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Abstract

Cvetković, Rajković and Ivković proved that the Hankel transformation of the se-

quence of sums of adjacent Catalan numbers is a sequence of every other Fibonacci

number. In this paper, an elementary proof is given and a generalization to sequences

of generalized Catalan numbers.

1 Introduction

Given a sequence of numbers S = {s0, s1, s2, . . .}, the Hankel matrix of order n generated by
the sequence S is the n×n-matrix whose (i, j)-entry is given by si+j for 0 ≤ i, j ≤ n−1. The
Hankel transform of the sequence S is the sequence of determinants of the Hankel matrices
generated by S.

Suppose that

an =
1

n + 1

(

2n

n

)

+
1

n + 2

(

2n + 2

n + 1

)

,

so that an is the sum of the nth and n + 1st Catalan numbers. Then the Hankel transform
of {a0, a1, a2, . . .} begins 2, 5, 13, 34, . . .. Layman first conjectured in the On-Line Encyclo-
pedia of Integer Sequences ([4], see sequence A001906) that this sequence consists of every
other Fibonacci number, and subsequently Cvetković, Rajković and Ivković [2] proved this
conjecture. The current paper arose out of an attempt to understand and generalize this
result.
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The Catalan numbers cn = 1
n+1

(

2n
n

)

uniquely satisfy the nonlinear recurrence relation

cn+1 =
n

∑

r=0

cn−rcr, c0 = 1.

This sequence has been generalized to the recurrence relation

cn+1,k =

⌊ n

k−1
⌋

∑

r=0

(cn−r(k−1),k) ∗ (cr(k−1),k), c0,k = 1.

When k = 2, cn,k is simply the nth Catalan number. It can be shown ([3]) that

c(k−1)n+l−1,k =
l

kn + l

(

kn + l

n

)

, 1 ≤ l ≤ k − 1.

Some notation is necessary to state our more general result. Let a′
n,k = cn,k + cn+1,k and

a′′
n,k = cn,k + cn+k−1,k. Note that a′

n,2 and a′′
n,2 both coincide with the sequence an described

above. Let A′
n,k and A′′

n,k be the n×n-matrices whose (i, j)-entries are given respectively by
a′

(k−1)i+j,k and a′′
(k−1)i+j,k for 0 ≤ i, j ≤ n − 1. Let F ′

n,k be the sequence determined by the
recurrence relation

F ′
n+1,k = F ′

n−(k−2),k + F ′
n−(k−1),k

with initial conditions
F ′

1,k = F ′
2,k = · · · = F ′

k,k = 1,

and let F ′′
n,k be the sequence determined by

F ′′
n+1,k = F ′′

n,k + F ′′
n−(k−1),k

with the same initial conditions. Note that F ′
n,2 = F ′′

n,2 = Fn (the nth Fibonacci number).
We can now state our main theorem:

Theorem 1.1.

det(A′
n,k) = F ′

kn+1,k, and det(A′′
n,k) = F ′′

kn+1,k.

Note that when k = 2, our theorem reduces to the result of Cvetković, Rajković and
Ivković [2].

In Section 2, we find LU decompositions of the inverses of a sequence of matrices Cn,k

obtained from the generalized Catalan numbers. It turns out that these take surprisingly
simple forms, and can be used to prove our main result, as seen in Section 3.

2 Generalized Catalan numbers

Definition 2.1. Let Cn,k be the n × n matrix whose (i, j) entry is given by c(k−1)i+j,k for

0 ≤ i, j ≤ n− 1. Let Ln,k be the n×n matrix whose (i, j) entry is given by (−1)i−j
(

i+(k−1)j
i−j

)

for 0 ≤ i, j ≤ n−1. Let Un,k be the n×n matrix whose (i, j) entry is given by (−1)j−i
(j+⌊ i

k−1
⌋

j−i

)

for 0 ≤ i, j ≤ n − 1.
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It is easy to see that Ln,k is lower triangular with 1’s on the diagonal and Un,k is upper
triangular with 1’s on the diagonal. Our goal in this section is to prove that the product
Ln,kCn,kUn,k is equal to the identity matrix.

Our first step is to show that the product Ln,kCn,k is upper triangular with 1’s on the
diagonal. We will then show that Cn,kUn,k is lower triangular with 1’s on the diagonal. From
these two facts, the result will follow formally.

The proof makes use of certain generating functions.

Definition 2.2. For 1 ≤ l ≤ k − 1, let gl(z) =
∑∞

n=0 c(k−1)n+l−1z
n, and let g(z) = g1(z).

It follows from the recurrence relation defining cn,k that gl(z)g(z) = gl+1(z) for 1 ≤ l ≤

k − 2, and also that gk−1(z)g(z) = g(z)−1
z

. Thus,

g(z)l = gl(z), 1 ≤ l ≤ k − 1 (1)

and

g(z)k =
g(z) − 1

z
. (2)

Bajunaid, Cohen, Colonna, and Signman [1] prove that the function

f(z) := (1 − z)g(z(1 − z)k−1) (3)

converges to the constant function at 1 for z close to 0. This is then used to show that

m
∑

n=⌈m/k⌉

(−1)nc(k−1)n,k

(

kn − n

kn − m

)

= (−1)m.

