

sup

∫
Rn

+
fg(∫

Rn
+
fpv
) 1

p

are given, where the supremum is taken over all such functionsf .
The same type of results over the cone of radially decreasing functions, but in this case for

general weight functions will be also considered.
Applications of these results in connection with boundedness of Hardy type operators will be

pointed out.

MIHÁLY BESSENYEI AND ZSOLT PÁLES

Higher-order Generalizations of Hadamard’s Inequality

ABSTRACT

Let I ⊂ R be a proper interval. A functionf : I → R is said to ben-monotone, if

(−1)n

∣∣∣∣∣∣∣∣∣∣

f(x0) . . . f(xn)
1 . . . 1
x0 . . . xn
...

...
xn−1

0 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣
≥ 0,

wheneverx0 < . . . < xn, x0, . . . , xn ∈ I. Obviously, a functionf is 2-monotone if and only if
it is convex. According to Hadamard’s classical result, the inequalities

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2

hold for any convex, i.e., for2-monotone functionf : [a, b] → R. Our goal is to generalize this
result forn-monotone functions and present some applications. For instance, if the function
f : [a, b] → R is supposed to be3-monotone, one can deduce that

f(a) + 3f
(
a+2b

3

)
4

≤ 1

b− a

∫ b

a

f(x)dx ≤
f(b) + 3f

(
2a+b

3

)
4

.
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MALCOLM BROWN

Everitt’s HELP Inequality and Its Successors

ABSTRACT

In 1971 Everitt introduced the inequality(∫ →b

a

(pf ′
2
+ qf 2)dx

)2

≤ K

∫ b

a

wf 2dx

∫ b

a

w
(
w−1(−(pf ′)′ + qf)

)2
dx

for functionsf from

{f : [a, b) → Rf, pf ′ ∈ ACloc[a, b)f, w−1(−(pf ′)′ + qf) ∈ L2(a, b;w)}.

He showed that the validity of the inequality, (ie. finiteK) and cases of equality were dependent
on the spectral properties of the operator defined from1/w(−(pf ′)′ + qf)) in the Hilbert space
L2
w[a, b).
The talk will explore the class of inequalities

A2(f) ≤ KB(f)C(f)

which have associated with them a self-adjoint operator acting in a domain of a Hilbert space.
This class will generate examples of inequalities between members of infinite sequences and
also inequalities between a function and its higher order derivatives.

R.C. BROWN

Some Separation Criteria and Inequalities Associated with Linear Differential and Partial
Differential Operators

ABSTRACT

In a series of remarkable papers between 1971 and 1977 W. N. Everitt and M. Giertz deter-
mined several sufficient conditions forseparation, i.e., given a second order symmetric differ-
ential operatorMw[y] = w−1(−(py′)′ + qy) defined inL2(w; I), I = (a, b) with one or both
end-points singular, the property thaty,Mw[y] ∈ L2(w; I) =⇒ w−1qy ∈ L2(w; I). Here we
trace some recent developments concerning this problem and its generalizations to the higher
order case and classes of partial differential operators due to the Russian school, D. B. Hinton,
and the author.

Several new criteria for separation are given. Some of these are quite different than those of
Everitt and Giertz; others are natural generalizations of their results, and some can be extended
so that they yield separation for partial differential operators. We also point out a separation
problem for non-selfadjoint operators due to Landau in 1929 and study the connection between
separation and other spectral properties ofMw and associated operators.

This paper is published online athttp://jipam.vu.edu.au/v4n3/130_02.html .
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CONSTANTIN BUŞE

A Landau-Kallman-Rota’s Type Inequality For Evolution Semigroups

ABSTRACT

Let X be a complex Banach space,R+ the set of all non-negative real numbers and letJ
be either, orR or R+. The Banach space of allX-valued, bounded and uniformly continu-
ous functions onJ will be denoted byBUC(J, X) and the Banach space of allX-valued,
almost periodic functions onJ will be denoted byAP (J, X). C0(R+, X) is the subspace of
BUC(R+, X) consisting of all functions for whichlimt→∞ f(t) = 0 andC00(R+, X) is the
subspace ofC0(R+, X) consisting of all functionsf for which f(0) = 0. It is known that
AP (J, X) is the smallest closed subspace ofBUC(J, X) containing functions of the form:
t 7→ eiµtx;µ ∈ R, x ∈ X, t ∈ J. The set of allX-valued functions onR+ for which there
exist tf ≥ 0 andFf in AP (R, X) such thatf(t) = 0 if t ∈ [0, tf ] andf(t) = Ff (t) if t ≥ tf
will be denoted byA0(R+, X). The smallest closed subspace ofBUC(R+, X) which con-
tainsA0(R+, X) will be denoted byAP0(R+, X). AAP0(R+, X) denotes here the subspace
of BUC(R+, X) consisting of all functionsh : R+ → X for which there existtf ≥ 0 and
Ff ∈ AP (R+, X) such thath = f + g and(f + g)(0) = 0. Let X one of the following spaces:
C00(R+, X), AP0(R+, X), AAP0(R+, X). The main result can be formulated as follows:

Theorem. Let f be a function belonging toX and U = {U(t, s) : t ≥ s ≥ 0} be an1-
periodic evolution family of bounded linear operators acting onX. If U is bounded (i.e.,

supt≥s≥0 ||U(t, s)|| = M < ∞) and the functionsg(·) :=
·∫

0

U(·, s)f(s)ds and h(·) :=

·∫
0

(· − s)U(·, s)f(s)ds belong toX then||g||X ≤ 4M2||f ||X||h||X.

PIETRO CERONE

On Some Results Involving TheČebyšev Functional and Its Generalizations

ABSTRACT

Recent results involving bounds of theČebyšev functional to include means over different
intervals are extended to a measurable space setting. Sharp bounds are obtained for the re-
sulting expressions of the generalizedČebyšev functionals where the means are over different
measurable sets.

This paper is published online athttp://jipam.vu.edu.au/v4n3/124_02.html .

PÉTER CZINDER AND ZSOLT PÁLES

Minkowski-type Inequalities For Two Variable Homogeneous Means

ABSTRACT

There is an extensive literature on the Minkowski-type inequality

(1) Ma,b(x1 + y1, x2 + y2) ≤Ma,b(x1, x2) +Ma,b(y1, y2)

and its reverse, whereMa,b stands for the Gini mean

Ga,b(x1, x2) =

(
xa1 + xa2
xb1 + xb2

) 1
a−b

(a− b 6= 0),
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or for the Stolarsky mean

Sa,b(x1, x2) =

(
xa1 − xa2

a

b

xb1 − xb2

) 1
a−b

( ab(a− b) 6= 0 )

with positive variables. (These mean values can be extended for any real parametersa andb.)
A possibility to generalize (1) is that each appearance ofMa,b is replaced by a different mean,

that is, we ask for necessary and/or sufficient conditions such that

Ma0,b0(x1 + y1, x2 + y2) ≤Ma1,b1(x1, x2) +Ma2,b2(y1, y2)

or the reverse inequality be valid for all positivex1, x2, y1, y2.
We summarize our main results obtained in this field.

