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Abstract

We investigate some algorithms that produce Bernoulli, Euler and Genocchi poly-

nomials. We also give closed formulas for Bernoulli, Euler and Genocchi polynomials in

terms of weighted Stirling numbers of the second kind, which are extensions of known

formulas for Bernoulli, Euler and Genocchi numbers involving Stirling numbers of the

second kind.

1 Introduction and Primary Concepts

Bernoulli numbers Bn, n ∈ Z, n > 0, originally arise in the study of finite sums of a
given power of consecutive integers. They are given by B0 = 1, B1 = −1/2, B2 = 1/6,
B4 = −1/30, . . ., with Bn = 0 for odd n > 1, and

Bn = −
1

n + 1

n−1
∑

m=0

(

n + 1

m

)

Bm

for all even n > 2. In the symbolic notation, Bernoulli numbers are given recursively by

(B + 1)n − Bn =

{

1, if n = 1;
0, if n > 1.
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with the usual convention about replacing Bj by Bj after expansion. The Bernoulli polyno-
mials Bn (x), n ∈ Z, n > 0, can be expressed in the form

Bn (x) = (B + x)n =
n
∑

m=0

(

n

m

)

Bmxn−m. (1)

The generating functions of Bernoulli numbers and polynomials are respectively given by

t

et − 1
=

∞
∑

n=0

Bn
tn

n!
,

and
text

et − 1
=

∞
∑

n=0

Bn (x)
tn

n!
,

for |t| < 2π ([2]). The Euler polynomials En (x), n ∈ Z, n > 0, may be defined by the
generating function [23, 24]

2ext

et + 1
=

∞
∑

n=0

En (x)
tn

n!
, (2)

for |t| < π. The Euler numbers En are defined by

En = 2nEn

(

1

2

)

, n > 0.

The Genocchi numbers and polynomials, Gn and Gn (x), n ∈ Z, n > 0, are defined respec-
tively as follows [8, p.49]:

2t

et + 1
=

∞
∑

n=0

Gn
tn

n!
, (3)

and
2text

et + 1
=

∞
∑

n=0

Gn (x)
tn

n!
,

for |t| < π, which have several combinatorial interpretations in terms of certain surjective
maps of finite sets [10, 12, 13]. The well-known identity

Gn = 2 (1 − 2n) Bn, n > 0,

shows the relation between Genocchi and Bernoulli numbers. From (2) and (3), it is easy to
see that

Gn = nEn−1 (0) , n > 0,

with E−1 := 0.
Several arithmetical properties of Bernoulli, Euler and Genocchi polynomials can be

obtained from the generating functions. We list here three of them, which will be used in
the next section.

Bn (1 + x) = Bn (x) + nxn−1, n > 0, (4)

En (1 + x) = −En (x) + 2xn, n > 0, (5)

Gn (1 + x) = −Gn (x) + 2nxn−1, n > 0. (6)
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Bernoulli, Euler and Genocchi numbers can be directly computed from generating func-
tions by dividing numerator to denominator (after expanding et) and comparing the coeffi-
cients on either sides. Besides this method, many recurrence formulas for Bernoulli, Euler
and Genocchi numbers are obtained [3, 6, 8, 9, 16, 18, 19, 22]. Alternative methods for
computing these numbers are developed as well. In this paper, we concern two of them, the
Euler-Seidel matrices and the Akiyama-Tanigawa algorithm.

Definition 1.1. ([11]) Let a0, a1, a2,. . .,an,. . . be an initial sequence. The Euler-Seidel ma-
trix corresponding to the sequence {an} is determined by the sequence

{

ak
n

}

, whose elements
are recursively given by

a0
n = an (n > 0) ,

ak
n = ak−1

n + ak−1
n+1 (n > 0, k > 1) . (7)

The sequence {a0
n} is the first row and the sequence

{

ak
0

}

is the first column of the matrix.
From the recurrence relation (7), it can be seen that

ak
n =

k
∑

i=0

(

k

i

)

a0
n+i, (n > 0, k > 1) . (8)

The first row and column can be determined from (8) as follows:

an
0 =

n
∑

i=0

(

n

i

)

a0
i , n > 0,

a0
n =

n
∑

i=0

(

n

i

)

(−1)n−i ai
0, n > 0. (9)

Thus, as the first row is given, the first column can be found and vice versa. Next two
propositions show the relationship between the generating functions of a0

n and an
0 .

