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Abstract

The generalized Hosoya triangle is an arrangement of numbers in which each entry
is a product of two generalized Fibonacci numbers. We prove the GCD property for
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the star of David of length two. We give necessary and sufficient conditions such that
the star of David of length three satisfies the GCD property. We propose some open
questions and a conjecture for the star of David of length bigger than or equal to four.
We also study GCD properties and modularity properties of generalized Fibonacci
numbers.

1 Introduction

The nth generalized Fibonacci number is a linear combination of the elements Fn−2 and Fn−1

with integer coefficients. That is, if we take two integers a and b, then the first and second
generalized Fibonacci numbers are a and b, respectively, and the nth generalized Fibonacci
number has the form aFn−2 + bFn−1, where n > 2. If a = b = 1, then we obtain the nth
regular Fibonacci number.

The generalized Hosoya triangle is a triangular arrangement of numbers that resembles
the Pascal triangle. Each entry is the product of two generalized Fibonacci numbers instead
of a binomial coefficient. In particular, the regular Hosoya triangle [5, 7] consists of a
triangular array of numbers where each entry is the product of two Fibonacci numbers.
Hosoya [5] published this triangle in 1976.

Several authors have studied greatest common divisor (GCD) properties of some geomet-
ric configurations in the Pascal triangle and the regular Hosoya triangle (see, for example,
[1, 2, 3, 4, 6, 8]). We study GCD properties of a special configuration of points in the gen-
eralized Hosoya triangle called the generalized star of David (GSD). We form a GSD by the
vertices of two triangles from a regular hexagon in a generalized Hosoya triangle. We say
that a star of David has length l if a side of the regular hexagon has length l.

Many authors have studied properties of the star of David of length two and/or its
generalizations (see, for example [1, 2, 3, 4, 6, 8]). With the exception of the work done by
Flórez and Junes [1] all these papers consider the star of David in the Pascal triangle.

Hoggatt and Hansell [4] proved that the product of all points in a star of David of length
two in the Pascal triangle forms a perfect square. Hillman and Hogart [3] proved that the
GCD of each triangle of the star of David of length two in the Pascal triangle gives the same
number. These two properties are called the product and GCD properties, respectively, of
the star of David. Flórez and Junes [1] proved that both properties are true for any star of
David of length two in the regular Hosoya triangle.

We prove the GCD property of the star of David of length two in the generalized Hosoya
triangle. We give necessary and sufficient conditions such that the star of David of length
three in the generalized Hosoya triangle satisfies the GCD property. These conditions depend
on L2–divisibility, where L2 is the second Lucas number. To prove these results, we introduce
new properties of generalized Fibonacci numbers. In particular, we provide an analog to
the identity gcd(Fn, Fm) = Fgcd(n,m) for generalized Fibonacci numbers and show that if a
generalized Fibonacci number Gn is divisible by Fw, then the GCD of Gn and Gn+kw is Fw

for any non–zero integer k.
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We propose a conjecture that gives necessary and sufficient conditions to determine
whether the star of David of length l ≥ 4 has the GCD property. These conditions de-
pend on Ll−1–divisibility, where Ll−1 is the (l − 1)th Lucas number.

2 Preliminaries and Examples

In this section we give some examples and introduce notation and definitions that we are
going to use throughout the paper. Some of them are well known, but we prefer to restate
them here to avoid ambiguities.

2.1 The Generalized Hosoya Triangle

We denote by {Gn(a, b)}n∈N the generalized Fibonacci sequence with integers a and b. That
is,

G1(a, b) = a,G2(a, b) = b and Gn(a, b) = Gn−1(a, b) +Gn−2(a, b) for all n ∈ N \ {1, 2}.

It is clear that Gn(1, 1) = Fn. When there is no ambiguity with a and b, we denote the nth
term of the generalized Fibonacci sequence by Gn instead of Gn(a, b). The first eight terms
of the generalized Fibonacci sequence with integers a and b are

a, b, a+ b, a+ 2b, 2a+ 3b, 3a+ 5b, 5a+ 8b, and 8a+ 13b.