ZOLTÁN DARÓCZY AND ZSOLT PÁLES

On The Comparison Problem For a Class of Mean Values

ABSTRACT

Let I ⊆ R be a non-empty open interval. The functionM : I2 → I is called a strict pre-mean
on I if

(i) M(x, x) = x for all x ∈ I and
(ii) min{x, y} < M(x, y) < max{x, y} if x, y ∈ I andx 6= y.

The functionM : I2 → I is called a strict mean onI if M is a strict pre-mean onI andM is
continuous onI2.

Denote byCM(I) the class of continuous and strictly monotone real functions defined on the
intervalI.

Let L : I2 → I be a fixed strict pre-mean andp, q ∈]0, 1]. We callM : I2 → I anL-
conjugated mean of order(p, q) on I if there exists aϕ ∈ CM(I) such that

M(x, y) = ϕ−1[pϕ(x) + qϕ(y) + (1− p− q)ϕ(L(x, y)] =: L(p,q)
ϕ (x, y)

for all x, y ∈ I.
In the present paper we treat the problem of comparison (and equality of)L-conjugated means

of order(p, q), that is, the inequalityL(p,q)
ϕ (x, y) ≤ L

(p,q)
ψ (x, y) wherex, y ∈ I; ϕ, ψ ∈ CM(I)

andp, q ∈]0, 1]. Our results include several classical cases such as the weighted quasi-arithmetic
and the conjugated arithmetic means.

SILVESTRU SEVER DRAGOMIR

New Inequalities of Grüss Type For Riemann-Stieltjes Integral

ABSTRACT

New inequalities of Grüss type for Riemann-Stieltjes integral and applications for different
weights are given.

This paper is published online athttp://rgmia.vu.edu.au/v5n4.html as Article
3.
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A.M. FINK

Best Possible Andersson Inequalities

ABSTRACT

Andersson has shown that iffi are convex and increasing withfi(0) = 0, then∫ 1

0

(f1 · · · fn)dx ≥
2n

n+ 1

(∫ 1

0

f1(x)dx

)
· · ·
(∫ 1

0

fn(x)dx

)
.

We turn this into a “best possible inequality” which cannot be generalized by expanding the set
of functionsfi and the measures.

This paper is published online athttp://jipam.vu.edu.au/v4n3/106_02.html .

ROMAN GER

Stability ofψ−Additive Mappings and Orlicz∆2-Condition

ABSTRACT

We deal with a functional inequality of the form

(1) ‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ(‖x‖) + ψ(‖y‖) ,

showing, among others, that given two selfmappingsϕ, ψ of the halfline[0,∞) enjoying the
celebrated Orlicz∆2 conditions:

ϕ(2t) ≤ kϕ(t), ψ(2t) ≤ `ψ(t)

for all t ∈ [0,∞), with some constantsk, ` ∈ [0, 2), for every mapf between a normed linear
space(X, ‖ · ‖) and a Banach space(Y, ‖ · ‖) satisfying inequality (1) there exists exactly one
additive mapa : X −→ Y such that

‖f(x)− a(x)‖ ≤ 1

2− k
ϕ(‖x‖) +

1

2− `
ψ(‖x‖)

for all x ∈ X. This generalizes (in several simultaneous directions) a result of G. Isac & Th. M.
Rassias (J. Approx. Theory, 72 (1993), 131-137); see also the monographStability of functional
equations in several variablesby Donald H. Hyers, George Isac and Themistocles M. Rassias
(Birkhäuser, Boston-Basel-Berlin, 1998, Theorem 2.4).

ATTILA GILÁNYI AND ZSOLT PÁLES

On Convex Functions of Higher Order

ABSTRACT

Higher-order convexity properties of real functions are characterized in terms of Dinghas-
type derivatives. The main tool used is a mean value inequality for those derivatives.
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ATTILA HÁZY AND ZSOLT PÁLES

On Approximately Midconvex Functions

ABSTRACT

A real valued functionf defined on an open convex setD is called(ε, δ)-midconvex if it
satisfies

f

(
x+ y

2

)
≤ f(x) + f(y)

2
+ ε|x− y|+ δ for x, y ∈ D.

The main result states that iff is locally bounded from above at a point ofD and is(ε, δ)-
midconvex then it satisfies the convexity-type inequality

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) + 2δ + 2εϕ(λ)|x− y| for x, y ∈ D, λ ∈ [0, 1],

whereϕ : [0, 1] → R is a continuous function satisfying

max
(
− λ log2 λ, −(1− λ) log2(1− λ)

)
≤ ϕ(λ)

≤ cmax
(
− λ log2 λ, −(1− λ) log2(1− λ)

)
with 1 < c < 1.4. The particular caseε = 0 of this result is due to Nikodem and Ng [1], the
specializationε = δ = 0 yields the theorem of Bernstein and Doetsch [2].

REFERENCES

[1] C.T. NG AND K. NIKODEM, On approximately convex functions,Proc. Amer. Math. Soc., 118(1)
(1993), 103–108.

[2] F. BERNSTEIN AND G. DOETSCH, Zur Theorie der konvexen Funktionen,Math. Annalen,76
(1915), 514–526.

GERD HERZOG

Semicontinuous Solutions of Systems of Functional Equations

ABSTRACT

For a metric spaceΩ, and functionsF : Ω × R(1+m)n → Rn andgj : Ω → Ω the following
functional equation is considered:

F (ω, u(ω), u(g1(ω)), . . . , u(gm(ω))) = 0.

We assume thatRn is ordered by a cone and prove the existence of upper and lower semicon-
tinuous solutions under monotonicity and quasimonotonicity assumptions onF . For example,
the results can be applied to systems of elliptic difference equations.
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JÓZSEF KOLUMBÁN

Generalization of Ky Fan’s Minimax Inequality

ABSTRACT

We give a generalization of the following useful theorem:

Theorem. (Ky Fan, 1972) LetX be a nonempty, convex, compact subset of a Hausdorff topo-
logical vector spaceE and letf : X ×X → R such that

∀y ∈ X, f(·, y) : X → R is upper semicontinuous,

∀x ∈ X, f(x, ·) : X → R is quasiconvex

and

∀x ∈ X, f(x, x) ≥ 0.

Then there exists an elementx0 ∈ X, such thatf(x0, y) ≥ 0 for eachy ∈ X.

ALOIS KUFNER

Hardy’s Inequality and Compact Imbeddings

ABSTRACT

It is well known that the valuep∗ = Np
N−p is the critical value of the imbedding ofW 1,p(Ω) into

Lq(Ω), Ω ⊂ RN . In the talk, an analogue of this critical value for imbeddings betweenweighted
spaces will be determined. More precisely, a valuep∗ = p∗(p, q, u, v) will be determined such
that the Hardy inequality(∫ b

a

|f(t)|qu(t) dt
) 1

q

≤ C

(∫ b

a

|f ′(t)|pv(t) dt
) 1

p

with 1 < p ≤ ∞ andf(b) = 0 expresses an imbedding which is compact forq < p∗ and does
not hold forq > p∗.

Applications to the spectral analysis of certain nonlinear differential operators will be men-
tioned.

