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Abstract
We study some properties of functions that satisfy the condition f'(x) = o (—),

!’
for x — oo, i.e., lim; .o % = 0. We call these “functions of slow increase”, since

they satisfy the condition lim, oo fg) = 0 for all @« > 0. A typical example of a

function of slow increase is the function f(z) = logxz. As an application, we obtain
some general results on sequence A, of positive integers that satisfy the asymptotic
formula A,, ~ n®f(n), where f(x) is a function of slow increase.

Functions of Slow Increase

Let f(x) be a function defined on the interval [a,c0) such that f(z) > 0,

lim, . f(z) = oo and with continuous derivative f'(z) > 0. The function f(x) is of slow
increase if the following condition holds.

!
lim / Exx))

=0.

(1)

Typical functions of slow increase are f(z) = logxz, f(z) = log’z, f(x) = loglog,

flz) = 22 and W : (0,00) — (0,00), ¥(z) = 2% where I'(z) = J St te™ dt, which

log log INE

generalize the harmonic sum H,, : N* — R, H, = 1+ % + % + ot % to (0,00), namely
H, =V(n+ 1)+, where  is Euler’s constant.

We have the following theorems.
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Theorem 2. If f(x) and g(x) are functions of slow increase and C and « are positive
constants then the following functions are of slow increase.

fle)+c, fle)-C, COf(x),  flz)g(z),  fl2)%,
flg(@)),  logflx),  f(=*),  [fla%g(x)),  flz)+g(x)

If f(z) and g(x) are functions of slow increase, lim,_, . % = oo and L (%) > 0 then
(z)

2)

~

1s a function of slow increase.

—~

’ If h(z) is a function such that h(z) > 0, lim, . h(x) = 0o and with continuous derivative
R (x) > 0, then h(logz) is a function of slow increase if and only if lim,_ % = 0.

If h(z) is a function such that h(z) > 0, lim, . h(x) = 0o and with continuous derivative
R (z) > 0, then e"® is a function of slow increase if and only if lim,_., zh'(x) = 0.

If f(z) is a function of slow increase the following limit holds.

lim 287@) 2)
z—oo  logw

Proof. Use Definition 1. O]
f(@)

T

Theorem 3. The function f(x) is of slow increase if and only if has negative derivative

(from a certain x,) for all o > 0.

Proof. We have d (fx)\  flx) (=f'(z)
i ( o > = ot (mﬂ;; - a> | !

Therefore if limit (1) holds we obtain that for all o > 0,

% (fggf)) <0 (4)

for © > x,. On the other hand, if (4) holds (for z > x,), (3) gives

/
0< z/ (@) <«
()
Consequently we obtain (note that « is arbitrary)
/
lim /(@) =
That is, equation (1). O

The following theorem justifies the term “slow increase”.

Theorem 4. If the function f(x) is of slow increase then

lim @) =0 (5)

Tr—00 {Eﬁ

for all 6 > 0.



Proof. Let a > 0 be such that o < 3. Then £ ) has a negative derivative (for x > z,), then
it is decreasing, therefore it is bounded 0 < ( ) < M. So

lim Jx) = lim flo) 1

. =0.
T—00 Qjﬂ r—o00 L% Qjﬁ*a
O
Corollary 5. If the function f(z) is of slow increase then the following limits hold.
lim J@) =0, (6)
Tr—00 X
lim f'(z) =0. (7)

Proof. Limit (6) is an immediate consequence of Theorem 4. Limit (7) is an immediate
consequence of limit (6) and limit (1). O

Theorem 6. If the function f(x) is of slow increase then

Zz’af(z)ﬁ = 00 8)

for all a« > —1 and for all 3.
Proof. We have

Zzo‘f ) =3 () - 0

=1

>l (10)

=1

On the other hand, we have (note that a + 1 > 0)

Now, it is well-known that

lim i f(i)" = 0. (11)

1—00

Limit (11) is clearly true if 8 > 0. If § < 0 limit (11) is a direct consequence of Theorem 2
(f(x)7P is of slow increase) and Theorem 4.
Finally, equations (9), (10) and (11) give equation (8). O

Theorem 7. If the function f(x) is of slow increase then the following limit holds

T o Ié;
. Jo 14F(@0)7 dt

at1 12
T—00 Q;H_l f(_q;)ﬂ ( )

for all a > —1 and for all 3.



