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Abstract

In this paper, we are concerned with sums involving inverses of binomial coefficients.
We study certain sums involving reciprocals of binomial coefficients by using some
integrals. Some recurrence relations related to inverses of binomial coefficients are
obtained. In addition, we give the approximate values of certain sums involving the
inverses of binomial coefficients.

1 Introduction

It is well known that binomial coefficients play an important role in various subjects such
as combinatorics, number theory, and probability. There are many results for sums related
to binomial coefficients. Sums involving inverses of binomial coefficients have been receiving
much attention. For example, see [1]-[2] or [4]-[14]. In this paper, we are still interested in
sums involving inverses of binomial coefficients, and we investigate these kinds of sums by
using some integrals. For convenience, we first give the definition of binomial coefficients.
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For nonnegative integers m and n, the binomial coefficient (::L) is defined by

n!

m 0, if n <m.

We know that integral is an effective method for computing sums involving inverses of bi-
nomial coefficients (see [8, 11]). It is based on Euler’s well-known Beta function defined by
(see [11])
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I'(n)l — Dl(m —1)!
for all positive integers n and m. Since B(n,m) = F((Z)—i—(:”j)) = (n(n —1—)772”1 1)') , the

binomial coefficient (TZ) satisfies the equation
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the equation It is clear that integrals have connections with inverses of binomial coefficients.
The purpose of this paper is to study sums of the following forms:
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where f,, is a rational function of n. In Section 2, we derive some relations for Z % by
n=0 n
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means of (1) and other integrals. In the meantime, we express the series Z e by some

n=0 \pn
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double integrations. In addition, we discuss the approximate value of the series Z W,
nS
n=1 n
where s is a positive integer.
2 Main Results
, ! dx ! dx
Lemma 1. For the integrals /0 =21 = 21 and /0 T+ 2(1 = 2 we have
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Proof. The proofs of (2)-(3) are simple and are omitted here. O

Theorem 2. Assume that

Z and Bkzz( )2n( n ),
n=0 n n=0 (n)

where k is a nonnegative integer. Then we have the following recurrence relations:
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By (5)

Proof. 1t follows from (1) that
e 1
- Z (n - k) 1)/ 2"(1 — x)"dw.
n=0 0
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Since Z (n N ) (2n+1) / "(1 — z)"dx converges uniformly for z € [0, 1], we have

/ {i (” N k) (2n + D)a"(1 — x)"} dr.

It is well known that

= n+k> 1
Z u' = ————, for |u| <1, (6)
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and
= (n+kY , (k+1u

From (6) and (7) we have
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Using the same method, we have
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It follows from (2) and (3) that

dx
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From (8) and (9) we have recurrence relations (4) and (5).

By =
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Corollary 3. Let m be a positive integer. Define
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Theorem 4. Suppose that
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Then we have
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Proof. 1t is evident that
e ()
Cr = = T
2 T 1D
1 e} (n+k71)
Dk = 3 £ 2n—2\ °

4

(10)

(11)
(12)

(13)



It follows from (1) that

Cp = - Z (” * k) / (1 = 2)" e = %/01 i:l (” : k)x”_l(l _ ) lde.

OO n+k 1
Dy = / 1 —2)" .

Owing to (6), (10) holds.
We note that

It follows from (14) that
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Hence, (11) holds.
It is clear that
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Using (2), we can obtain (12)-(13).
Remark: By using the same method, the reader can consider the sums
i (_1)n<n:k) o f: (_1)n(n+llzfl)
2n 2n :
n=1 n(n) n=1 n2<n)

Theorem 5. Let
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and they satisfy the equatzons
i + A jig1 = dp—1,
Gmyi t Gm,it1 = Gm—1,-
Proof. 1t follows from (1) that
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By using (6)-(7) and
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we obtain
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When <1, put I,(y) = . One can verify that
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From (21), we have
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Noting that
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Hence (15) holds.
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Using a similar approach, we have
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Then (16) holds.
Now we prove (17). After calculus, we have

= 55 [umvr [ e [ atiom

Let

~[MIn[l = z(1 - )y
h(y)—/o o =) dr, 0<y<1.

We can verify that
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By the proof of (15), we get

7 (1 — 3u?)Fu(arctan u)? 7 (1= 3u?)Fu? arctan u
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Then (17) holds. The proofs of (18)-(19) are omitted here. O
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NOW, we express the series E 2
n=0 \pn )
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Theorem 6. For the series Z we have
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Proof. 1t follows from (1) that
Z — = 2(471 —|—4n—|—1)/ (1—x)”dx/ y" (1 —y)"dy
n=0 n n=0 0
= Z4n +4n—|—1// "(1—a2)"y" (1 —y)"dxdy.
From (6)-(7) and (20) we can prove that (23) holds. O
1
Finally, we discuss the computation of the series Z ( ) .
n= 1 n
Let
= 1
2w
One knows that (see [3])
NEYS 2 1774
1) = — 2) = — d 4) = .

But we do not know the accurate value of ¢(s) (s = 3 or s > 5). Now we give the approximate
value of 9(s). It is clear that




Then we have

lim s® <¢(s) - % ! > =0. (23)

s——+o00 6 x 29

Using a similar approach, we have

: 1
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(23)-(24) provide the following simple approximate
1 1

~ = 2
V)~ b (25)
1
Y(s+1) = i(s) - 6% ol (26)
By (25)-(26), we obtain
193 T 1 1774 1

Similarly, we get

-~ 1 1 1 & 1 1 1
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