ROLAND LEMMERT AND GERD HERZOG

Second Order Elliptic Differential Inequalities in Banach Spaces

ABSTRACT

We derive monotonicity results for solutions of partial differential inequalities (of elliptic
type) in ordered normed spaces with respect to the boundary values. As a consequence, we get
an existence theorem for the Dirichlet boundary value problem by means of a variant of Tarski’s
Fixed Point Theorem.
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http://jipam.vu.edu.au/


10 COMPILED BY ZSOLT PÁLES

LÁSZLÓ LOSONCZI

Sub- and Superadditive Integral Means

ABSTRACT

If f : I → R is continuous and strictly monotonic on the intervalI then for everyx1, x2 ∈
I, x1 < x2 there is a points ∈]x1, x2[ such that

f(s) =

∫ x2

x1
f(u) du

x2 − x1

thus s = f−1

(∫ x2

x1
f(u) du

x2 − x1

)
.

This numbers is called theintegralf -mean ofx1 andx2 and denoted byIf (x1, x2).Clearly, (re-
quiringIf to have the mean property or be continuous) we have for equal argumentsIf (x, x) =
x (x ∈ I). By the help of divided differencesIf can easily be defined for more than two
variables.

Here we completely characterize the sub- and superadditive integral means on suitable inter-
valsI, that is we give necessary and sufficient conditions for the inequality

If (x1 + y1, . . . , xn + yn) ≤ If (x1, . . . , xn) + If (y1, . . . , yn) (xi, yi ∈ I)

and its reverse.

RAM N. MOHAPATRA

Grüss Type Inequalities and Error of Best Approximation

ABSTRACT

In this paper we consider recent results on Grüss type inequalities and provide a connec-
tion between a Grüss type inequality and the error of best approximation. We also consider
unification of discrete and continuous Grüss type inequalities.

CONSTANTIN P. NICULESCU

Noncommutative Extensions of The Poincaré Recurrence Theorem

ABSTRACT

Recurrence was introduced by H. Poincaré in connection with his study on Celestial Mechan-
ics and refers to the property of an orbit to come arbitrarily close to positions already occupied.
More precisely,if T is a measure-preserving transformation of a probability space(Ω,Σ, µ),
then for everyA ∈ Σ with µ(A) > 0 there exists ann ∈ N? such thatµ(T−nA ∩ A) > 0.

In his famous solution to the Szemerédi theorem, H. Furstenberg [1], [2] was led to for-
mulate the following multiple recurrence theorem which extends the Poincaré result:For ev-
ery measure-preserving transformationT of a probability space(Ω,Σ, µ) , everyA ∈ Σ with
µ(A) > 0 and everyk ∈ N?,

(1) lim inf
N→∞

1

N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

The aim of our talk is to discuss the formula (1) in the context ofC∗-dynamical systems. Details
appear in [4].

J. Inequal. Pure and Appl. Math., 4(3) Art. 49, 2003 http://jipam.vu.edu.au/
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KAZIMIERZ NIKODEM, MIROSŁAW ADAMEK AND ZSOLT PÁLES

On (K,λ)-Convex Set-valued Maps

ABSTRACT

Let D be a convex set,λ : D2 → (0, 1) be a given function andK be a convex cone in a
vector spaceY . A set-valued mapF : D → n(Y ) is called(K,λ)-convexif

λ(x, y)F (x) + (1− λ(x, y))F (y) ⊂ F
(
λ(x, y)x+ (1− λ(x, y))y

)
+K

for all x, y ∈ D. The mapF is said to beK-convexif

tF (x) + (1− t)F (y) ⊂ F (tx+ (1− t)y) +K, x, y ∈ D, t ∈ [0, 1].

Conditions under which(K,λ)-convex set-valued maps areK-convex are discussed. In par-
ticular, the following generalizations of the theorems of Bernstein–Doetsch and Sierpinski are
given.

Theorem 1. LetD ⊂ Rn be an open convex set,λ : D2 → (0, 1) be a function continuous in
each variable,Y be a locally convex space andK be a closed convex cone inY . If a set-valued
mapF : D → c(Y ) is (K,λ)-convex and locallyK-upper bounded at a point ofD, then it is
K-convex.

Theorem 2. LetY , K, andD be such as in Theorem 1 andλ : D2 → (0, 1) be a continuously
differentiable function. If a set-valued mapF : D → c(Y ) is (K,λ)-convex and Lebesgue
measurable, then it is alsoK-convex.

ZSOLT PÁLES

Comparison of Generalized Quasiarithmetic Means

ABSTRACT

If f1, . . . , fk (wherek ≥ 2) are strictly increasing continuous functions defined on an open
intervalI, then thek-variable function

Mf1,...,fk
(x1, . . . , xk) :=

(
f1 + · · ·+ fk

)−1
(
f1(x1) + · · ·+ fk(xk)

)
defines ak-variable mean onI. In the casef1 = · · · = fk = f , the resulting mean is a so-
calledquasiarithmetic mean, therefore, functions of the formMf1,...,fk

can be considered as
generalizations of quasiarithmetic means.

J. Inequal. Pure and Appl. Math., 4(3) Art. 49, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


12 COMPILED BY ZSOLT PÁLES

In our main results, we offer necessary and sufficient conditions onf1, . . . , fk andg1, . . . , gk
in order that the comparison inequality

Mf1,...,fk
(x1, . . . , xk) ≤ Mg1,...,gk

(x1, . . . , xk)

be valid for allx1, . . . , xk ∈ I.
In another result, a characterization of generalized quasiarithmetic means in terms of regu-

larity properties and functional equations is also presented.

CHARLES PEARCE

On The Relative Values of Means

ABSTRACT

A consequence of the AGH inequality for a pair of distinct positive numbers is that the AG
gap exceeds the GH gap. Scott has shown that this does not extend ton > 2 numbers and gives
a counterexample forn = 4.

The question of what happens for generaln has been addressed by Lord and by Pečaríc and
the present author, who showed that a number of analytical and statistical issues are involved.
These studies left further open questions, including explicit representations for the functional
forms of certain extrema.

The present study proceeds with these and related questions.
This paper is published online athttp://jipam.vu.edu.au/v4n3/008_03.html .

LARS-ERIK PERSSON AND ALOIS KUFNER

Weighted Inequalities of Hardy Type

ABSTRACT

I briefly present some historical remarks and recent developments of some Hardy type in-
equalities and their limit (Carleman–Knopp type) inequalities. Some open questions are men-
tioned.

REFERENCES

[1] A. KUFNER AND L.E. PERSSON,Weighted Inequalities of Hardy Type, World Scientific (to ap-
pear).

MICHAEL PLUM, H. BEHNKE, U. MERTINS, AND Ch. WIENERS

Eigenvalue Enclosures Via Domain Decomposition

ABSTRACT

A computer-assisted method will be presented which provides eigenvalue enclosures for the
Laplacian with Neumann boundary conditions on a domainΩ ⊂ R2. While upper eigenvalue
bounds are easily accessible via the Rayleigh-Ritz method, lower bounds require much more
effort. On the one hand, we propose an appropriate setting of Goerisch’s method for this pur-
pose; on the other hand, we introduce a new kind of of homotopy to obtain the spectral a priori
information needed for Goerisch’s method (as for any other method providing lower eigenvalue
bounds). This homotopy is based on a decomposition ofΩ into simpler subdomains and their
“continuous” rejoining. As examples, we consider a bounded domainΩ with two “holes”, and
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an acoustic waveguide, whereΩ is an infinite strip minus some compact obstacle. Moreover,
we discuss an application to the (nonlinear) Gelfand equation.