Proof. We have (see (11))

a+1

f(@)” = o0

On the other hand, the function t*f(¢)” is either increasing or decreasing.

Use Theorem 2 and Theorem 3 in the case a < 0, > 0 and a > 0, § < 0. The others
cases are trivial.

Consequently (8) implies,

lim
z—oo v + 1

lim [ t*f(t)" dt = cc.

Now, limit (12) is a direct consequence of the L’Hospital’s rule and limit (1). O

Some particular cases of this theorem are the following:
If o = 0 we have

|0 e sy (13)
If a =0and =1 we have

| 10 dt~ofi) (14
If « =0 and 8 = —1 we have

1 x
/a mdtwm. (15)

Theorem 8. If the function f(x) is of slow increase and C' is a constant then the following
limat holds

. flz+0O)
lim ———= = 1. 16
z—oo f(x) (16)
Proof. If C' > 0, applying the Lagrange’s Theorem we obtain
flz+C) = flx) _Cf(§)
0< = , r<é<ax+O). 17
() oo ) o
Equations (17) and (7) give (16). In the same way can be proved the case C' < 0. O

Theorem 9. If the function f(x) is of slow increase, f'(x) is decreasing and C' > 0 then the
following limat holds

L f(Ca)
Proof. Suppose that C' > 1. Applying Lagrange’s theorem we obtain
f(Cx) = flz) _ (Cx—=z)f'(E) zf'(z)
0< (@) = ) <(C-1) o) (x <& < Cx). (19)

Equations (19) and (1) give (18).



Suppose that C' < 1. Applying Lagrange’s theorem we obtain

f(@)— [(Cx) (¢ —Co)f'(€) _1-CCuf(Cr)
R (75 B (75 B R (7S W

Equations (20) and (1) give (18). O

(Cx <& <) (20)

Theorem 10. If the function f(x) is of slow increase, f'(x) is decreasing and 0 < Cy <
g(x) < Cy then the following limit holds.

lim

Jim == = 1. (21)

Proof. We have
f(Cix) < flg(x)z) < f(Cax)
flz) = flz) ~ '
Equation (22) and Theorem 9 give (21). O

(22)

2 Applications to Integer Sequences

In this section we consider only functions of slow increase that have decreasing derivative.
Let A, be a strictly increasing sequence of positive integers such that

A, ~n’f(n), (A; > 1) (23)

and f(z) is a function of slow increase.
Let ¢(x) be the number of A,, that do not exceed x.

Example 11. If A, = p, is the sequence of prime numbers we have (Prime Number
Theorem) s = 1 and f(x) = logz. If A, = ¢, is the sequence of numbers with &k prime
factors we have s = 1 and f(x) = &% (see [2]). If A, = p? we have s = 2 and
f(z) =log®z.

Remark 12.  Note that: (i) Theorem 4 implies that s > 1 in equation (23).
(ii) There exists a strictly increasing sequence A, that satisfies (23), for example A,, =
[n*f(n)].

(iii) If the function g(z) is of slow increase then géés) -l % — [ and gg(és) —
g(n°f(n))

00 & TENEs = 00, because (Theorem 10) g(A,) ~ g(n®f(n)).

Theorem 13. If A, satisfies (23) and g(x) is a function of slow increase then the following
equations hold

An+1 s An, (24)

. An+1 - An
lim —— =0 25
Jm = =0 (25)



lOg An-i—l ~ log Ana (26)

9(Ans1) ~ g(An), (27)

log A,, ~ slogn, (28)

loglog A,, ~ loglogn, (29)
lim M = 0.

r—oo I

Proof. Equation (24) is an immediate consequence of equation (23) and Theorem 8. Equation
(25) is an immediate consequence of equation (24). Equations (26) and (27) are an immediate
consequence of equation (24) and Theorem 10. Equation (28) is an direct consequence of
equations (23) and (2). Equation (29) is an direct consequence of (28). The last limit is an
immediate consequence of (23) ((A,/n) — oco) and (24). O

Theorem 14. If A, satisfies (23) and g(x) is a function of slow increase then the following
equation holds (note that 1 > 1).