Notice that every element in this sequence is a linear combination of the integers a and
b with Fibonacci coefficients. In general, we have that Gn = aFn−2 + b Fn−1 for all n ∈ N

(see, for example, [7, Thm. 7.1, p. 109].)
The generalized Hosoya sequence {Ha,b(r, k)}r≥k≥1 is defined by the double recursion

Ha,b(r, k) = Ha,b(r − 1, k) +Ha,b(r − 2, k)

and
Ha,b(r, k) = Ha,b(r − 1, k − 1) +Ha,b(r − 2, k − 2)

where r > 2 and 1 ≤ k ≤ r, with initial conditions

Ha,b(1, 1) = a2; Ha,b(2, 1) = ab; Ha,b(2, 2) = ab; Ha,b(3, 2) = b2.

It is easy to see that if we let a = b = 1 in the generalized Hosoya sequence, then we obtain
the regular Hosoya sequence {H(r, k)}r≥k≥1 as Koshy defines it [7, pp. 187–188]. It is known
that

H(r, k) = Fk Fr−k+1

for all natural numbers r, k such that k ≤ r, see [7, p. 188]. This and Proposition 1 show
that our definition of {Ha,b(r, k)}r≥k≥1 is the “right” generalization for {H(r, k)}r≥k≥1.

3



Proposition 1. If r and k are natural numbers such that k ≤ r, then

Ha,b(r, k) = Gk Gr−k+1,

for all integers a, b ∈ Z.

Proof. We prove first that Ha,b(r, 1) = aGr for all r ∈ N.
Since Ha,b(r, 1) = Ha,b(r − 1, 1) +Ha,b(r − 2, 1) for all r ≥ 3, where Ha,b(1, 1) = a2 and

Ha,b(2, 1) = ab, a straightforward argument by strong induction on r shows that

Ha,b(r, 1) = aGr for all r ∈ N. (a)

Using a similar argument, we can prove that

Ha,b(r, 2) = bGr−1 for all r ∈ N \ {1}. (b)

Now, for any k ∈ N let P (k) be the statement: Ha,b(r, k) = Gk Gr−k+1 for all natural
numbers r such that r ≥ k. We want to prove by strong induction that P (k) is true for all
k ∈ N.

Statements (a) and (b) show that P (1) and P (2) are true. This proves the basis step.
We assume now that P (1), . . . , P (k) are true for a fixed natural number k ≥ 2 and prove
that P (k + 1) is true. Let r be a natural number such that r ≥ k + 1. Therefore, r − 1 ≥ k
and r − 2 ≥ k − 1. Since P (k − 1) and P (k) are true, we can write

Ha,b(r − 2, k − 1) = Gk−1Gr−k and Ha,b(r − 1, k) = Gk Gr−k.

This and the recurrence Ha,b(r, k + 1) = Ha,b(r − 1, k) +Ha,b(r − 2, k − 1) show that

Ha,b(r, k + 1) = Gk+1 Gr−k.

Thus, P (k + 1) is true. This proves the proposition.

If there is no ambiguity with the integers a and b we write H(r, k) instead of Ha,b(r, k).
The generalized Hosoya sequence gives rise to the generalized Hosoya triangle where the
entry in position k, taken from left to right, of the rth row is equal to H(r, k) (see Table 1).

H(1, 1)
H(2, 1) H(2, 2)

H(3, 1) H(3, 2) H(3, 3)
H(4, 1) H(4, 2) H(4, 3) H(4, 4)

H(5, 1) H(5, 2) H(5, 3) H(5, 4) H(5, 5)
H(6, 1) H(6, 2) H(6, 3) H(6, 4) H(6, 5) H(6, 6)

Table 1: Generalized Hosoya Triangle.
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If P is a point in a generalized Hosoya triangle, then it is clear that there are two unique
positive integers r and k such that r ≥ k with P = H(r, k). We call the pair (r, k) the
rectangular coordinates of the point P .

We now give a more convenient system of coordinates for points in the generalized Hosoya
triangle. Proposition 1 shows that every entry of the generalized Hosoya triangle is the
product of two generalized Fibonacci numbers. In particular, if we use Proposition 1 for all
entries of Table 1, we obtain Table 2.