(Note that the cited reference refers to c(k−1)n,k as an,k.) We use exactly the same technique
to prove the following slightly stronger result.

Lemma 2.1. Suppose i and j are nonnegative integers. Then

i
∑

m=0

(−1)i−m

(

i + (k − 1)m

i − m

)

c(k−1)m+j,k =

{

0, j < i;

1, j = i.

Proof. It follows from Equation 1 that,

fl(z) := (1 − z)lgl(z(1 − z)k−1) (4)

is equal to f(z)l, and therefore (by 3) converges to 1 for z close to 0. From this, we find that
for any s ≥ 0, the series

∞
∑

m=0

c(k−1)m+(l−1),k[z(1 − z)k−1]m(1 − z)s = (1 − z)s−lfl(z)

converges to (1 − z)s−l for z close to 0. Expanding (1 − z)m(k−1)+s, we can rewrite this sum
as

∞
∑

m=0

c(k−1)m+(l−1),k

(

mk−m+s
∑

t=0

(−1)t

(

(k − 1)m + s

t

)

zt+m

)
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=
∞

∑

n=0





n
∑

m=⌈n−s

k
⌉

(−1)n−m

(

(k − 1)m + s

n − m

)

c(k−1)m+(l−1),k



 zn.

Therefore, if n > s − l

n
∑

m=⌈n−s

k
⌉

(−1)n−m

(

(k − 1)m + s

n − m

)

c(k−1)m+(l−1),k =

{

0, s > l − 1;

1, s = l − 1.

Now, by the division algorithm, we may write j as (k−1)r+(l−1), for some nonnegative
integer r and some l with 1 ≤ l ≤ k − 1. Letting s = i − (k − 1)r and n = i + r, gives

i+r
∑

m=r

(−1)i−(m−r)

(

(k − 1)(m − r) + i

n − m

)

c(k−1)(m−r)+j,k =

{

0, j < i;

1, j = i.

The result now follows by an index shift.

Corollary 2.1. The product Ln,kCn,k is upper triangular with 1’s on the diagonal.

Proof. The (i, j) entry of Ln,kCn,k is

n−1
∑

m=0

(−1)i−m

(

i + (k − 1)m

i − m

)

c(k−1)m+j,k.

We now turn to consider the product Cn,kUn,k.

Lemma 2.2.
j

∑

m=0

c(k−1)i+m,k(−1)j−m

(

j + ⌊ m
k−1

⌋

j − m

)

=

{

0, i < j;

1, i = j.

Proof. By Equation 2

k−1
∑

l=0

(

zg(zk−1(1 − z))
)l

=
(zg(zk−1(1 − z)))k − 1

zg(zk−1(1 − z)) − 1
=

zk g(zk−1(1−z))−1
zk−1(1−z)

− 1

zg(zk−1(1 − z)) − 1
=

1

1 − z

for z close to 0. It follows by Equation 1 that

k−1
∑

l=0

zlgl(z
k−1(1 − z)) =

1

1 − z
,

so subtracting 1, dividing by z, and multiplying by (1 − z)s gives

k−1
∑

l=1

(1 − z)szl−1gl(z
k−1(1 − z)) = (1 − z)s−1.
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Now,

(1 − z)szl−1gl(z
k−1(1 − z)) =

∞
∑

p=0

c(k−1)p+l−1,k(1 − z)p+szp(k−1)+l−1

=
∞

∑

p=0

c(k−1)p+l−1,k

p+s
∑

t=0

(−1)t

(

p + s

t

)

zp(k−1)+l−1+t

=
∞

∑

n=0

(

∑

p

(−1)n−p(k−1)−(l−1)

(

p + s

n − p(k − 1) − (l − 1)

)

c(k−1)p+l−1,k

)

zn.

Therefore,

k−1
∑

l=1

(1 − z)szl−1gl(z
k−1(1 − z)) =

∞
∑

n=0

(

∑

m

(−1)n−m

(

s + ⌊ m
k−1

⌋

n − m

)

cm,k

)

zn.

Here, we have used the division algorithm to substitute m = p(k − 1) + l− 1, where 1 ≤ l ≤
k − 1. So,

∑

m

(−1)n−m

(

s + ⌊ m
k−1

⌋

n − m

)

cm,k =

{

0, n ≥ s > 0;

1, s = 0.

Letting s = j − i, n = j + (k − 1)i and shifting index yields the result.

Corollary 2.2. The product Cn,kUn,k is lower triangular with 1’s on the diagonal.

Theorem 2.1. The product Ln,kCn,kUn,k is equal to the identity matrix.

Proof. By Corollaries 2.1 and 2.2, the products L−1
n,k(Ln,kCn,k) and (Cn,kUn,k)U

−1
n,k are both

LU decompositions of Cn,k. By uniqueness of LU decompositions, L−1
n,k = Cn,kUn,k.

3 Proof of the Main Theorem

In this section, we prove our main result, which will follow from two additional lemmas.

