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Abstract

We introduce two kinds of q-Euler polynomials and numbers, and investigate many

of their interesting properties. In particular, we establish q-symmetry properties of

these q-Euler polynomials, from which we recover the so-called Kaneko-Momiyama

identity for the ordinary Euler polynomials, discovered recently by Wu, Sun, and Pan.

Indeed, a q-symmetry and q-recurrence formulas among sum of product of these q-

analogues Euler numbers and polynomials are obtained. As an application, from these

q-symmetry formulas we deduce non-linear recurrence formulas for the product of the

ordinary Euler numbers and polynomials.
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1 Introduction and preliminaries

1.1 The ordinary Euler numbers and polynomials: An analytic

overview

Let N = {0, 1, 2, . . .}. The ordinary Euler polynomials En(x) are defined by the generating
series

2ext

et + 1
=

∞
∑

n=0

En(x)
tn

n!
.

The first few values are

E0(x) = 1, E1(x) = x −
1

2
, E2(x) = x2 − x,E3(x) = x3 −

3

2
x2 +

1

4
.

The ordinary Euler numbers En (n = 0, 1, 2, . . .) are defined by the generating function

2

et + 1
=

∞
∑

n=0

En

tn

n!
. (1)

The nth-Euler number and polynomial are connected by the equation: En = En(0). The
first few values are E0 = 1, E1 = −1/2, E2 = 0, E3 = 1/4, and it holds that E2k = 0
(k = 1, 2, 3, . . .).

Remark 1. Note that the Euler numbers En which we consider in this paper are different
from the Euler numbers defined by M. Abramowitz and I. A. Stegun [1, Ch.23].

From the definition we can easily deduce the following well-known difference formula:

(−1)nEn(−x) + En(x) = 2xn, (n ∈ N). (2)

In 2004, K.J. Wu, Z.W. Sun, and H. Pan [13] proved the following important formulae:

(−1)m

m
∑

k=0

(

m

k

)

En+k(x) = (−1)n

n
∑

k=0

(

n

k

)

Em+k(−x), (3)

(−1)m

m+1
∑

k=0

(

m + 1

k

)

(n + k + 1)En+k(x)

+(−1)n

n+1
∑

k=0

(

n + 1

k

)

(m + k + 1)Em+k(x) = 0. (4)

The last identity (4) is an Euler polynomial version of Kaneko-Momiyama relations among
Bernoulli numbers. See M. Kaneko [7], H. Momiyama [10], I. M. Gessel [5] and Wu-Sun-Pan
[13] for details.

The identity (3) can be viewed as an integral version of the Kaneko-Momiyama type
identity for the Euler polynomials. In this present paper, we introduce and investigate two
kinds of q-Euler polynomials and numbers. For instance, we find q-analogues for the identities
(3) and (4). On the other hand, we also establish a relation between sums of products of
our q-Euler polynomials.
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1.2 q-shifted factorials

Let a ∈ C. The q-shifted factorials are defined by

(a, q)0 = 1, (a, q)n =
n−1
∏

k=0

(1 − aqk) (n = 1, 2, . . .).

If |q| < 1, then we define

(a, q)∞ = lim
n→∞

(a, q)n =
∞
∏

k=0

(1 − aqk).

We also denote

[x]q =
1 − qx

1 − q
, x ∈ C,

[n]q! =
(q, q)n

(1 − q)n
, n ∈ N,

[

n
k

]

q

=
[n]q!

[k]q![n − k]q!
, k, n ∈ N,

[

n
i1, . . . , im

]

q

=
[n]q!

[i1]q! · · · [im]q!
, n, i1, . . . , im ∈ N, with i1 + · · · + im = n.

1.3 q-Exponential functions

The q-exponential functions are given by

eq(z) :=
∞
∑

n=0

zn

[n]q!
, and eq−1(z) :=

∞
∑

n=0

zn

[n]q−1 !
. (5)

It is easy to see that [n]q−1 ! = q−(n

2)[n]q!. Hence

eq−1(z) =
∞
∑

n=0

q(
n

2)zn

[n]q!
.