1
9(An) ~ lg(n) & g(4(2)) ~ 7 9(2). (30)
In particular (see (28) and (29))
1
log A,, ~ slogn < log(z) ~ B log x, (31)
loglog A,, ~ loglogn < loglog v (z) ~ loglog . (32)
Proof. We have
1 1 1

g((z)) ~ 79(1‘) = g(¥(A,)) ~ 79(,4”) = g(n) ~ 79(An)
= g9(An) ~lg(n).

On the other hand

9(An) ~lg(n) = g(An) ~ lg(¥(An)) = g(¥(An)) ~ %Q(An)- (33)
If A, <z < A,4; we have
9(¥(An) _ g(W(x)) _ g(e(An))
19(Au) © qgle) T 79(An)
Now, both sides have limit 1 (see (33) and (27)). 0

6



We shall need the following well-known lemma (see [5, p. 332]).
Lemma 15. Let Zfil a; and 221 b; be two series of positive terms such that lim;_. % =1.

Then if Y2 b; is divergent, the following limit holds.

lim Z? 1a@ = 1.
n—oo 3 0 1 b

In the following theorem we shall obtain information on v (z) when s =1 (see (23)) and

f(An) ~ f(n).
Theorem 16. If f(A,) ~ f(n) then

Ay~ nf(n) < () ~ f / e Y g (34)

A<z

Besides if g(x) is a function of slow increase and g(A,) ~ U'g(n) then

Lz 9(A4)°

i) ~ ZAE (3)
for all (.
Proof. We have (note that Ty — 00, see (6))
= A, ~nf(n).
On the other hand
Avrnfn) = Aw WA () = DA ~ 5
An
= Y(Ap) ~ A (36)
If A, <z < A, we have (note that ) is increasing, see Theorem 3)
,ﬁnﬂ) < U0 v (37
f(Any1) (z) f(An)

Now, both sides have limit 1 (see (36), (24) and (27)). Consequently
Ap ~nf(n) = (x) ~ ——.

On the other hand (see (15))

w(x)rvf / _tdt



Note that (see (13))
/ g(x)? dx ~ ng(n)°.

Therefore as g(z)? is either increasing or decreasing,
> 900 = [ gl do+ hn) ~ ng(a)’ 39
i=1 a

Equation (38), g(A,)? ~ I"’g(n)? and Lemma 15 give

> 9(A)? ~nlg(n)”.
=1

That is
D g(A)? ~ h(An)g(An)°.
AiSAn
Consequently
doA<A 9(A;)°
(A, ~ o . 39
(4s) ~ BT (39)
If A, <z < A,y we have (§ > 0)
P(An) < Y(x < Y(An)
ZAigAng(Ai)ﬁ - ZAigzg(Ai)ﬁ - ZAiSAng(Ai)ﬁ.
9(An)P g9(x)P 9(Any1)P
Now, both sides have limit 1 (see (39) and (27)). Therefore
() ~ i 94D
COLE
That is, equation (35). If 5 < 0, the proof of (35) is the same.
Consequently if g(x) = f(x) and § = 1 we find that
x
Y(r) ~ —— & f(A;) ~ .
o) < &
[
Example 17. Let us consider the sequence p,, of prime numbers, in this case we have
(Prime Number Theorem) p,, ~ nlogn and ¢ (z) = n(x) ~ x/(logz). Let us consider the
sequence ¢, of numbers with & prime factors, in this case we have ¢, ~ m% (see

k-1

Example 11) and (Landau’s Theorem) (see [1, 2]) ¢(x) ~ %.

In the following general theorem we obtain information on ¥(x) if f(A,) ~ Lf(n).
Theorem 16 is a particular case of this Theorem.