SABUROU SAITOH, V.K. TUAN AND M. YAMAMOTO

Reverse Convolution Inequalities and Applications

ABSTRACT

Reverse convolution norm inequalities and their applications to various inverse problems are
introduced which are obtained in the references.

At first, for some general principle, we show that we can introduce various operators in
Hilbert spaces through by linear and nonlinear transforms and we can obtain various norm
inequalities, by minimum principle.

From a special case, we obtain weightedLp norm inequalities in convolutions and we can
show many concrete applications to forward problems.

On the basis of the elementary proof in the weightedLp convolution inequalities, by using
reverse Hölder inequalities, we can obtain reverse weightedLp convolution inequalities and
concrete applications to various inverse problems.

By elementary means, we can obtain reverse Hölder inequalities for weak conditions which
have very important applications and related reverse weightedLp convolution inequalities. We
show concrete applications to inverse heat source problems.

We recently found that the theory of reproducing kernels is applied basically in Statistical
Learning Theory. See, for example, F. Cucker and S. Smale, On the mathematical foundations
of learning,Bull. Amer. Math. Soc., 39 (2001), 1–49. When we have time, I would like to
present our recent convergence rate estimates and related norm inequalities whose types are
appeared in Statistical Learning Theory.

REFERENCES

[1] S. SAITOH, Various operators in Hilbert space introduced by transforms,Internat. J. Appl. Math., 1
(1999), 111–126.

[2] S. SAITOH, WeightedLp-norm inequalities in convolutions,Survey on Classical Inequalities,
Kluwer Acad. Publ., 2000, pp. 225–234.

[3] S. SAITOH, V.K. TUAN AND M. YAMAMOTO, Reverse weightedLp-norm inequalities in convo-
lutions and stability in inverse problems,J. Inequal. Pure Appl. Math., 1(1) (2000), Art. 7. [ONLINE
http://jipam.vu.edu.au/v1n1/018_99.html ]

[4] S. SAITOH, V.K. TUAN AND M. YAMAMOTO, Reverse convolution inequalities and applications
to inverse heat source problems, (in preparation).

[5] S. SAITOH, Some general approximation error and convergence rate estimates in statistical learning
theory (in preparation).

This paper is published online athttp://jipam.vu.edu.au/v4n3/138_02.html .
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ANTHONY SOFO

An Integral Approximation in Three Variables

ABSTRACT

In this presentation I will describe a method of approximating an integral in three independent
variables. The Ostrowski type inequality is established by the use of Peano kernels and improves
a result given by Pachpatte.

This paper is published online athttp://jipam.vu.edu.au/v4n3/125_02.html .

SILKE STAPELKAMP

The Brézis-Nirenberg Problem onHn and Sobolev Inequalities

ABSTRACT

We consider the equation∆Hnu + u
2n

n−2
−1 + λu = 0 in a domainD′ in hyperbolic space

Hn, n ≥ 3 with Dirichlet boundary conditions. For different values ofλ we search for positive
solutionsu ∈ H1,2

0 (D′).
Existence holds forλ∗ < λ < λ1, where we can compute the value ofλ∗ exactly ifD′ is a

geodesic ball. For this result we should derive some Sobolev type inequalities.
The existence result will be used to develop some results for more general equations of the

form ∆ρu + u
2n

n−2
−1 + λu = 0. Here∆ρ = ρ−n∇(ρn−2∇u) denotes the Laplace-Beltrami

operator corresponding to the conformal metricds = ρ(x)|dx|.
It turns out that ifρ = ρ1ρ2 you can find an inequality forρ1 andρ2 that gives you an existence

result.

JACEK TABOR

On Localized Derivatives and Differential Inclusions

ABSTRACT

It often happens that a function is not differentiable at a given point, but to some extent it
seems that the "nonexistent derivative" has some properties.

Let us look for example at the functionx(t) := |t|. Thenx is not differentiable at zero, but
there exist left and right derivatives, which equal to−1 and1, respectively. Thus in a certain
sense, which we make formal below, we may say that the derivative belongs to the set{−1, 1}.
Let us now consider another example. As we now there exist a Banach spaceX and a lipschitz
with constant1 function which is nowhere differentiable. This suggest that the "nonexistent
derivative" of this function belongs to the unit ball.

The above ideas lead us to the following definition. We assume thatI is a subinterval of the
real line and thatX is a Banach space.

Definition. Let x : I → X and letV be a closed subset ofX. We say that the derivative ofx at
t is localized inV , which we writeDx(t) b V , if

lim
h→0

d

(
x(t+ h)− x(t)

h
;V

)
= 0,

whered(a;B) denotes the distance of the pointa from the setB
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One of the main results we prove is:

Theorem. Letx : I → X and letV be a closed convex subset ofX. We assume thatDx(t) b V
for t ∈ I. Then

x(q)− x(p)

q − p
∈ V for p, q ∈ I.

As a direct corollary we obtain a local characterization of increasing functions.

Corollary. Let x : I → R. Thenx is increasing iffDx(t) b R+ for t ∈ I.

WOLFGANG WALTER

Infinite Quasimonotone Systems of ODEs With Applications to Stochastic Processes

ABSTRACT

We deal with the initial value problem for countably infinite linear systems of ordinary dif-
ferential equations of the formy′(t) = A(t)y(t) whereA(t) = (aij(t) : i, j ≥ 1) is an infinite,
essentially positive matrix, i.e.,aij(t) ≥ 0 for i 6= j. The main novelty of our approach is the
systematic use of a classical theorem on sub- and supersolutions for finite linear systems which
leads easily to the existence of a unique nonnegative minimal solution and its properties. Ap-
plication to generalized stochastic birth and death processes leads to conditions for honest and
dishonest probability distributions. The results hold forL1-coefficients. Our method extends to
nonlinear infinite systems of quasimonotone type.

ANNA WEDESTIG

Some New Hardy Type Inequalities and Their Limiting Carleman-Knopp Type Inequalities

ABSTRACT

New necessary and sufficient conditions for the weighted Hardy’s inequality is proved. The
corresponding limiting Carleman-Knopp inequality is also proved and also the corresponding
limiting result in two dimensions is pointed out.

3. PROBLEMS AND REMARKS

3.1. Problem.
Investigating the stability properties of convexity, Hyers and Ulam [1] obtained the following

result:

Theorem 1. LetD ⊂ Rn be a convex set. Then there exists a constantcn such that if a function
f : D → R is ε-convex onD, i.e., if it satisfies

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε (x, y ∈ D, t ∈ [0, 1])

(whereε is a nonnegative constant), then it is of the formf = g+h, whereg is a convex function
andh is a bounded function with‖h‖ ≤ cnε.

An analogous result was obtained for(ε, δ)-convex real functions in [2]:
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Theorem 2. LetD ⊂ R be an open interval. Assume thatf : D → R is (ε, δ)-convex onD,
i.e., if it satisfies

(1) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε+ δt(1− t)‖x− y‖ (x, y ∈ D, t ∈ [0, 1])

(whereε andδ are nonnegative constants), then it is of the formf = g + h + `, whereg is a
convex function andh is a bounded function with‖h‖ ≤ ε/2 and` is a Lipschitz function with
Lipschitz modulus not greater thanδ.