Recently both q-exponential functions are intensively studied in q-calulus and and quatum
theory. See I. M. Gessel [4], W. P. Johnson [6] for related topics. As is well-known, these
functions are related to the infinite product (z, q)

∞
by

eq(z) =
1

((1 − q)z, q)
∞

, eq−1(z) = (−(1 − q)z, q)
∞

.

This yields eq(z)eq−1(−z) = 1.
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1.4 q-Euler polynomials and numbers

Definition 2. We define two kinds of q-Euler polynomials En(x, q) and Fn(x, q−1) (n =
0, 1, 2, . . .) by

2eq(xt)

eq(t) + 1
=

∞
∑

n=0

En(x, q)
tn

[n]q!
,

2eq(xt)

eq−1(t) + 1
=

∞
∑

n=0

Fn(x, q−1)
tn

[n]q!
.

We call En(x, q) (resp. Fn(x, q−1)) the first (resp. second) q-Euler polynomials. In particular,
we call En(0, q) (resp. Fn(0, q−1)) the first (resp. second) q-Euler numbers.

Example 3.

E0(x, q) = 1, E1(x, q) = x −
1

2
,

E2(x, q) = x2 −
[2]q
2

x −
1

2
+

[2]q
4

,

E3(x, q) = x3 −
[3]q
2

x2 +

(

[3]q[2]q
4

−
[3]q
2

)

x −
1

2
−

[3]q[2]q
8

+
[3]q
2

.

F0(x, q−1) = 1, F1(x, q−1) = x −
1

2
,

F2(x, q−1) = x2 −
[2]q
2

x −
q

2
+

[2]q
4

,

F3(x, q−1) = x3 −
[3]q
2

x2 +

(

[3]q[2]q
4

−
[3]q
2

q

)

x −
q3

2
−

[3]q[2]q
8

+
[3]q
2

q.

Remark 4.

1. The reason for introducing both kinds of q-analogue Bernoulli polynomials En(x, q)
and Fn(x, q−1) is that they are needed in the q-analogues of symmetry, difference,
recurrence and complementary argument formulas.

2. The case q = 1 corresponds to the ordinary Euler polynomials and numbers.

3. In the literature there are many q-analogues of the Euler numbers and polynomials.
The q-analogues which we consider here are closely related to q-calculus, q-Jackson
integral and hypergeometric series.

4. Various q-analoques of the Euler numbers and polynomials are studied by many math-
ematicians. For more details for example you can refer to T. Kim [9],C. S. Ryoo [11],
Y. Simsek [12] and others.

5. It seems to be difficult to clarify the connections between all the q-analogues of the
Euler numbers and polynomials.
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2 q-Recurrence, q-Addition, q-Derivative and q-integral

formulae

In this section, we establish a series of formulas involving the polynomials En(x, q) and
Fn(x, q−1), like q-addition, q-derivative, q-integral and q-recurrence formulas.

2.1 q-Recurrence formulae

Proposition 5 (q-Recurrence formula). For any n ≥ 1, we have

En(x, q) = xn −
1

2

n−1
∑

i=0

[

n
i

]

q

Ei(x, q),

Fn(x, q−1) = xn −
1

2

n−1
∑

i=0

[

n
i

]

q

Fi(x, q−1)q(
n−i

2 ).

Proof. As for the first identity, we make use of

(

∞
∑

n=0

En(x, q)
tn

[n]q!

)

(eq(t) + 1) = 2eq(xt).

We deduce from this identity

∞
∑

n=0

(

n
∑

i=0

[

n
i

]

q

Ei(x, q) + En(x, q)

)

tn

[n]q!
=
∑

n=0

2xn tn

[n]q!
,

which yields the result. We get the second result in the similar way.