Proposition 1.1. Let

a (t) =
∞
∑

n=0

a0
nt

n

be the generating function of the initial sequence {a0
n}. Then the generating function of the

sequence {an
0} is given by

a (t) =
∞
∑

n=0

an
0 t

n =
1

1 − t
a

(

t

1 − t

)

.

The proof of this proposition is given by Euler [14].

Proposition 1.2. Let

A (t) =
∞
∑

n=0

a0
n

tn

n!
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be the exponential generating function of the initial sequence {a0
n}. Then the exponential

generating function of the sequence {an
0} is given by

A (t) =
∞
∑

n=0

an
0

tn

n!
= etA (t) .

The proof of this proposition is given by Seidel [25].
Of notable interest of Euler-Seidel matrices is the examples for Bernoulli and allied num-

bers. Let

A (t) =
t

et − 1
.

Then

A (t) =
tet

et − 1
= t +

t

et − 1
,

and thus
A (t) = t + A (t) .

Therefore,

a0
0 = B0 = 1, a1

0 =
1

2
, and a0

n = an
0 for n > 2,

and the corresponding Euler-Seidel matrix is

















1 −1
2

1
6

0 − 1
30

· · ·
1
2

−1
3

1
6

− 1
30

· · ·
1
6

−1
6

2
15

· · ·
0 − 1

30
· · ·

− 1
30

· · ·
· · ·

















For

A (t) =
2t

et + 1
,

the initial sequence is

a0
0 = 0, a0

1 = 1, a0
2n+1 = 0 and a0

2n = G2n for n > 1.

Since

A (t) =
2tet

et + 1
= 2t −

2t

et + 1
= 2t − A (t) ,

it is seen that
a0

0 = 0, a1
0 = 1, a2n+1

0 = 0 and a2n
0 = −G2n for n > 1.

4



Thus, the corresponding Euler-Seidel matrix is

































0 1 −1 0 1 0 −3 0 17 · · ·
1 0 −1 1 1 −3 −3 17 · · ·
1 −1 0 2 −2 −6 14 · · ·
0 −1 2 0 −8 8 · · ·
−1 1 2 −8 0 · · ·
0 3 −6 −8 · · ·
3 −3 −14 · · ·
0 −17 · · ·

−17 · · ·
· · ·

































In their study of values at nonpositive integer arguments of multiple zeta functions,
Akiyama and Tanigawa [1] found an algorithm for computing Bernoulli numbers in a manner
similar to Pascal’s triangle for binomial coefficients. The algorithm is as follows: Starting
with the sequence {1/n}, n > 1, as the 0-th row, the m-th number in the (n + 1)-st row
an+1

m is determined recursively by

an+1
m = (m + 1)

(

an
m − an

m+1

)

,

for m = 0, 1, 2, . . . and n = 0, 1, 2, . . .. Then, an
0 of each row is the n-th Bernoulli number Bn

with B1 = 1/2. Kaneko [20] reformulated the Akiyama-Tanigawa algorithm as follows:

Proposition 1.3. Given an initial sequence a0
m with m = 0, 1, 2, . . . define sequence an

m for
n > 1 recursively by

an
m = (m + 1)

(

an−1
m − an−1

m+1

)

.

Then the leading elements are given by

an
0 =

n
∑

m=0

(−1)m m!S (n + 1,m + 1) a0
m.