G1G1

G1G2 G2G1

G1G3 G2G2 G3G1

G1G4 G2G3 G3G2 G4G1

G1G5 G2G4 G3G3 G4G2 G5G1

G1G6 G2G5 G3G4 G4G3 G5G2 G6G1

Table 2: Generalized Hosoya Triangle.

Notice that any diagonal of Table 2 is the collection of all generalized Fibonacci numbers
multiplied by a particular Gn. More precisely, an nth diagonal in the generalized Hosoya tri-
angle is the collection of all generalized Fibonacci numbers multiplied by Gn. We distinguish
between slash diagonals and backslash diagonals, with the obvious meaning. We write S(Gn)
and B(Gm) to mean the slash diagonal and backslash diagonal, respectively (see Figure 1).
We formally define these two diagonals as

S(Gn) = {H(n+ i− 1, n)}∞i=1 = {Gn Gi|i ∈ N},

and
B(Gm) = {H(m+ i− 1, i)}∞i=1 = {Gi Gm|i ∈ N}.

G1 G1

G2 G1

G3 G1

G4 G1

G5 G1

G6 G1

G1 G2

G2 G2

G3 G2

G4 G2

G5 G2

G1 G3

G2 G3

G3 G3

G4 G3

G1 G4

G2 G4

G3 G4

G1 G5

G2 G5G1 G6

S(G3)
B(G4)

Figure 1: The slash diagonal S(G3) and backslash diagonal B(G4).

We can associate an ordered pair of natural numbers to every element of a generalized
Hosoya triangle. If P is a point in a generalized Hosoya triangle, then there are two gen-
eralized Fibonacci numbers Gm and Gn such that P ∈ B(Gm) ∩ S(Gn) (Figure 1 depicts
this fact for m = 4 and n = 3.) Thus, P = Gm Gn. Therefore, the point P corresponds
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to the pair (m,n). It is clear that this correspondence is a bijection between points of a
generalized Hosoya triangle and ordered pairs of natural numbers. The pair (m,n) is called
the diagonal coordinate of P . Thus, we can view Proposition 1 as a way to change from
rectangular coordinates to diagonal coordinates and vice–versa.

Throughout this paper we use only diagonal coordinates to refer to any point in a gen-
eralized Hosoya triangle.

We now give some examples of generalized Hosoya triangles. We can construct different
triangles by fixing values for the integers a and b. For the first example we fix a = b = 1 and
obtain the following numerical sequence.

G1 = 1, G2 = 1, G3 = 2, G4 = 3, G5 = 5, G6 = 8, . . .

Substituting these values in Table 2 we obtain the regular Hosoya triangle (see [5, 7] and
Table 3).

1
1 1

2 1 2
3 2 2 3

5 3 4 3 5
8 5 6 6 5 8

Table 3: Regular Hosoya Triangle.

We now fix a = 7 and b = 2 and obtain the following numerical sequence.

G1 = 7, G2 = 2, G3 = 9, G4 = 11, G5 = 20, G6 = 31, . . .

Substituting these values in Table 2 we obtain a Hosoya triangle with a = 7 and b = 2 (see
Table 4 part (a)). Similarly, if we fix a = 5 and b = 8 we obtain another numerical sequence.

G1 = 5, G2 = 8, G3 = 13, G4 = 21, G5 = 34, G6 = 55, . . .

The Hosoya triangle generated by this new sequence is depicted in Table 4 part (b).

49 25
14 14 40 40

63 4 63 65 64 65
77 18 18 77 105 104 104 105

140 22 81 22 140 170 168 169 168 170
217 40 99 99 40 217 275 272 273 273 272 275

(a) (b)

Table 4: Generalized Hosoya triangles.
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2.2 Generalized Star of David

Let E be a regular hexagon formed with points lying in a generalized Hosoya triangle. We
say that E has length l if a side of the hexagon contains l points from the generalized Hosoya
triangle. We denote the corner points of E by a1, a2, a3 and b1, b2, b3. The star of David of
length l is a configuration formed by the six corner points of E. That is, the star of David
is a configuration of six points in the Hosoya triangle formed by two triangles with vertices
a1, a2, a3 and b1, b2, b3 of E. Figure 2 part (a) represents a star of David of length two. The
continuous lines in Figure 2 parts (b) and (c) show stars of David of length three and four,
respectively.

a1

a2

a3

b1

b2

b3

(a) (b) (c)

a1

a2

a3

b1

b2

b3

a1

a2

a3

b1

b2

b3

Figure 2: Stars of David.