As q → 1, one has a recurrence formula for the ordinary Euler polynomials:

En(x) = xn −
1

2

n−1
∑

i=0

(

n

i

)

Ei(x) (n ≥ 1),

then for the Euler numbers E2n+1 we recover the well-known recurrence formula

E2n+1(x) = −
1

2

2n
∑

k=0

(

2n + 1

k

)

Ek (n ≥ 0). (6)

2.2 q-Derivative and q-integral

The q-derivative of a function f is given by

Dqf(x) :=
f(x) − f(qx)

(1 − q)x
(x 6= 0, q 6= 1),
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where x and qx should be in the domain of f . If f is differentiable on an open set I, then
for all x ∈ I,

lim
q→1

Dqf(x) = f ′(x).

Besides, for all n ∈ N,

Dq(x
n) = [n]qx

n−1, Dq(x, q)n = −[n]q(xq, q)n−1,

Dq−1(x, q)n = −[n]q(x, q)n−1, Dq

(

xn

[n]q!

)

=
xn−1

[n − 1]q!
.

From the last identity, for instance, we have Dqeq(x) = eq(x).
Our q-Euler polynomials form “q-Appell sequences”:

Proposition 6 (q-Derivative formula). For any n ≥ 0, we have

DqEn+1(x, q) = [n + 1]qEn(x, q),

DqFn+1(x, q−1) = [n + 1]qFn(x, q−1).

Proof. Since
∞
∑

n=0

DqEn(x, q)
tn

[n]q!
=

2teq(xt)

eq(t) + 1
=

∞
∑

n=1

[n]qEn−1(x, q)
tn

[n]q!
,

we have the first identity. The second identity can be obtained similarly.

As q → 1, we have the identities of Appell sequences of the ordinary Euler polynomials:

d

dx
En+1(x) = (n + 1)En(x).

For the product of two functions f and g, the following formula holds:

Dq(f · g)(x) = g(x)Dq(x) + f(qx)Dqg(x)

= f(x)Dqg(x) + g(qx)Dqf(x).

We next treat the composition of f(x) and g(x). When g(x) = −x, the following chain rule
for the q-derivative is valid:

Dq(f ◦ g)(x) = Dqf(g(x))Dqg(x),

which will be used in the proofs of Theorems 15 and 20. However, in general, the rule above
does not hold. If we modify the definition of the composition of two functions, then a new
chain rule for the q-derivative is gained. We refer to I. M. Gessel [4] for this topic.

The q-Jackson integral from 0 to a is defined by

∫ a

0

f(x)dqx := (1 − q)a
∞
∑

n=0

f(aqn)qn
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provided the infinite sums converge absolutely. The q-Jackson integral in the generic interval
[a, b] is given by

∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx −

∫ a

0

f(x)dqx.

For any function f we have

Dq

∫ x

0

f(t)dqt = f(x).

Proposition 7 (q-Integral formula). For any n ≥ 0,

∫ x

a

En(t, q)dqt =
En+1(x, q) − En+1(a, q)

[n + 1]q
,

∫ x

a

Fn(t, q−1)dqt =
Fn+1(x, q−1) − Fn+1(a, q−1)

[n + 1]q
.

This result follows from q-derivative formula. As q → 1, we have integral formula for the
classical Euler polynomials:

∫ x

a

En(t)dt =
En+1(x) − En+1(a)

n + 1
.

2.3 q-Binomial formula

Let q ∈ C, and take two q-commuting variables x and y which satisfy the relation

xy = q−1yx.

Let Cq[x, y] be the complex associative algebra with 1 generated by x and y. Then the
following identity is valid in the algebra Cq[x, y]:

(x + y)n =
n
∑

k=0

[

n
k

]

q

xkyn−k, n ∈ N,

or alternatively,

(x + y)n =
n
∑

k=0

[

n
k

]

q−1

ykxn−k, n ∈ N.

For details, we refer to Andrews-Askey-Roy [2], Gasper-Rahman [3].

2.4 q-Exponential identity

Let x, y be the q-commuting variables satisfying the relation xy = q−1yx. Let Cq[[x, y]] be
the complex associative algebra with 1 of formal power series

∞
∑

m=0

∞
∑

n=0

am,nxmyn
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with arbitrary complex coefficients am,n. One knows in Andrews-Askey-Roy [2], Gasper-
Rahman [3] that in Cq[[x, y]], we have the following identity

eq(x + y) = eq(x)eq(y).