Here, S (n,m) denotes the Stirling numbers of the second kind which are defined as follows
[8, Chap. 5]:

(et − 1)
m

m!
=

∞
∑

n=m

S (n,m)
tn

n!
. (10)

For 1 6 m 6 n, S (n,m) > 0 and for 1 6 n < m, S (n,m) = 0. The Stirling numbers of the
second kind S (n,m) satisfy the recurrence relation

S (n,m) = S (n − 1,m − 1) + mS (n − 1,m) (11)

for n,m > 1 with S (n, 0) = S (0,m) = 0, except S (0, 0) = 1.
If the initial sequence is a0

m = 1/ (m + 1), m > 0, in Proposition 1.3, then the leading
elements are Bernoulli numbers with B1 = 1/2. By replacing the initial sequence a0

m =
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1/ (m + 1) by a0
m = 1/ (m + 1)k, m > 0, and applying same algorithm, Kaneko also derived

the resulting sequence as poly-Bernoulli numbers [20].
Chen [7] changed the recursive step in Proposition 1.3 to

an
m = man−1

m − (m + 1) an−1
m+1 (n > 1,m > 0) ,

and proved the following:

Proposition 1.4. Given an initial sequence a0
m with m = 0, 1, 2, . . . define sequence an

m for
n > 1 recursively by

an
m = man−1

m − (m + 1) an−1
m+1.

Then

an
0 =

n
∑

m=0

(−1)m m!S (n,m) a0
m.

Given initial sequences 1/ (m + 1), m > 0, 1/2m, m > 0, and (−1)[m/4] 2−[m/2] (1 − δ4,m+1),
m > 0, Chen obtained the leading elements respectively as Bernoulli, Euler and tangent
numbers. Here, [x] is the greatest integer 6 x and δ4,i = 1 if 4 | i and δ4,i = 0 otherwise.
Tangent numbers are defined as follows (cf. [24, p. 35]):

tgt =
∞
∑

n=0

(−1)n+1 T2n+1

(2n + 1)!
t2n+1,

with T0 = 1. At this point, we note that by choosing the initial sequence a0
m = 1/2m, m > 0,

we obtain the leading elements an−1
0 as Gn/n for n > 1, which is not obtained in [7]. For

other studies on the Akiyama-Tanigawa algorithm, see [17, 21].
In this paper, we give the Euler-Seidel matrices and the Akiyama-Tanigawa algorithms for

Bernoulli, Euler and Genocchi polynomials. These matrices and algorithms are polynomial
extensions of the corresponding matrices and algorithms for Bernoulli, Euler and Genocchi
numbers. In particular, the Akiyama-Tanigawa algorithms for these polynomials lead new
closed formulas for Bernoulli, Euler and Genocchi polynomials in terms of weighted Stirling
numbers of the second kind.

2 Euler-Seidel Matrices for Bernoulli, Euler and Genoc-

chi Polynomials

We start with the polynomial extension of Definition 1.1.

Definition 2.1. Let a0 (x), a1 (x), a2 (x),. . .,an (x),. . . be initial sequence of polynomials in
x. The Euler-Seidel matrix corresponding to the sequence {an (x)} is determined by the
sequence

{

ak
n (x)

}

for n > 0 and k > 1, whose elements are recursively given by

a0
n (x) = an (x) ,

ak
n (x) = ak−1

n (x) + ak−1
n+1 (x) .
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From the recurrence relation above, we have

ak
n (x) =

k
∑

i=0

(

k

i

)

a0
n+i (x) , n > 0,

an
0 (x) =

n
∑

i=0

(

n

i

)

a0
i (x) , n > 0, (12)

a0
n (x) =

n
∑

i=0

(

n

i

)

(−1)n−i ai
0 (x) , n > 0.

Let A (x, t) and A (x, t) be the exponential generating functions of a0
n (x) and an

0 (x), respec-
tively. Then, we have

A (x, t) = etA (x, t) .

Note that for x = 0, the above equalities reduce to Dumont’s.
Now, we construct the Euler-Seidel matrices corresponding to Bernoulli, Euler and Genoc-

chi polynomials.
Let a0

n (x) = Bn (x), n > 0. Then

A (x, t) =
∞
∑

n=0

Bn (x)
tn

n!
=

text

et − 1
,

and

A (x, t) = etA (x, t) =
te(x+1)t

et − 1
=

∞
∑

n=0

Bn (x + 1)
tn

n!
. (13)

Using (4), we obtain
A (x, t) = A (x, t) + text,

and
an

0 (x) = Bn (x) + nxn−1, n > 0.

