Fibonacci Numbers of Generalized Zykov Sums
César Bautista-Ramos and Carlos Guillén-Galván
Facultad de Ciencias de la Computación
Benemérita Universidad Autónoma de Puebla
14 Sur y Av. San Claudio, Edif. 104C, 303
Puebla, Pue. 72570
Mexico
Abstract:
We show that counting independent sets in several
families of graphs can be done within the framework of generalized
Zykov sums by using the transfer
matrix method. Then we calculate the generating function of the number of
independent sets for
families of generalized Zykov sums. We
include many interesting particular cases (Petersen graphs,
generalized Móbius ladders, carbon nanotube graphs, among others).
Full version: pdf,
dvi,
ps,
latex
(Concerned with sequences
A003688
A007070
A007483
A026150
A028859
A050402
A051926
A051928
A078057
A161941
A181961
A181989
A182014
A182019
A182041
A182052
A182054
A182077
A182130
A182141
A182143
A188707.)
Received May 4 2012;
revised versions received August 22 2012; September 13 2012.
Published in Journal of Integer Sequences, September 23 2012.
Return to
Journal of Integer Sequences home page