Proposition 8 (q-Addition formula). Let x, y be the q-commuting variables satisfying the

relation xy = q−1yx. For any n ≥ 0, we have

En(x + y, q) =
n
∑

k=0

[

n
k

]

q

Ek(x, q)yn−k,

Fn(x + y, q−1) =
n
∑

k=0

[

n
k

]

q

Fk(x, q−1)yn−k.

Particularly, it follows that

En(y, q) =
n
∑

k=0

[

n
k

]

q

Ek(0, q)y
n−k,

Fn(y, q−1) =
n
∑

k=0

[

n
k

]

q

Fk(0, q
−1)yn−k.

Proof. The first identity follows from

2eq((x + y)t)

eq(t) + 1
=

2eq(xt)

eq(t) + 1
· eq(yt).

One can easily prove the remaining identities.

As q → 1, we have the classical formula:

En+1(x + y) =
n
∑

k=0

(

n

k

)

Ek(x)yn−k.

Particularly, it holds that

En(y) =
n
∑

k=0

(

n

k

)

Eky
n−k.

At the end of this section, we give a list of limit of q-analogues.

lim
q→1

eq(z) = lim
q→1

eq−1(z) = ez,

lim
q→1

[n]q = n,

lim
q→1

[n]q! = n!,

lim
q→1

[

n
k

]

q

=

(

n

k

)

,

lim
q→1

[

n
i1, . . . , im

]

q

=

(

n
i1, . . . , im

)

:=
n!

i1! · · · im!
,

lim
q→1

En(x, q) = lim
q→1

Fn(x, q−1) = En(x).
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3 q-symmetry and q-analogues to Kaneko-Momiyama

identities

3.1 q-symmetry fo Sums of products

Theorem 9 (Sums of products). Let m be a given positive integer. Then for any n ≥ 0, we

have

(−1)n
∑

i1+···+im=n

[

n
i1, . . . , im

]

q

Fi1(−x, q−1) · · ·Fim(−x, q−1)

=
m
∑

j=0

(−1)j2m−j

(

m

j

)

∑

k1+···km=n

[

n
k1, . . . , km

]

q

Ek1
(x, q) · · ·Ekj

(x, q)xn−(k1+···+kj).

Remark 10. The above theorem implies the following results.

1. If m = 1, then

(−1)nFn(−x, q−1) + En(x, q) = 2xn. (7)

This relation can be viewed as a q-difference formula. If q → 1 we recover the usual
difference formula for the Euler polynomials (2).

2. If m = 2, then

(−1)n

n
∑

i=0

[

n
i

]

q

Fi(−x, q−1)Fn−i(−x, q−1)

=
n
∑

i=0

[

n
i

]

q

Ei(x, q)En−i(x, q) − 4
n
∑

i=0

[

n
i

]

q

Ei(x, q)xn−i + 4xn

n
∑

i=0

[

n
i

]

q

.

3. It should be noted that Simsek [12] found formulae for sums of products of another
kind of q-Euler polynomials.

Proof. In view of eq(t)eq−1(−t) = 1, we have

1

eq−1(−t) + 1
= 1 −

1

eq(t) + 1
.

Hence for m ≥ 1,
(

2eq((−x)(−t))

eq−1(−t) + 1

)m

=

(

2eq(xt) −
2eq(xt)

eq(t) + 1

)m

.

The left-hand side of the identity is

∞
∑

n=0

(−1)n
∑

i1+···+im=n

[

n
i1, . . . , im

]

q

Fi1(−x, q−1) · · ·Fim(−x, q−1)
tn

[n]q!
.
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The right-hand side becomes

m
∑

j=0

(−1)j

(

m

j

)(

2eq(xt)

eq(t) + 1

)j

2m−jeq(xt)m−j

=
m
∑

j=0

(−1)j2m−j

(

m

j

) ∞
∑

n=0

∑

k1+···+km=n

[

n
k1, . . . , km

]

q

Ek1
(x, q) · · ·Ekj

(x, q)xkj+1 · · · xkm
tn

[n]q!
.