Problem. Let D ⊂ Rn be an open convex set. Do there exist constantscn anddn so that
whenever a functionf : D → R satisfies (1) then it must be of the formf = g+h+ `, whereg
is convex,h is bounded with‖h‖ ≤ cnε, and` is Lipschitz with Lipschitz modulus not greater
thandnδ.

REFERENCES

[1] D.H. HYERSAND S.M. ULAM, Approximately convex functions,Proc. Amer. Math. Soc.,3 (1952),
821–828.

[2] Zs. PÁLES, On approximately convex functions,Proc. Amer. Math. Soc., 131(2003), 243–252.

Zsolt Páles.

3.2. Problem and Remark.
László Fuchs and I, working then as now mainly in algebra and analysis, respectively, wrote

55 years ago a paper in geometry, that Fuchs considers a “folly of his youth” - I don’t - and that
was called “beautiful” by L. E. J. Brouwer (maybe because it contained no proof by contradic-
tion) and published in his journal Compositio Mathematica8 (1950), 61–67. The result was as
follows.

Inscribe a convex (not necessarily regular)n-gon into a circle and by drawing tangents at the
vertices, also a circumscribedn-gon. The sum of areas of these two polygons has an absolute
(from n independent) minimum at the pair of squares. The proof was analytic.

The problem has been raised repeatedly of finding a geometric proof. No such proof has been
found up to now and the problem seems to be rather difficult.

The above result implies that there is no minimum forn-gon pairs with fixedn ≥ 5. Paul
Erdős asked in 1983 whether the pair of regular triangles yields the minimal area-sum for in-
scribed and circumscribed triangles. The answer is yes, as proved by Jürg Rätz and by me
independently. Both of us used analytic methods.

Of course, again a search for a geometric proof was launched immediately. This proved
easier to find. With P. Schöpf (Univ. Graz, Austria) we found an essentially geometric proof in
2000 and it appeared recently in Praxis der Mathematik4 (2002), 133–135.

János Aczél.
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3.3. Problem.
Let f be an increasing continuous function mapping a unit interval[0, 1] onto itself. Let

n ∈ N.

Definition. Let V be a subset of a vector spaceX. We say thatV is (n, f)-convex if for every
α1, . . . , αn ∈ [0, 1] such thatf(α1) + · · · + f(αn) = 1 and everyv1, . . . , vn ∈ V we have
α1v1 + · · ·+ αnvn ∈ V .

Problem. Find (characterize) allf such that every(2, f)-convex set is(n, f)-convex for arbi-
traryn ∈ N.

Jacek Tabor.

3.4. Problem.
(i) The implication

W 1,p
0 (Ω) → Lq(Ω) ⇒ W 1,p

0 (Ω) → Lq̂(Ω) for q̂ < q

follows easily by Hölder’s inequality, provided

(1) measΩ <∞.

(ii) For weighted Sobolev spaces (a, b weight functions), the implication

(2) W 1,p
0 (Ω; a) → Lq(Ω; b) ⇒ W 1,p

0 (Ω; a) → Lq̂(Ω; b) for q̂ < q

follows easily by Hölder’s inequality, provided

(3) b ∈ L1(Ω).

Notice that (1) means (3) forb ≡ 1.

Problem. Is (3) not only sufficient, but also necessary for the implication (2)?

Alois Kufner.

3.5. Problem.
A classic result due to Opial [6] says that the best constantK of the inequality

(1)
∫ 1

0

|yy′| dx ≤ K

∫ 1

0

(y′)2 dx, y(0) = y(1) = 0

for all real functionsy ∈ D, where

D = {y : y is absolutely continuous andy′ ∈ L2(0, 1)}
is 1

4
and that the extremalssc are of the form

sc(x) =

{
cx if 0 ≤ x ≤1

2
,

c(1− x) if 1
2
< x ≤ 1,

wherec is a constant.
We note that the existence of an inequality of the form (1) is quite easy to prove. For, if we

apply the Cauchy-Schwarz and a form of the Wirtinger inequality [4, p. 67] we see that∫ 1

0

|yy′| dx ≤
(∫ 1

0

y2 dx

) 1
2
(∫ 1

0

(y′)2 dx

) 1
2

≤ 1

π

∫ 1

0

(y′)2 dx.
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The nontrivial part of (1) is the determination of the least value ofK and the characterization
of the extremals. The original proof of Opial [6] assumed thaty > 0. This restriction was
eliminated by Olech [5]. At least six proofs are known and may be found in [1], [4]. In order to
get a feeling for the subtleties involved in Opial’s inequality we give a proof which is close to
Olech’s.

Proof. Fory ∈ D satisfying the boundary conditions of (1) letp ∈ (0, 1) satisfy∫ p

0

|y′| dx =

∫ 1

p

|y′| dx.

Define

Y (x) =


∫ x

0
|y′| if x ∈ [0, p]∫ 1

x
|y′| if x ∈ (p, 1].

Evidently,Y (0) = Y (1) = 0, |y| ≤ Y , Y ∈ D, and

K−1 ≤
∫ 1

0
|Y ′|2 dx∫ 1

0
|Y Y ′| dx

≤
∫ 1

0
|y′|2 dx∫ 1

0
|yy′| dx

.

Thus an extremal of (1) (if any) will be found among the classD′ ⊂ D consisting of thosey
satisfyingy(0) = y(1) = 0 which are nondecreasing on(0, p], nonincreasing on(p, 1], and such
thaty(p) = 1. Then

∫ 1

0
|yy′| dx = 1, and

K−1 = inf
y∈D′

∫ 1

0

|y′|2 dx.

The extremal is evidently a linear spline with a unique knot atp. Moreover,

K−1 = inf
p∈(0,1)

(
1

p
+

1

1− p

)
= 4.

By a variation of the above proof [3] one can show that∫ 1

0

|yy′| dx ≤ 1

4

∫ 1

0

(y′)2 dx whenevery(0) + y(1) = 0

for y ∈ D. �

Now consider the inequality

(2)
∫ 1

0

|yy′| dx ≤ K

∫ 1

0

(y′)2 dx whenever
∫ 1

0

y dx = 0,

wherey ∈ D. An upper bound forK in (2) is also1
π
. If we sety = x − 1

2
a calculation shows

that a lower bound onK = 1
4
.

Conjecture. The best value ofK in (2) is also1
4

and all extremals are of the formsc(x) =

c
(
x− 1

2

)
for any constantc.

Remark. While (2) is simple in form it is much harder to handle than (1). As in the previous
case the main difficulty is caused by the absolute value signs on the left side, but the tech-
nique we used to prove (1) no longer seems applicable since it is hard to construct a piecewise
monotone functions with the properties ofY while preserving the condition

∫ 1

0
s dx = 0.

However, one can verify the conjecture if certain assumptions are made about the extremals.
For instance we can suppose:

(i) The extremals is a linear spline with one knot.
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(ii) The extremal up to multiplication by constants is unique.

If (i) is granted we can show thatK = 1
4

by an extremely laborious calculation. Since the
argument based on (ii) is fairly short we present it here.

Lemma. Assumption(ii) ⇒ K = 1
4

ands(t) = t− 1
2

is an extremal.

Proof. Suppose there is an extremals of (2). Because
∫ 1

0
s = 0, s has at least one zeroc ∈ (0, 1).