We first consider some examples of the generalized star of David of length two as in
Figure 2 part (a). We can obtain a complete characterization of its vertices a1, a2, a3 and
b1, b2, b3, by knowing the location of one. For instance, if (m,n) are the diagonal coordinates
of a2, then we have

a1 = Gm+1 Gn−2, a2 = Gm Gn and a3 = Gm+2 Gn−1,
b1 = Gm Gn−1, b2 = Gm+2 Gn−2 and b3 = Gm+1 Gn.

We need to give values to a, b,m and n to consider some particular examples. For instance,
if we take a = b = 1 (the regular Hosoya triangle) and m = 5, n = 4, then we obtain

a1 = 8, a2 = 15, a3 = 26, b1 = 10, b2 = 13, b3 = 24.

Similarly, if we take a = 7, b = 2 (generalized Hosoya triangle in Table 4 part (a)), m = 3
and n = 3, then we obtain

a1 = 77, a2 = 81, a3 = 40, b1 = 18, b2 = 140, b3 = 99.

If we now take a = 5, b = 8 (generalized Hosoya triangle in Table 4 part (b)), m = 2 and
n = 4, then we have

a1 = 104, a2 = 168, a3 = 273, b1 = 104, b2 = 168, b3 = 273.
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Notice that in all three cases gcd(a1, a2, a3) = gcd(b1, b2, b3) = 1. Flórez and Junes proved
in [1, Thm. 3.2] that this is always true for any star of David of length two in the regular
Hosoya triangle. We prove a more general result. Namely, we show that gcd(a1, a2, a3) =
gcd(b1, b2, b3) = (gcd(a, b))2 for any star of David of length two in any generalized Hosoya
triangle (see Theorem 9).

We now consider some examples of the generalized star of David of length three as in
Figure 2 part (b). We can obtain a complete characterization of its vertices a1, a2, a3 and
b1, b2, b3 by knowing the location of one. For instance, if (m,n) are the diagonal coordinates
of a2, then we have

a1 = Gm+2 Gn−4, a2 = Gm Gn and a3 = Gm+4 Gn−2,
b1 = Gm Gn−2, b2 = Gm+4 Gn−4 and b3 = Gm+2 Gn.

We also need to give values to a, b,m and n to consider some particular examples. If we take
a = b = 1 (the regular Hosoya triangle) and m = 3, n = 5, then we get

a1 = 5, a2 = 10, a3 = 26, b1 = 4, b2 = 13, b3 = 25.

Therefore, gcd(a1, a2, a3) = gcd(b1, b2, b3) = 1. However, if we take m = 8 and n = 16,
then

a1 = 7920, a2 = 20727, a3 = 54288, b1 = 7917, b2 = 20736, b3 = 54285,

gcd(a1, a2, a3) = 9 and gcd(b1, b2, b3) = 3. In this case gcd(a1, a2, a3) 6= gcd(b1, b2, b3). We
give in this paper a complete characterization of all stars of David of length three in the
generalized Hosoya triangle for which gcd(a1, a2, a3) = gcd(b1, b2, b3) (see Theorem 12).

We can construct similar examples for the star of David of length four. In general, if
(m,n) are the diagonal coordinates of a2, then the vertices of the star of David of length l
in the generalized Hosoya triangle are given by

a1 = Gm+(l−1) Gn−2(l−1), a2 = Gm Gn and a3 = Gm+2(l−1) Gn−(l−1),
b1 = GmGn−(l−1), b2 = Gm+2(l−1)Gn−2(l−1) and b3 = Gm+(l−1)Gn,

for positive integers m and n such that n > 2(l − 1). We require that n > 2(l − 1) so that
a1, a3, b1 and b2 correspond to “real” points in the generalized Hosoya triangle.