As q → 1 in the formula of Theorem 9, we have

Theorem 11. Let m be a given positive integer. Then for any n ≥ 0,

(−1)n
∑

i1+···+im=n

(

n
i1, . . . , im

)

Ei1(−x) · · ·Eim(−x)

=
m
∑

j=0

(−1)j2m−j

(

m

j

)

∑

k1+···km=n

(

n
k1, . . . , km

)

Ek1
(x) · · ·Ekj

(x)xn−(k1+···+kj).

Corollary 12. Especially in the cases m = 1, 2, the following results hold:

(1) For any n ≥ 0, we have (−1)nEn(−x) + En(x) = 2xn.

(2) For any k ≥ 1, E2k = 0.
(3) For any n ≥ 0, we get the non-linear recurrence formulae

(−1)n

n
∑

i=0

(

n

i

)

Ei(−x)En−i(−x) =
n
∑

i=0

(

n

i

)

Ei(x)En−i(x) − 4
n
∑

i=0

(

n

i

)

Ei(x)xn−i + 2n+2xn.

(4) If n is an odd positive integer, then we obtain the well-known Euler non-linear

recurrence formula
n
∑

i=0

(

n

i

)

EiEn−i = 2En.

3.2 q-Symmetry

Theorem 13 (q-Symmetry 1). For any m,n ∈ N, we have

(−1)m

m
∑

k=0

[

m
k

]

q

En+k(x, q)q−kn+mn = (−1)n

n
∑

k=0

[

n
k

]

q−1

Fm+k(−x, q−1)q(
n

2)−(k

2). (8)

This identity (8) can be viewed as a q-analogue to the polynomial version of the integral
Kaneko-Momiyama’s formulae on Euler polynomials (3).

10



Proof. Let x, y be two q-commuting variables with xy = q−1yx. We compute the generating
functions

L(w, x, y) =
∞
∑

m=0

∞
∑

n=0

(−1)m

m
∑

k=0

[

m
k

]

q

En+k(w, q)q−kn+mn xm

[m]q!

yn

[n]q!
,

R(w, x, y) =
∞
∑

m=0

∞
∑

n=0

(−1)n

n
∑

k=0

[

n
k

]

q

Fm+k(−w, q−1)q(
n

2)−(k

2) xm

[m]q!

yn

[n]q!
,

where w is a commuting variable with x and y.

L(w, x, y) =
∞
∑

m=0

∞
∑

n=0

(−1)m

m
∑

k=0

[

m
k

]

q

En+k(w, q)q−kn yn

[n]q!

xm

[m]q!

=
∞
∑

m=0

∞
∑

n=0

(−1)m

m
∑

k=0

En+k(w, q)q−kn yn

[n]q!

xk

[k]q!

xm−k

[m − k]q!

=
∞
∑

j=0

∞
∑

k=0

∞
∑

n=0

En+k(w, q)
(−x)k

[k]q!

yn

[n]q!

(−x)j

[j]q!

=

(

∞
∑

i=0

Ei(x, q)
i
∑

k=0

(−x)k

[k]q!

yi−k

[i − k]q!

)

eq(−x)

=
2eq(w(y − x))

eq(y − x) + 1
eq(−x).

R(w, x, y) =
∞
∑

m=0

∞
∑

n=0

(−1)n

n
∑

k=0

Fm+k(−w, q−1)
xm

[m]q!

yk

[k]q!

q(
n−k

2 )yn−k

[n − k]q!

=
∞
∑

j=0

∞
∑

k=0

∞
∑

m=0

(−1)j+kFm+k(−w, q−1)
xm

[m]q!

yk

[k]q!

yj

[j]q−1 !

=

(

∞
∑

m=0

∞
∑

k=0

Fm+k(−w, q−1)
xm

[m]q!