Lemma 3.1. The determinant of the (n − 1) × (n− 1) minor of Cn,k obtained by removing

the final column and the jth row is
(

n−1+(k−1)j
n−1−j

)

. The determinant of the (n − 1) × (n − 1)

minor of Cn,k obtained by removing the final row and the ith column is
(n−1+⌊ i

k−1
⌋

n−1−i

)

.

Proof. Since the determinant of Ln,k and Un,k are both 1, the determinant of Cn,k is 1, so
C−1

n,k is equal to the adjoint of Cn,k. Since C−1
n,k = Un,kLn,k, the final row of the adjoing of

Cn,k is equal to the final row of Ln,k and the final column of the adjoing of Cn,k is equal to
the final column of Un,k. Now the (i, j) entry in the adjoint of Cn,k is the product of (−1)i+j

and the determinant of the (n − 1) × (n − 1) minor of Cn,k obtained by removing the ith
column and the jth row. The claim follows.
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Lemma 3.2. The determinants of A′
n,k and A′′

n,k are respectively given by

n
∑

i=0

(

n + ⌊ i
k−1

⌋

n − i

)

and
n

∑

j=0

(

n + (k − 1)j

n − j

)

.

Proof. We consider only the determinant of A′
n,k, the other argument being similar. For

each j between 1 and n + 1, let cj be the column vector consisting of the first n terms in
the jth row of Cn+1,k. Then the jth column vector of A′

n,k is cj + cj+1. Therefore, the
determinant of A′

n,k could be written as the sum of the determinants of 2n matrices, where
the jth column vector of each matrix is either cj or cj+1. Most of these determinants are
zero, since the determinant of any matrix with two identical column vectors is zero. The
nonzero determinants belong to those matrices whose column vectors are n distinct vectors
from the set {c1, c2, . . . , cn+1}, in order. But these are just the determinants of the minors
of Cn+1,k obtained by removing the final row and one of the columns. The result follows by
Lemma 3.1.

We now prove Theorem 1.1.

Proof. For n ≥ 0 and 1 ≤ l ≤ k, let G′
kn+l,k =

∑n
i=0

(n+⌊ i+l−1

k−1
⌋

n−i

)

. We now show that
G′

kn+l,k = F ′
kn+l for all n ≥ 0, 1 ≤ l ≤ k. This follows from the following three observations.

1. For 1 ≤ l ≤ k, G′
l,k = 1.

2. For 1 ≤ l ≤ k − 1,

G′
kn+l,k + G′

kn+l+1,k =
n

∑

i=0

(

n + ⌊ i+l−1
k−1

⌋

n − i

)

+
n

∑

i=0

(

n + ⌊ i+l
k−1

⌋

n − i

)

=
n

∑

i=0

(

n + ⌊ i+l−1
k−1

⌋

n − i

)

+
n+1
∑

i=1

(

n + ⌊ i−1+l
k−1

⌋

n − (i − 1)

)

=
n+1
∑

i=0

(

n + 1 + ⌊ i+l−1
k−1

⌋

n − i

)

= G′
k(n+1)+l,k.

3.

G′
kn+k,k + G′

k(n+1)+1,k =
n

∑

i=0

(

n + ⌊ i+k−1
k−1

⌋

n − i

)

+
n+1
∑

i=0

(

n + 1 + ⌊ i
k−1

⌋

n + 1 − i

)

=
n+1
∑

i=0

((

n + 1 + ⌊ i
k−1

⌋

n − i

)

+

(

n + 1 + ⌊ i
k−1

⌋

n + 1 − i

))

=
n+1
∑

i=0

(

n + 2 + ⌊ i
k−1

⌋

n + 1 − i

)

=
n+1
∑

i=0

(

n + 1 + ⌊ i+k−1
k−1

⌋

n + 1 − i

)

= G′
k(n+1)+k,k.
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Now for n ≥ 0 and 1 ≤ l ≤ k, let G′′
kn+l,k =

∑n
j=0

(

n+(k−1)j+l−1
n−j

)

. We now show that
G′′

kn+l,k = F ′′
kn+l for all n ≥ 0, 1 ≤ l ≤ k. This follows from the following three observations.

1. For 1 ≤ l ≤ k, G′′
l,k = 1.

2. For 1 ≤ l ≤ k − 1,

G′′
kn+l,k + G′′

k(n−1)+(l+1),k =
n

∑

j=0

((

n + (k − 1)j + l − 1

n − j

)

+

(

n − 1 + (k − 1)j + l

n − 1 − j

))

=
n

∑

j=0

(

n + (k − 1)j + l

n − j

)

= G′′
kn+l+1,k.

3.

G′′
kn+k,k + G′′

kn+1,k =
n

∑

j=0

((

n + (k − 1)j + k − 1

n − j

)

+

(

n + (k − 1)j

n − j

))

=
n+1
∑

j=1

(

(

n + (k − 1)j

n − (j − 1)

)

)+
n

∑

j=0

(

n + (k − 1)j

n − j

)

=
n+1
∑

j=0

(

(

n + 1 + (k − 1)j

n + 1 − j

)

= G′′
k(n+1)+1,k.

The statement of the theorem now follows from Lemma 3.2.
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