Case (1) If c = 1
2
, we know from a standard “half interval” Opial inequality [4, Theorem2′,

p. 114] that ∫ 1
2

0

|ss′| dx ≤ 1

2
· 1

2

∫ 1
2

0

s′2 dx(3) ∫ 1

1
2

|ss′| dx ≤ 1

2
· 1

2

∫ 1

1
2

s′2 dx.(4)

From which it follows thats satisfies (2) withK ≤ 1
4
.

Case (2) If c 6= 1
2
. Consider̃s(t) = s(1 − t). s̃ is also an extremal of (2). By hypothesis

s̃(t) = ks(t). Taking t = 1
2

shows thatk = 1. Hence ift = 1
2
± u, 1 − t = 1

2
∓ u ands is

symmetric with respect tot = 1
2
. With no loss of generality we can assume thatc ∈

(
0, 1

2

)
;

there is then another zeroc′ ∈
(

1
2
, 1
)
. Again using [4, Theorem2′] yields that∫ c

0

|ss′| dx ≤ c

2

∫ 1
2

0

s′2 dx∫ 1
2

c

|ss′| dx ≤
1
2
− c

2

∫ 1
2

0

s′2 dx

which implies (3). The argument for (4) is similar usingc′.
Thus in either Case (1) or (2)K ≤ 1

4
. Sinces(t) = t− 1

2
gives equality in (2) and

∫ 1

0
s = 0,

K = 1
4
. �

However, neither (i) nor (ii) is evident (although a calculus of variations argument will show
thats is at least piecewise linear).

Another route to the solution of the problem may be to use a technique devised by Boyd
[2] to find best constants in general Opial-like inequalities. Boyd considers the operatorK :
L2(0, 1) → L2(0, 1) defined by

Kf(x) =

∫ 1

0

k(x, t)f(t)σ(t) dt,

wherek(x, t) is nonnegative and measurable on(0, 1) × (0, 1), andσ is a positive a.e. mea-
surable function. It is then shown [2, Theorem 1] that the best constantC of the inequality

(5)
∫ 1

0

|K(f(x)| |f(x)|σ(x) dx ≤ C

∫ 1

0

|f(x)|2σ(x) dx

is an eigenvalue of(K + K∗)/2. Boyd uses this method to find the best constants of a family
of higher order generalizations of (1). However the calculations needed to put the inequality in
the format (5) and to solve the eigenvalue problem are challenging.
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3.6. Remark.
Let I ⊂ R be an interval andf, g : I → R be given functions,f ≤ g. It is well known that

if f is concave andg is convex (or conversely), then there exists an affine functionh : I → R
such thatf ≤ h ≤ g on I. Of course these conditions are sufficient but not necessary for the
existence of such a function. A full characterization of functions which can be separated by an
affine one gives the following theorem [5] (cf. also [2], [4] for further generalizations).

Theorem. Let f, g : I → R. There exists an affine functionh : I → R suchf ≤ h ≤ g if and
only if

f(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y)

and
g(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y)

for all x, y ∈ I andt ∈ [0, 1].

The first of the above inequalities is equivalent to the separability off andg by a convex
function (cf. [1]). From this result one can obtain (takingg = f + ε) the classical (one
dimensional) Hyers-Ulam stability theorem [3] stating that iff : I → R is ε-convex, i.e., it
satisfies the condition

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε, x, y ∈ I, t ∈ [0, 1],

then there exists a convex functionh : I → R such thatf ≤ h ≤ f + ε.
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Kazimierz Nikodem.

3.7. Problems.
Concerning Hardy type inequalities, we have posed the following problems.

Problem 1. Let p > 1, 0 < λ < 1, 0 < b ≤ ∞ andg ∈ C∞
0 [0, b]. Find necessary and sufficient

conditions on the weightsu = u(x), 0 ≤ x ≤ b, andv = v(x, y), 0 ≤ x, y ≤ b, so that

(1)

(∫ b

0

|g(x)|p u(x)dx
) 1

p

≤ K

(∫ b

0

∫ b

0

|g(x)− g(y)|p

|x− y|1+λp
v(x, y)dxdy

) 1
p

holds for some finiteK > 0 andλ 6= 1
p
.

Remark 1. The (lower fractional order Hardy) inequality (1) holds, e.g., ifu(x) = x−pλ and
v(x, y) ≡ 1 except forλ = 1

p
, where a counterexample can be found.

Problem 2. Let p > 1, 0 < λ < 1, 0 < b ≤ ∞ andg ∈ AC[0, b]. Find necessary and sufficient
conditions on the weightsv = v(x), 0 ≤ x ≤ b, andu = u(x, y), 0 ≤ x, y ≤ b, so that

(2)

(∫ b

0

∫ b

0

|g(x)− g(y)|p

|x− y|1+λp
u(x, y)dxdy

) 1
p

≤ K

(∫ b

0

|g′(x)|p v(x)dx
) 1

p

holds for some finiteK > 0.

Remark 2. The (upper fractional order Hardy) inequality (2) holds e.g. ifu(x, y) = 1, v(x) =

x(1−λ)p andK = 2
1
pλ−1(p(1− λ))−

1
p .

Problem 3 (A). Let g ∈ L2(0,∞). Then

‖g‖L2 = ‖g −Hg‖L2 = ‖g − Sg‖L2 ,

where

Hg(x) :=
1

x

∫ x

0

g(y)dy, Sg(x) =

∫ ∞

x

g(y)

y
dy.

Question 1. Describe all the (averaging) operatorsA such that

‖g‖L2 = ‖g − Ag‖L2 .

Problem 3 (B). Let g ∈ Lp([0,∞], x−αp−1) =: Lp(x−αp−1) with p ≥ 1 andα > −1, α 6= 0.
Then

(3) ‖g‖Lp(x−αp−1) ≈ ‖g −Hg‖Lp(x−αp−1)

where

Hg(x) :=
1

x

∫ x

0

g(y)dy.

Question 2.Describe all the (averaging) operatorsA such that (3) holds withH replaced byA.

Lars-Erik Persson.
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3.8. Problem.
If numbersy1, . . . , yn (and y0 = 0) are given positive numbers so that∆yk ≥ 0 (k =

0, . . . , (n − 1)), ∆yk = yk+1 − yk and∆2yk ≥ 0 then there is a continuous convex function
∆2f ≥ 0 such thatf(i) = yi, (i = 0, . . . , k). The piecewise linear function that interpolates the
points(i, yi) will do.

Now if I add the conditions that∆3yk ≥ 0 and ask for a continuous functionf which inter-
polates the points(i, yi) and∆3f ≥ 0, then in general this cannot be done. So the problem is to
find a finite set of conditions on the{yi} ensure the existence of a functionf with the required
properties.

A.M. Fink.

3.9. Problems.
Letm ≥ 2 an integer and

µm := min
|z|=1,z∈C

∣∣∣∣∣
m∑
k=1

kzm−k

∣∣∣∣∣ .
Problem 1. Findµm (as a function ofm).

Problem 2. Prove or disprove that for oddm

(3.1) µm ≥
m

2
sec

π

2m+ 2
.