We finish this subsection with a definition. We say that a star of David of length l has
the GCD property if gcd(a1, a2, a3) = gcd(b1, b2, b3).

2.3 Auxiliary Results

The multiplication property of the GCD says that if a and b are co–prime, then gcd(ab, c) =
gcd(a, c) gcd(b, c). We use this property to prove Lemma 8, which plays a special role in
the proof of the main results, Theorems 9 and 12. In addition, we also use the following
proposition.

Proposition 2 ([1, Proposition 2.2]). If gcd(a, c) = gcd(b, d) = 1, then gcd(ab, cd) =
gcd(a, d) gcd(b, c), where a, b, c, d ∈ Z.
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3 GCD Properties of Generalized Fibonacci Numbers

In this section we study GCD properties of generalized Fibonacci numbers as well as some of
its modularity properties. In particular, we provide an analog to the identity gcd(Fn, Fm) =
Fgcd(n,m) for generalized Fibonacci numbers. That is, gcd(Gn, Gm) is always a divisor of
gcd(a, b) F|m−n| with equality when |m− n| ∈ {1, 2}. We also prove that if a generalized
Fibonacci number Gn is divisible by Fw, then the GCD of Gn and Gn+kw is Fw for any
non–zero integer k.

We use these results to prove the GCD property for the star of David of length two and
three in the generalized Hosoya triangle. We write a | b to mean that a divides b.

Lemma 3. If gcd(a, b) = d, a′ = a/d and b′ = b/d, then Gn(a, b) = dGn(a
′, b′) for n ∈ N.

Proof. We know that Gn(a, b) = aFn−2 + bFn−1 for all n ∈ N. Thus,

Gn(a, b) = da′Fn−2 + db′Fn−1 = d(a′Fn−2 + b′Fn−1) = dGn(a
′, b′).

This proves the Lemma.

Recall that we use Gm for Gm(a, b) for any integer m if there is no ambiguity. Similarly,
we use G′

m for Gm(a
′, b′) if d = gcd(a, b), a′ = a/d and b′ = b/d.

Lemma 4. If a, b, n and w are integers, then

Gn+w(a, b) = (aFw−1 + bFw)Fn−2 + (aFw + bFw+1)Fn−1 = Gn (Gw+1, Gw+2) .

Proof. It is well known that Fn+m = Fn−1Fm + FnFm+1, see [7, Ex. 47, p. 89]. Thus,

Gn+w(a, b) = aFw+n−2 + bFn−1+w

= a(Fw−1Fn−2 + FwFn−1) + b(Fn−2Fw + Fn−1Fw+1)

= (aFw−1 + bFw)Fn−2 + (aFw + bFw+1)Fn−1

= Gw+1Fn−2 +Gw+2Fn−1

= Gn (Gw+1, Gw+2) .

This proves the lemma.

Theorem 5. Let d = gcd(a, b). If n and w are natural numbers, then gcd(Gn, Gn+w) | dFw.
Moreover, if w = 1, 2, then gcd(Gn, Gn+w) = d.

Proof. The Lemma 3 implies that gcd(Gn, Gn+w) = d gcd(G′
n, G

′
n+w). Thus, it is enough to

prove the theorem for gcd(G′
n, G

′
n+w).

We first prove that gcd(G′
n, G

′
n+1) = 1. We use induction on n. If n = 1, then

gcd(G′
1, G

′
2) = gcd(a′, b′) = 1.
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This proves the basis step. We now suppose that gcd(G′
k, G

′
k+1) = 1 for a fixed natural

number k and prove gcd(G′
k+1, G

′
k+2) = 1.

Let r be the natural number such that gcd(G′
k+1, G

′
k+2) = r. Thus,

r | G′
k+1 and r | G′

k+2. (1)

Therefore, r | (G′
k+2 − G′

k+1). Thus, r | G′
k. This and (1) imply that r | gcd(G′

k, G
′
k+1).