Therefore, given Bernoulli polynomials as the first row, then the first column of the corre-
sponding Euler-Seidel matrix is again Bernoulli polynomials except the opposite sign for the
coefficient of the second highest power. This is because

an
0 (x) = Bn (x) + nxn−1

=
n
∑

m=0

(

n

m

)

Bmxn−m + nxn−1

= B0x
n + B1x

n−1 + nxn−1 +
n
∑

m=2

(

n

m

)

Bmxn−m

= B0x
n −

n

2
xn−1 + nxn−1 +

n
∑

m=2

(

n

m

)

Bmxn−m

= B0x
n +

n

2
xn−1 +

n
∑

m=2

(

n

m

)

Bmxn−m,

7



by using (1) and B1 = −1/2. The Euler-Seidel matrix corresponding to Bernoulli polynomi-
als is as follows:













1 x − 1
2

x2 − x + 1
6

x3 − 3
2
x2 + 1

2
x · · ·

x + 1
2

x2 − 1
3

x3 − 1
2
x2 − 1

2
x + 1

6
· · ·

x2 + x + 1
6

x3 + 1
2
x2 − 1

2
x − 1

6
· · ·

x3 + 3
2
x2 + 1

2
x · · ·

· · ·













Now let a0
n (x) = En (x), n > 0. Then

A (x, t) =
∞
∑

n=0

En (x)
tn

n!
=

2ext

et + 1
,

and

A (x, t) = etA (x, t) =
2e(x+1)t

et + 1
=

∞
∑

n=0

En (x + 1)
tn

n!
. (14)

Using (5), we get
A (x, t) = −A (x, t) + 2ext,

and
an

0 (x) = −En (x) + 2xn, n > 0.

Thus, if Euler polynomials are taken as the first row, then the first column of the correspond-
ing Euler-Seidel matrix is negative Euler polynomials except the coefficient of the highest
power. The matrix is













1 x − 1
2

x2 − x x3 − 3
2
x2 + 1

4
· · ·

x + 1
2

x2 − 1
2

x3 − 1
2
x2 − x + 1

4
· · ·

x2 + x x3 + 1
2
x2 − x − 1

4
· · ·

x3 + 3
2
x2 − 1

4
· · ·

· · ·













Finally, let a0
n (x) = Gn (x), n > 0. Then

A (x, t) =
∞
∑

n=0

Gn (x)
tn

n!
=

2text

et + 1
,

and

A (x, t) = etA (x, t) =
2te(x+1)t

et + 1
=

∞
∑

n=0

Gn (x + 1)
tn

n!
. (15)

Using (6) yields
A (x, t) = −A (x, t) + 2text,

and
an

0 (x) = −Gn (x) + 2nxn−1, n > 0.
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The corresponding matrix is













0 1 2x − 1 3x2 − 3x · · ·
1 2x 3x2 − x − 1 · · ·
2x + 1 3x2 + x − 1 · · ·
3x2 + 3x · · ·
· · ·













We conclude this section by giving alternative proofs of the equations

Bn (x + 1) =
n
∑

m=0

(

n

m

)

Bm (x) , n > 0,

En (x + 1) =
n
∑

m=0

(

n

m

)

Em (x) , n > 0,

Gn (x + 1) =
n
∑

m=0

(

n

m

)

Gm (x) , n > 0.

From (13), we see that

∞
∑

n=0

an
0 (x)

tn

n!
= A (x, t) =

∞
∑

n=0

Bn (x + 1)
tn

n!
.

Thus, by comparing the coefficients of power series on both sides, we get an
0 (x) = Bn (x + 1).

By (12), we have

Bn (x + 1) = an
0 (x) =

n
∑

m=0

(

n

m

)

a0
m (x) =

n
∑

m=0

(

n

m

)

Bm (x) .

Other two equalities can be proved in the same way by using appropriate relations (14) or
(15).