Introducingz = eit we have

(3.2)

∣∣∣∣∣
m∑
k=1

kzm−k

∣∣∣∣∣
2

=

[
m

2
+

1

2

(
sin mt

2

sin t
2

)2
]2

+

[
m sin t− sinmt

4 sin2 t
2

]2

which shows thatµm ≥ m
2

, moreoverµm = m
2

if m is even as in this case the right hand side of

(3.2) equals
(
m
2

)2
for t = π.

Problems 1 and 2 are related to the location of zeros of self-inversive polynomials through
the following results.

Theorem 1. (P. Lakatos[1], [2]) All zeros of reciprocal polynomialPm(z) =
∑m

k=1Akz
k with

real coefficientAk ∈ R (andAm 6= 0, Ak = Am−k for all k = 1, . . . , n) are on the unit circle,
provided that

(3.3) |Am| ≥
m−1∑
k=1

|Ak − Am| .

Moreover, the zeroseiuj of Pm can be arranged such that

(3.4)
∣∣eiuj − εj

∣∣ ≤ π

m+ 1
(j = 1, . . . ,m)

whereεj = ei
2πj

m+1 (j = 1, . . . ,m) are the(m+ 1)st roots of unity, except the root1.

Theorem 2. (A. Schinzel[4].) All zeros of the self-inversive polynomialPm(z) =
∑m

k=1Akz
k

(whereAk ∈ C, Am 6= 0, εĀk = Am−k for all k = 0, . . . ,m with fixedε ∈ C, |ε| = 1) are
on the unit circle, provided that

(3.5) |Am| ≥ inf
c∈C

m∑
k=0

|cAk − Am| .
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The first theorem has been generalized by proving that its statements remain valid ifm is odd
and (3.3) is replaced by

|Am| ≥ cos2 π

2(m+ 1)

m∑
k=1

|Ak − Am|

and similarly, the second theorem remains valid ifm is odd and (3.5) is replaced by

|Am| ≥
m

2µm

m∑
k=0

|cAk − Am| .

(see Lakatos-Losonczi [3]).
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3.10. Remark and Problem.
LetM andN be strict means in the usual sense, i.e.,

min(x, y) <

{
M(x, y)

N(x, y)

}
< max(x, y)

if x 6= y andM(x, x) = N(x, x) = x. Then the two sequences

x1 = x, y1 = y, xn+1 = M(xn, yn), yn+1 = N(xn, yn), (n = 1, 2, . . .)

converge to the same limit

lim
n→∞

xn = lim
n→∞

yn := GM,N(x, y).

Substitutingxn, yn into

(1) f(M(x, y)) + f(N(x, y)) ≤ f(x) + f(y),

iterating the inequality, and tending to∞ with n, we get, iff is continuous,

(2) 2f(GM,N(x, y)) ≤ f(x) + f(y).

Problem. Under what conditions onM andN does (2) follow from (1) without assuming
continuity off?

In what follows, we solve in two particular cases the correspondingequations

(1=) f(M(x, y)) + f(N(x, y)) = f(x) + f(y)

(2=) 2f(GM,N(x, y)) = f(x) + f(y).
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1. M(x, y) =
x+ y

2
, N(x, y) =

2xy

x+ y
. HereGM,N(x, y) =

√
xy. Hence the continuous

solution of (2=) and thus also of (1=) is given byf(x) = a log x+ b. Without assuming
any regularity, Bruce Ebanks recently proved (to appear in Publ. Math.) that the two
equations have the same general solutionf(x) = `(x) + b, where` is an arbitrary
solution of`(xy) = `(x) + `(y).

2. M(x, y) =
x+ y

2
, N(x, y) =

√
xy. In this caseGM,N is Gauss’s medium arithmetico-

geometricum. It follows from a result of Gy. Maksa (Publ. Math. Debrecen, 24 (1977),
25–29), again without any regularity assumption, that every solution of (1=), that is, of

f

(
x+ y

2

)
+ f(

√
xy) = f(x) + f(y)

is constant.

Remark. The above two results would not be surprising iff were supposed (continuous and)
strictly monotonic. Then (2=) would become

GM,N(x, y) = f−1

(
f(x) + f(y)

2

)
,

makingGM,N a quasi-arithmetic mean. Now,GM,N(x, y) =
√
xy is a quasi-arithmetic mean

with f(x) = a log x + b (a 6= 0) while the medium arithmetico-geometricum is not quasi-
arithmetic. What is surprising is that the statements1 and2 hold without any regularity as-
sumption.

János Aczél and Zsolt Páles.

3.11. Remark.
Lars-Erik Persson has asked for an elementary proof of the identities

‖f − Aif‖L2(0,∞) = ‖f‖L2(0,∞)

(
f ∈ L2(0,∞); i = 1, 2

)
,

with A1 andA2 denoting the averaging operators

(A1f)(x) :=
1

x

∫ x

0

f(t)dt, (A2f)(x) :=

∫ ∞

x

1

t
f(t)dt.

Indeed, forf ∈ L2(0,∞),

‖f‖2
L2(0,∞) − ‖f − A1f‖2

L2(0,∞) = 2 Re〈A1f, f〉L2(0,∞) − ‖A1f‖2
L2(0,∞)

=

∫ ∞

0

1

x
· 2 Re

[∫ x

0

f(t)dt · f(x)

]
dx− ‖A1f‖2

L2(0,∞)

=

∫ ∞

0

1

x

d

dx

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2 dx− ∫ ∞

0

1

x2

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2 dx
=

[
1

x

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2
]∞

0

by partial integration. So it suffices to show that

lim
x→0

1

x

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2 = lim
x→∞

1

x

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2 = 0.
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The first limit being0 is immediate by the Cauchy-Schwarz inequality:

1

x

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2 ≤ ∫ x

0

|f(t)|2 dt −→ 0 asx→ 0.

For the second, we observe that, for any0 < y < x <∞,

0 ≤ 1

x

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣2
≤ 1

x

[∫ y

0

|f(t)| dt+

∫ x

y

|f(t)| dt
]2

≤ 2

x

[∫ y

0

|f(t)| dt
]2

+
2

x

[∫ x

y

|f(t)| dt
]2

≤ 2

x

[∫ y

0

|f(t)| dt
]2

+
2

x
(x− y)

∫ x

y

|f(t)|2 dt

≤ 2

x

[∫ y

0

|f(t)| dt
]2

+ 2

∫ ∞

y

|f(t)|2 dt.

For givenε > 0, choose nowy such that second term is less thanε/2, and thenx0 > y such
that the first term is less thanε/2 (for x ≥ x0).

For the averaging operatorA2, we obtain similarly

‖f‖2
L2(0,∞) − ‖f − A2f‖2

L2(0,∞) =

∫ ∞

0

2 Re

[∫ ∞

x

1

t
f(t)dt · f(x)

]
dx− ‖A2f‖2

L2(0,∞)

= −
∫ ∞

0

x
d

dx

∣∣∣∣∫ ∞

x

1

t
f(t)dt

∣∣∣∣2 dx− ∫ ∞

0

∣∣∣∣∫ ∞

x

1

t
f(t)dt

∣∣∣∣2 dx
= −

[
x

∣∣∣∣∫ ∞

x

1

t
f(t)dt

∣∣∣∣2
]∞

0

,

and

x

∣∣∣∣∫ ∞

x

1

t
f(t)dt

∣∣∣∣2 ≤ x

∫ ∞

x

1

t2
dt

∫ ∞

x

|f(t)|2 dt

=

∫ ∞

x

|f(t)|2 dt −→ 0 asx→∞.