(−y)k

[k]q!

)

eq(−y)

=
2eq(−w(y − x))

eq−1(x − y) + 1
eq−1(−y).

Hence it follows that

R(w, x, y)eq(y) =
2eq(w(y − x))

eq−1(x − y) + 1

=
2eq(w(y − x))

eq(y − x) + 1
eq(y − x)

= L(w, x, y)eq(y),

which provides R(w, x, y) = L(w, x, y). Therefore we can complete the proof.
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As q → 1 in (8) of Theorem 13, we have a symmetric relation for the ordinary Euler
polynomials:

Theorem 14. For any m,n ∈ N, we have

(−1)m

m
∑

k=0

(

m
k

)

En+k(x) = (−1)n

n
∑

k=0

(

n
k

)

Em+k(−x).

Theorem 15 (q-Symmetry 2). For any m,n ∈ N, we have

(−1)m

m+1
∑

k=0

[

m + 1
k

]

q

[n + k + 1]qEn+k(x, q)q−k(n+1)−(n

2)+mn+1

+ (−1)n

n+1
∑

k=0

[

n + 1
k

]

q−1

[m + k + 1]q−1Fm+k(−x, q−1)qk(m+1)+(m

2 ) = 0. (9)

Proof. Applying q-derivative formula to the identity (8) in Theorem 13 replaced m, n by
m + 1, n + 1, respectively, we have the result.

As q → 1 in (9) of Theorem 15, we have another symmetric formula for the ordinary
Euler polynomials:

Theorem 16. For any m,n ∈ N, we have

(−1)m

m+1
∑

k=0

(

m + 1
k

)

(n+k+1)En+k(x)+(−1)n

n+1
∑

k=0

(

n + 1
k

)

(m+k+1)Em+k(−x) = 0. (10)

This can be regarded as an Euler polynomial version of Kaneko-Momiyama formulae for
Bernoulli numbers. To be precise, put m = n and x = 0 in (10). Then we have an analogue
of Kaneko’s formula:

Theorem 17. For any n ∈ N,

n+1
∑

k=0

(

n + 1

k

)

(n + k + 1)En+k = 0.

Then we obtain the nice formula

E2n+1 = −
1

n + 1

n
∑

k=0

(

n + 1

k

)

(n + k + 1)En+k. (11)

Remark 18. The formula (11) has a strong resemblance to the usual recurrence (6), (0 ≤
k ≤ 2n). Using the formula (6) and according to the fact that Ek = 0 for k even positive
integers, we need the n first terms with odd indexes k to compute E2n+1. But the recurrence
formula (11) needs only half the number of those terms (Ek with n ≤ k ≤ 2n with k odd)
to calculate E2n+1.
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Put x = 0 in (10). Then we have an analogue of Momiyama’s formula:

Theorem 19. For any m,n ∈ N, we have

(−1)m

m+1
∑

k=0

(

m + 1
k

)

(n + k + 1)En+k + (−1)n

n+1
∑

k=0

(

n + 1
k

)

(m + k + 1)Em+k = 0.

Using q-integral formula to (8) in Theorem 13, we have

Theorem 20 (q-Symmetry 3). For any m,n ∈ N and a, b ∈ R,

(−1)m

m
∑

k=0

[

m
k

]

q

En+k+1(a, q) − En+k+1(b, q)

[n + k + 1]q
q−kn+mn

+ (−1)n

n
∑

k=0

[

n
k

]

q−1

Fm+k+1(−a, q−1) − Fm+k+1(−b, q−1)

[m + k + 1]q
q(

n

2)−(k

2) = 0.

As q → 1, we get

Theorem 21. For any m,n ∈ N and a, b ∈ R,

(−1)m

m
∑

k=0

(

m

k

)

En+k+1(a) − En+k+1(b)

n + k + 1
+ (−1)n

n
∑

k=0

(

n

k

)

Em+k+1(−a) − Em+k+1(−b)

m + k + 1
= 0.
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