3 The Akiyama-Tanigawa Algorithms for Bernoulli, Eu-

ler and Genocchi Polynomials

In this section, we derive the Akiyama-Tanigawa algorithms for Bernoulli, Euler and Genoc-
chi polynomials and give closed formulas for these polynomials in terms of weighted Stirling
numbers of the second kind.

The weighted Stirling numbers of the second kind, S (n,m, x), are defined as follows
[4, 5]:

ext (et − 1)
m

m!
=

∞
∑

n=m

S (n,m, x)
tn

n!
. (16)
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When x = 0, S (n,m, 0) = S (n,m) are the Stirling numbers of the second kind. For
n = m = 0, S (0, 0, x) = 1, for 1 6 m < n, S (n,m, x) = 0 and for other values of m and n,
S (n,m, x) are determined by the following recurrence formula:

S (n + 1,m, x) = (m + x) S (n,m, x) + S (n,m − 1, x) . (17)

The relationship between S (n,m, x) and S (n,m) can be given by the following equation:

Lemma 3.1. We have

S (n,m, x) =
n−m
∑

k=0

(

n

k

)

xkS (n − k,m) .

Proof. By (16) and (10), we have

∞
∑

n=m

S (n,m, x)
tn

n!
=

ext (et − 1)
m

m!
= ext

∞
∑

n=m

S (n,m)
tn

n!

=
∞
∑

n=0

xn tn

n!

∞
∑

n=0

S (n + m,m)
tn+m

(n + m)!

=
∞
∑

n=0

(

n
∑

k=0

xk

k!

S (n − k + m,m)

(n − k + m)!

)

tn+m.

Comparing the coefficients of power series yields the result.

Given an initial sequence a0
m with m = 0, 1, 2, . . ., let the sequence an

m for n > 1 be given
recursively by

an
m = man−1

m − (m + 1) an−1
m+1 (18)

as in Proposition 1.4. Let gn (t) be the generating function of an
m,

gn (t) =
∞
∑

m=0

an
mtm. (19)

We define an
m (x) and gn (x, t) by means of

an
m (x) = (x + am)n =

n
∑

k=0

(

n

k

)

xkan−k
m , n > 0, (20)

gn (x, t) = (x + g (t))n =
n
∑

k=0

(

n

k

)

xkgn−k (t) , n > 0, (21)

where we use the usual convention about replacing (am)j by aj
m and (g (t))j by gj (t) in the

binomial expansions. Note that for x = 0, (20) reduces to (18) and (21) reduces to (19).

10



Proposition 3.1. Given an initial sequence a0,m with m = 0, 1, 2, . . ., let the sequence an
m

for n > 1 be given as (18) and an
m (x) be given as (20). Then

an
0 (x) =

n
∑

m=0

(−1)m m!S (n,m, x) a0
m, (22)

where S (n,m, x) are the weighted Stirling numbers of the second kind.

Proof. From (21) and (19), we have

gn (x, t) =
n
∑

k=0

(

n

k

)

xkgn−k (t) =
n
∑

k=0

(

n

k

)

xk

∞
∑

m=0

an−k
m tm.

By the recurrence formula (18), we get

gn (x, t) =
n
∑

k=0

(

n

k

)

xk

∞
∑

m=0

{

man−k−1
m − (m + 1) an−k−1

m+1

}

tm

=
n
∑

k=0

(

n

k

)

xk

∞
∑

m=0

(m + 1) an−k−1
m+1 tm+1

−
n
∑

k=0

(

n

k

)

xk (m + 1) an−k−1
m+1 tm

=
n
∑

k=0

(

n

k

)

xk (t − 1)
∞
∑

m=0

(m + 1) an−k−1
m+1 tm

=
n
∑

k=0

(

n

k

)

xk (t − 1)
d

dt
(gn−k−1 (t))

=
n
∑

k=0

(

n

k

)

xk

(

(t − 1)
d

dt

)n−k

g0 (t) .