8



Theorem 18. If f(A,) ~ lf(n) then

1 1

A, ~n’f(n 7) ~ 1 x§1 x Nl— xtin dt
fi) vty e vta~ S |

& Y f(A)F ~lran,

1

Besides if g(x) is a function of slow increase and g(A,) ~ 'g(n) then

- ZAigx Q(Ai)ﬂ

g(z)? (40

()

for all (.
Proof. The proof that
Ay~ f(n) & () ~ 15

is the same as in Theorem 16. Now, see equation (12),

1

x t_l"'% €T
/ —1 dt ~ 1
o sf(t)s fz)s

Therefore

, ol s
P(x) ~ s & h(x) ~ —/ dt.
f(x): s Ja f(b):
The proof of the equation (40) is the same as in Theorem 16. If g(z) = f(x) and § = 1/s
then we find that

1
s

1 T 1 101
Y(a) v li—— & Y f(A)F ~ s,
[
Example 19.  Let us consider the following sequence of positive integers (see Theorem 22)

n L nk—H .
2P gy len

where k is a positive integer. In this case we have s = k+ 1, f(x) = % and [ = (k + 1)~
Consequently

1
T k+1

(x)~(k+1)———.

(log x) k-llg—l

Let us consider the sequence P, of the A,, powers. For example, if A,, = p,, is the sequence
of prime numbers, P, is the sequence of prime powers . Let A\(x) be the number of P, that
do not exceed .



Theorem 20. If A, satisfies (23) then
A@) ~ $(@).
Proof. The A; < x are Ay, Ay, ..., Ayn). Let us write
AY =, (1=1,2,...,9(x)).
Therefore
log (i
o = ————, 2, ...
log A;

We have the following inequalities

Equation (28) gives

log A, slogn

Note that (see (15))
1 x

—— dt ~ .
5 logt log x

Now,

1 P(x)

1
log Ay + ZZ2 slogi 1og A1 Z logz
1 Y@ 4
_ -/ L gy o) ~ 2
2

s log t slog(x)

Equations (43), (44) and Lemma 15 give

()
¥(z)
Z ogA slog@b(m)'

Equations (42) and (45) give

V(o) < Aw) < i) RS
where h(z) — 1. That is
A(z) log x
L=< 0@ < Mo e

Finally, equations (31) and (46) give (41).

10
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(44)

(45)

(46)



Corollary 21. The following limit holds.

YD (i — o)
L e B

That is, the mean fractional part has limit zero.

Theorem 22. If A, satisfies (23) then the following asymptotic formulas hold

n nsa+1f<n)cx n
A ~ ~ A% 0 47
; ! sa+ 1 sa+1"" (a>0), (47)
S A @) e (0 0). (48)
ot s+ 1

Proof. Let us consider the sum
L4244 (' = 1)+ > (@ f(0)", (49)

where n’ is a positive integer on interval [a, 00). Note that (see (23))

AT~ (1) (50)
Note that the function z° f(z) is increasing and therefore we have

n

> s = |

i=n' n

On the other hand (see (12))

/n:z;saf(a:)o‘ dx + O (n** f(n)*). (51)

n sa+1 a
// 2*f(x)* do ~ %. (52)

Equations (49), (51) and (52) give

n nsa+1f(n)a n
1+24--- -1 (1) ~ ~ Ap.
+2+: 0+ (n >+;(zf(z>) prmren e R (53)
Finally, (53), (50) and Lemma 15 give (47).
If we substitute n = 9 (A,,) into equation (47) and proceed as in Theorem 14 and Theo-
rem 16 then we obtain (48). O

Remark 23.  Equations (47) and (48) when A,, = p,, is the sequence of prime numbers
were obtained by Salat and Znam [6], more precise formulas when « is a positive integer
were obtained by Jakimczuk [3]. Equations (47) and (48) when A, = ¢, is the sequence of
numbers with £ prime factors were obtained by Jakimczuk [2].

11



Jakimczuk [4] proved the following theorem.

Theorem 24. If A, satisfies (23) then the following formulas hold

ZlogAi = s nlogn —s n+mnlog f(n) + o(n),

=1

o VA A1

n—00 An e’

Proof. See [4]. In that proof we supposed that

Y A Ol
Consequently (L’Hospital’s rule)
T tfl(t
lim W =0. (54)
T—00 €
This supposition is unnecessary since if the integral converges then (54) also holds. [
Definition 25.  The function of slow increase f(x) is a universal function if and only if for

all sequence A,, that satisfies (23) we have f(A,) ~ [f(n) where [ depends of the sequence
A,.