Therefore, the inductive hypothesis implies that r = 1. This proves that

gcd(G′
n, G

′
n+1) = 1 for every n ∈ N. (2)

We now prove that gcd(G′
n, G

′
n+w) divides Fw. Let d′ be a divisor of gcd(G′

n, G
′
n+w).

Therefore,

d′ | G′
n and d′ | G′

n+w. (3)

So, d′ divides any linear combination of G′
n and G′

n+w. In particular,

d′ | (G′
n+w − Fw−1G

′
n). (4)

We prove that d′ | FwG
′
n+1. Since G′

k = Gk(a
′, b′) for any positive integer k, from Lemma 4

we have
G′

n+w = (a′Fw−1 + b′Fw)Fn−2 + (a′Fw + b′Fw+1)Fn−1.

Therefore,

G′
n+w − Fw−1G

′
n = [(a′Fw−1 + b′Fw)Fn−2 + (a′Fw + b′Fw+1)Fn−1]− Fw−1(a

′Fn−2 + b′Fn−1).

That is,

G′
n+w − Fw−1G

′
n = b′FwFn−2 + (a′Fw + b′(Fw+1 − Fw−1))Fn−1

= b′FwFn−2 + (a′Fw + b′Fw)Fn−1

= Fw(a
′Fn−1 + b′(Fn−2 + Fn−1))

= Fw(a
′Fn−1 + b′Fn)

= FwG
′
n+1.

This and (4) imply that d′ | FwG
′
n+1. From (2) and (3) we have that gcd(d′, G′

n+1) = 1. This
and d′ | FwG

′
n+1 imply that d′ | Fw. We have shown that any divisor of gcd(G′

n, G
′
n+w) is a

divisor of Fw. This proves that gcd(G
′
n, G

′
n+w) divides Fw.

We now prove the second claim. Equality (2) proves the second claim for w = 1. If
w = 2, then gcd(G′

n, G
′
n+2) divides F2. Therefore, gcd(G′

n, G
′
n+2) = 1 = gcd(a′, b′). This

proves the theorem.

Corollary 6. Let m,n, s and t be positive integers. If |m− n| ∈ {1, 2} and |s− t| ∈ {1, 2},
then

gcd(GmGs, Gn Gt) = gcd(Gm, Gt) gcd(Gs, Gn).
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Proof. Let d = gcd(a, b), a′ = a/d and b′ = b/d. Since |m− n| ∈ {1, 2} and |s− t| ∈ {1, 2},
Theorem 5 shows that gcd(G′

m, G
′
n) = 1 and gcd(G′

s, G
′
t) = 1. This and Proposition 2 imply

that
gcd(G′

mG
′
s, G

′
nG

′
t) = gcd(G′

m, G
′
t) gcd(G

′
s, G

′
n).

Multiplying both sides of this equality by d2 we obtain

d2 gcd(G′
mG

′
s, G

′
nG

′
t) = d gcd(G′

m, G
′
t)d gcd(G

′
s, G

′
n). (5)

Using Lemma 3 one can easily see that

gcd(Gm, Gt) = d gcd(G′
m, G

′
t),

gcd(Gs, Gn) = d gcd(G′
s, G

′
n), and

gcd(Gm Gs, Gn Gt) = d2 gcd(G′
mG

′
s, G

′
nG

′
t).

Substituting these three equalities in (5) we obtain that

gcd(GmGs, GnGt) = gcd(Gm, Gt) gcd(Gs, Gn).

This proves the corollary.

Theorem 7. Let a, b ∈ Z and n,w ∈ N such that gcd(a, b) = 1. Then

Gn ≡ 0 (mod Fw) if and only if gcd(Gn, Gn−w) = gcd(Gn, Gn+w) = Fw.

Proof. The proof of necessity is straightforward.
We prove sufficiency. We suppose thatGn ≡ 0 (mod Fw) and prove that gcd(Gn, Gn−w) =

gcd(Gn, Gn+w) = Fw. Since Gn ≡ 0 (mod Fw), there is a k ∈ Z such that Gn = kFw. From
Lemma 4 we have that for every m ∈ Z

Gm+w = (aFw−1 + bFw)Fm−2 + (aFw + bFw+1)Fm−1

= (aFw−1 + bFw)Fm−2 + (aFw + b(Fw−1 + Fw))Fm−1

= (aFm−2 + bFm−1)Fw−1 + Fw(bFm−2 + aFm−1 + bFm−1).