To prove that the above boundary term vanishes also at0, let 0 < x < y <∞. Then,

x

∣∣∣∣∫ ∞

x

1

t
f(t)dt

∣∣∣∣2 ≤ 2x

[∫ y

x

1

t
|f(t)| dt

]2

+ 2x

[∫ ∞

y

1

t
|f(t)| dt

]2

≤ 2x

∫ y

x

1

t2
dt

∫ y

x

|f(t)|2 dt+ 2x

[∫ ∞

y

1

t
|f(t)| dt

]2

≤ 2

∫ y

0

|f(t)|2 dt+ 2x

[∫ ∞

y

1

t
|f(t)| dt

]2

which is less than a givenε > 0 (for y sufficiently small andx sufficiently small depending on
y), similarly to the arguments forA1.

Michael Plum.
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3.12. Remark.
We describe solutions to the functional inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε (‖x‖+ ‖y‖)
for f : Rn → X.

Jacek Tabor.

3.13. Problem.
Let−∞ < α, β <∞ and consider forf ≥ 0 the (Gini) means

Gα,β[f, x] =



(∫ x
0
fα(t)dt∫ x

0
fβ(t)dt

) 1
α−β

, α 6= β

exp

(∫ x
0
fα(t) log f(t)dt∫ x

0
fα(t)dt

)
, α = β.

Let also{p, q} ∈ R2
+ (or to some suitable subset ofR2

+),

a) Find necessary and sufficient conditions on the weightsu(x) andv(x) so that, for0 <
b ≤ ∞,

(1)

(∫ b

0

(Gα,β[f, x])
q u(x)dx

) 1
q

≤ C

(∫ b

0

fp(x)v(x)dx

) 1
p

for some finiteC > 0. Find also “good” estimates of the least constantC in (1) [i.e.
good control of the corresponding operator norm].

b) The same question whenGα,β[f, x] is replaced by other interesting means, e.g., those
presented on this conference.

Remark 1. For the caseα = 1, β = 0, p > 1, q > 0 (1) is just a modern form of Hardy’s
inequality so we have a complete solution of our problem. Also, according to results e.g. pre-
sented in this conference we have the similar precise information for the geometric mean case
α = β = 0, p, q > 0.Moreover, for the power mean caseα > 0, β = 0 we also get satisfactory
results by just making an obvious substitution in the arithmetic mean (=the Hardy) case.

Remark 2. The scale of meansGα,β has the interesting property that it is increasing in both
α andβ. This means that we can get sufficient conditions when (1) holds by just using the
information pointed out in Remark 1.

Alois Kufner, Zsolt Páles, and Lars-Erik Persson.

3.14. Remark.
Saborou Saitoh has asked for a simple proof of the inequality

inf
‖g‖≤R

∫ ∞

−∞
|uf (x, t)− ug(x, t)|2 dx ≤ (‖f‖ −R)2

for all f ∈ L2(R), ‖f‖ ≥ R, andt ≥ 0, where

uf (x, t) :=
1√
4πt

∫ ∞

−∞
f(y) exp

(
−|x− y|2

4t

)
dy.
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Indeed,uf solves the Cauchy problem for the heat equation,

∂uf
∂t

= ∆uf (x ∈ R, t > 0), uf (·, 0) = f a.e. onR.

Then, forf andg in L2(R) and allt > 0,

1

2

d

dt
‖uf (·, t)− ug(·, t)‖2 =

〈
∂uf
∂t

(·, t)− ∂ug
∂t

(·, t), uf (·, t)− ug(·, t)
〉
L2(R)

= 〈∆uf (·, t)−∆ug(·, t), uf (·, t)− ug(·, t)〉L2(R)

= −‖∇uf (·, t)−∇ug(·, t)‖2 ≤ 0

by partial integration sinceu(·, t) and∇u(·, t) decay exponentially atx = ±∞. Thus,

‖uf (·, t)− ug(·, t)‖2 ≤ ‖uf (·, 0)− ug(·, 0)‖2 = ‖f − g‖2.

For‖f‖ ≥ R andg := R
‖f‖f , we therefore have

‖uf (·, t)− ug(·, t)‖2 ≤
(

1− R

‖f‖

)2

‖f‖2 = (‖f‖ −R)2

and‖g‖ = R, which establishes the result.

Michael Plum.

4. ADDENDA

4.1. Addenda zuGewöhnliche Differentialgleichungen mit quasimonoton wachsenden rech-
ten Seiten in geordneten Banachräumen. von Alice Chaljub-Simon, Roland Lemmert, Sabina
Schmidt und Peter Volkmann, General Inequalities 6, International Series of Numerical Mathe-
matics 103, Birkhäuser, Basel, 1992, pp. 307-320.

1. In Lemma 2 auf S. 311 soll II) wie folgt lauten:

II) Ausx, y ∈ E, x ≤ y, xα = yα folgt fα(x) ≤ fα(y).

(In dieser Form wird II) später benutzt; der Beweis ist ähnlich dem Beweise der ursprünglichen
Form von II).)

2. Auf S. 317, 14.-16. Z. v.o. sind die beiden Sätze “In Wirklichkeit ... verfeinert werden.”
zu ersetzen durch: Für normale KegelK brauchte nurf : [0, T ]×U → E mit einer Umgebung
U vona vorausgesetzt zu werden, und dann konnte die Existenz einer lokalen Lösung von (12)
gezeigt werden. (Vgl. die Folgerung auf S. 388 von [6]; die Normalität vonK ist dort den
Voraussetzungen hinzuzufügen!) Entsprechende lokale Versionen können auch für den hier
gegebenen Satz 2 bewiesen werden.

3. Auf S. 317, 8.-1. Z. v.u. (durch den Druck entstellt) soll es heißen:

C+(M) = {x | x ∈ C(M), x = (xα)α∈M mit xα ≥ 0 (α ∈M)}
der natürliche Ordnungskegel inC(M).

SATZ 3. Ist M ein metrischer Raum, dessen Metrik nicht diskret ist (d.h. inM gibt es
mindestens einen Häufungspunkt), und wirdE = C(M) geordnet durchK = C+(M), so gibt
es eine stetige, beschränkte, monoton wachsende Funktionf : E → E und eina ∈ E derart,
daß das Anfangswertproblem

(37) u(0) = a, u′(t) = f(u(t)) (0 ≤ t ≤ T )

für jedesT > 0 unlösbar ist.

Peter Volkmannn.
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4.2. Addendum to Weak persistence in Lotka-Volterra populations. by Raymond M. Redhef-
fer and Peter Volkmann, General Inequalities 7, International Series of Numerical Mathematics
123, Birkhäuser, Basel, 1997, pp. 369-373.

The remark on page 371 pertaining toy1 − y2 overlooks the fact thatf(t) andg(t) depend
on y. The statement of Example 1 remains unchanged but the assertion thatlimm(t) = 1 in
Example 2 should be replaced by1/5 ≤ lim infm(t) ≤ lim supm(t) ≤ 3. This oversight was
brought to our attention by Dr. Roland Uhl.

Peter Volkmannn.
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