Example 26. Equation (28) implies that f(x) = logz is an universal function, in this
case [ = s. Equation (29) implies that f(z) = loglogx is an universal function, in this case
[ = 1 does not depend of the sequence A,,.

Remark 27. Note that if f(z) and g(x) are universal functions then f(z)* (a0 > 0),
Cf(z) (C > 0) and f(z)g(x) are universal functions. If f(z)/g(x) is a function of slow
increase then is an universal function.

Theorem 28. If f(z) is an universal function and A, satisfies (23) then we have

() (@)
for all (.
Proof. The proof is the same as in Theorem 16 and Theorem 18. [
Example 29. Since f(x) = logz is an universal function, we have for all sequences A,

satisfying (23) that
S <, log? A;
1/)(5(]) ~ AZIS B ’
og” x

In particular, if 5 =1 we have

N ZAZ'§1‘ log A;

() log @

12



Theorem 30. There exist functions of slow increase that are not universal functions.

Proof. We shall prove that the following function of slow increase

log x

g(m) — geloglogz ,

is not an universal function. We shall prove that there exists a sequence A, that satisfies

(23) and
lim 9(An)
n—oo g(n)

= OQ.

Since A,, satisfies (23) we can write

A = hy(n)n*f(n),
where hi(n) — 1. Therefore

g(An) — exp log hi(n) + slogn 41— log f(n )1 . - lolgn (55)
9(n) loglog n + log s + log (1 + A8 Oflo;(:)> 08081

If s > 1 (55) becomes (see (2))

g(Ay) slogn logn
= exp | ha(n) - ;
loglogn  loglogn

where hy(n) — 1. That is
g(An) (s —1)logn
) ha(n) o5
g(n) P ( 3(n) loglogn /)’
where hs(n) — 1. Consequently we have

lim 9(An) =
n—oo g(n)

This proves the theorem. In particular this limit is true if f(z) = g(z).
To complete, we shall examine the case s = 1. In this case (55) becomes (note that

lim, o 0 = )
9(A,) exp log hy(n) + logn + log f(n) ~ logn
g(n) loglogn + hy(n )loié(: + hy(n )% log logn

logn+logf() _ logn +o(1)
log log n + hy(n)2eL®) 4 p, (n)let®)  loglogn

_ eXp<loglognlogf<) ha(n) log f(n) - <>1ogh1<n>)+0(1))

log log n log f(n) loglognloghi(n
logn + h ( )

(loglogn)? + hy(n)

hs(n k’gf +0(1)>,

log logn

logn

= exp

13



where hy(n) — 1 and hs(n) — 1.

For example, if f(z) = g(z) then lim, —gg(és) = oo0. If f(z) = log”x (o > 0) then
lim,, o % = e If f(z) =loglogx then lim, 9;(%) =1. O

3 Acknowledgements

The author would like to thank the anonymous referees for their valuable comments and
suggestions for improving the original version of this manuscript.

References

[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth
Edition, 1960.

[2] R. Jakimczuk, A note on sums of powers which have a fixed number of prime factors,
J. Inequal. Pure Appl. Math. 6 (2005), Article 31.

[3] R. Jakimczuk, Desigualdades y formulas asintéticas para sumas de potencias de primos,
Bol. Soc. Mat. Mexicana (3) 11 (2005), 5-10.

[4] R. Jakimczuk, The ratio between the average factor in a product and the last factor,
Mathematical Sciences: Quarterly Journal 1 (2007), 53-62.

[5] J. Rey Pastor, P. Pi Calleja, C. Trejo, Andalisis Matemdtico, Volume I, Editorial Kapeluz,
Octava Edicién, 1969.

[6] T. Salat and S. Znam, On the sums of prime powers, Acta. Fac. Rer. Nat. Univ. Com.
Math. 21 (1968), 21-25.

2000 Mathematics Subject Classification: Primary 11B99; Secondary 11N45.
Keywords: Functions of slow increase, integer sequences, asymptotic formulas.

Received September 14 2009; revised version received December 21 2009. Published in
Journal of Integer Sequences, December 23 2009.

Return to Journal of Integer Sequences home page.

14


http://www.cs.uwaterloo.ca/journals/JIS/

	Functions of Slow Increase
	Applications to Integer Sequences 
	Acknowledgements