Thus,
Gm+w = GmFw−1 + Fw(bFm−2 + aFm−1 + bFm−1). (6)

Taking n instead of m in (6) and using that Gn = kFw we obtain

Gn+w = kFwFw−1 + Fw(bFn−2 + aFn−1 + bFn−1)

= Fw(kFw−1 + (bFn−2 + aFn−1 + bFn−1)).

Therefore, Gn+w ≡ 0 (mod Fw). Thus, Fw | gcd(Gn+w, Gn). This and Theorem 5 imply that
Fw = gcd(Gn+w, Gn). Now, taking n− w instead of m in (6) we obtain

Gn = Gn−wFw−1 + Fw(bFn−w−2 + aFn−w−1 + bFn−w−1).

11



Since Gn = kFw, we have that

Gn−wFw−1 = kFw − Fw(bFn−w−2 + aFn−w−1 + bFn−w−1)

= Fw(k − (bFn−w−2 + aFn−w−1 + bFn−w−1)).

This and gcd(Fw, Fw−1) = 1 imply that Gn−w ≡ 0 (mod Fw). So, Fw| gcd(Gn−w, Gn). This
and Theorem 5 imply that Fw = gcd(Gn−w, Gn), proving sufficiency.

Lemma 8. Let α, β, δ, γ, ρ, φ ∈ N and a, b ∈ Z such that gcd(a, b) = 1 and let D =
gcd (Gα Gβ, Gδ Gγ, Gρ Gφ).

1. If α = δ + 1, ρ = δ + 2, β = γ − 2, and φ = γ − 1, then D = 1.

2. If δ = α + 1, ρ = α + 2, β = γ − 1, and φ = γ − 2, then D = 1.

3. If α = δ + 2, ρ = δ + 4, β = γ − 4, and φ = γ − 2, then D = gcd (Gβ, Gρ, GδGγ).

4. If δ = α + 2, ρ = α + 4, β = γ − 2, and φ = γ − 4, then D = gcd(Gα, Gγ , GρGφ).

Proof. It is known that

gcd (Gα Gβ, Gδ Gγ , Gρ Gφ) = gcd (gcd(Gα Gβ, Gδ Gγ), Gρ Gφ) (7)

= gcd (gcd(Gα Gβ, Gρ Gφ), Gδ Gγ) . (8)

We prove part (1). The proof of part (2) is similar and we omit it. Since |α− δ| = 1 and
|β − γ| = 2, Corollary 6 and (7) imply that

D = gcd (gcd(Gα, Gγ) gcd(Gδ, Gβ), GρGφ) . (9)

From Theorem 5, |α− ρ| = 1 and |β − φ| = 1, we have gcd(Gρ, Gα) = gcd(Gφ, Gβ) = 1.
Thus,

gcd (gcd(Gγ, Gα), Gρ) = gcd (gcd(Gδ, Gβ), Gφ) = 1.

This, Proposition 2 and (9) imply that

D = gcd (gcd(Gα, Gγ), Gφ) gcd (gcd(Gδ, Gβ), Gρ) .

Using Theorem 5, |γ − φ| = 1 and |δ − ρ| = 2, we have that D = 1. This proves part (1).
We now prove part (3). The proof of part (4) is similar and we omit it. Theorem 5,

|α− δ| = 2 and |γ − φ| = 2 imply that gcd(Gα, Gδ) = 1 and gcd(Gγ, Gφ) = 1. Therefore,
gcd (gcd(Gα, Gφ), Gδ) = 1 and gcd (gcd(Gα, Gφ), Gγ) = 1. Thus,

gcd (gcd(Gα, Gφ), GδGγ) = 1. (10)

Since |α− ρ| = 2 and |β − φ| = 2, Corollary 6 and (8) imply that

D = gcd(gcd(Gα, Gφ) gcd(Gβ, Gρ), GδGγ). (11)
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Theorem 5, |α− ρ| = 2 and |β − φ| = 2 imply that gcd(Gα, Gρ) = gcd(Gβ, Gφ) = 1.
Therefore, gcd(gcd(Gα, Gφ), gcd(Gβ, Gρ)) = 1. This and the multiplication property of the
GCD imply that

gcd (gcd(Gα, Gφ) gcd(Gβ, Gρ), GδGγ) = gcd (gcd(Gα, Gφ), GδGγ) gcd (gcd(Gβ, Gρ), GδGγ) .