Applying the formula (cf. [15, p. 310])

(

(t − 1)
d

dt

)n−k

=
n−k
∑

m=0

S (n − k,m) (t − 1)m

(

d

dt

)m

,

we have

gn (x, t) =
n
∑

k=0

(

n

k

)

xk

n−k
∑

m=0

S (n − k,m) (t − 1)m

(

d

dt

)m

g0 (t) .

Setting t = 0 and interchanging summations, we obtain

an
0 (x) =

n
∑

m=0

(−1)m m!a0
m

n−m
∑

k=0

(

n

k

)

xkS (n − k,m) .

Using Lemma 3.1, the result follows.
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Theorem 3.1. Let a0
m = 1/ (m + 1), m > 0, in (22). Then the leading polynomials an

0 (x),
n > 0, are given by

an
0 (x) =

n
∑

m=0

(−1)m m!
S (n,m, x)

m + 1
= Bn (x) .

Proof. We have

∞
∑

n=0

(

n
∑

m=0

(−1)m m!
S (n,m, x)

m + 1

)

tn

n!

=
∞
∑

m=0

(−1)m m!

m + 1

∞
∑

n=m

S (n,m, x)
tn

n!

=
∞
∑

m=0

(−1)m m!

m + 1

ext (et − 1)
m

m!

=
ext

1 − et

∞
∑

m=1

(1 − et)
m

m

=
ext

1 − et

(

−log
(

1 −
(

1 − et
)))

=
text

et − 1
=

∞
∑

n=0

Bn (x)
tn

n!
.

This proves the theorem.

Theorem 3.2. Let a0
m = 1/2m, m > 0, in (22). Then the leading polynomials an

0 (x), n > 0,
are given by

an
0 (x) =

n
∑

m=0

(−1)m m!
S (n,m, x)

2m
= En (x) .

Proof. We have

∞
∑

n=0

(

n
∑

m=0

(−1)m m!
S (n,m, x)

2m

)

tn

n!

=
∞
∑

m=0

(−1)m m!

2m

∞
∑

n=m

S (n,m, x)
tn

n!

=
∞
∑

m=0

(−1)m m!

2m

ext (et − 1)
m

m!

= ext

∞
∑

m=0

(

1 − et

2

)m

=
2ext

et + 1
=

∞
∑

n=0

En (x)
tn

n!
.

Comparing the coefficients of power series yields the result.

Theorem 3.3. Let a0
m = 1/2m, m > 0, as in Theorem 3.2. Then the polynomials an

0 (x),
n > 0, are given by

(n + 1) an
0 (x) =

n
∑

m=0

(−1)m+1 (m + 1)!
S (n + 1,m + 1, x)

2m+1
= Gn (x) .

12



Proof. The proof follows from Theorem 3.2 and the relations Gn (x) = nEn−1 (x), n > 0,
and S (n, 0, x) = 0.
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[25] P. L. von Seidel, Über eine einfache Entstehungsweise der Bernoullischen Zahlen und
einiger verwandten Reihen, Sitzungsberichte der Münch. Akad. Math. Phys. Classe 7

(1877), 157–187.

2000 Mathematics Subject Classification: Primary 11B68.

Keywords: Bernoulli polynomials, Euler polynomials, Genocchi polynomials, weighted Stir-
ling numbers of the second kind, Euler-Seidel matrices, Akiyama-Tanigawa algorithm.

(Concerned with sequences A000110, A000182, A000364, A001898, A027641, A027642, and
A100616.)

Received September 18 2006; revised version received May 10 2007. Published in Journal of
Integer Sequences, May 10 2007.

Return to Journal of Integer Sequences home page.

14

http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Inaba/inaba301.html
http://www.cs.uwaterloo.ca/journals/JIS/VOL3/KANEKO/AT-kaneko.html
http://www.integers-ejcnt.org/vol5.html
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000110
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000182
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000364
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001898
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A027641
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A027642
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A100616
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction and Primary Concepts
	Euler-Seidel Matrices for Bernoulli, Euler and Genocchi Polynomials
	The Akiyama-Tanigawa Algorithms for Bernoulli, Euler and Genocchi Polynomials
	Acknowledgment