This, (10) and (11) prove that D = gcd (Gβ, Gρ, GδGγ). This proves the lemma.

4 GCD Property for the Star of David of Length Two

and Three

In this section we prove the GCD property for the star of David of length two and give
necessary and sufficient conditions for the star of David of length three to have the GCD
property. We also prove that 9 divides the coordinates of the vertices a2 or b2 in Figure 2
part (b) if and only if the GCD of each triangle gives distinct numbers.

We remind the reader that if d = gcd(a, b), a′ = a/d and b′ = b/d, then we use Gm for
Gm(a, b) and G′

m for Gm(a
′, b′) for any integer m.

Theorem 9. Let d = gcd(a, b). If a1, a2, a3 and b1, b2, b3 are the vertices of the star of David
of length two, then gcd(a1, a2, a3) = gcd(b1, b2, b3) = d2.

Proof. Let a′ = a/d, b′ = b/d, and (m,n) be the diagonal coordinates of a2. We prove
first that gcd(a1, a2, a3) = d2. It is known that a1 = Gm+1 Gn−2, a2 = Gm Gn and a3 =
Gm+2 Gn−1. This and Lemma 3 imply that

gcd(a1, a2, a3) = d2 gcd
(

G′
m+1 G

′
n−2, G

′
m G′

n, G
′
m+2 G

′
n−1

)

.

This and Lemma 8 part (1) show that gcd(a1, a2, a3) = d2.
The proof of gcd(b1, b2, b3) = d2 is analogous to the proof of gcd(a1, a2, a3) = d2. Indeed,

the proof follows from Lemma 3 and Lemma 8 part (2). This proves the theorem.

Lemma 10. Let d = gcd(a, b) and a′ = a/d, b′ = b/d. If a1, a2, a3 and b1, b2, b3 are the
vertices of the star of David of length three where (m,n) are the diagonal coordinates of a2,
then

1. gcd(a1, a2, a3) = d2 gcd(G′
n−4, G

′
m+4, G

′
mG

′
n).

2. gcd(b1, b2, b3) = d2 gcd(G′
m, G

′
n, G

′
n−4G

′
m+4).

Proof. Since (m,n) are the diagonal coordinates of a2,

a1 = Gm+2 Gn−4, a2 = Gm Gn and a3 = Gm+4 Gn−2,
b1 = Gm Gn−2, b2 = Gm+4 Gn−4 and b3 = Gm+2 Gn.
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This and Lemma 3 imply that

gcd(a1, a2, a3) = d2 gcd
(

G′
m+2 G

′
n−4, G

′
m G′

n, G
′
m+4 G

′
n−2

)

.

This and Lemma 8 part (3) show that gcd(a1, a2, a3) = d2 gcd(G′
n−4, G

′
m+4, G

′
mG

′
n). This

proves part (1). The proof of part (2) is similar and we omit it.

Theorem 11. Let d = gcd(a, b) and a′ = a/d, b′ = b/d. If a1, a2, a3 and b1, b2, b3 are the
vertices of the star of David of length three where (m,n) are the diagonal coordinates of a2,
then

1. G′
m ≡ 0 (mod 9) and G′

n ≡ 0 (mod 9) if and only if gcd(a1, a2, a3) < gcd(b1, b2, b3).

2. G′
m+4 ≡ 0 (mod 9) and G′

n−4 ≡ 0 (mod 9) if and only if gcd(a1, a2, a3) > gcd(b1, b2, b3).

Proof. We prove part (1). For sufficiency, we assume that G′
m ≡ 0 (mod 9) and G′

n ≡ 0
(mod 9) and prove that gcd(a1, a2, a3) = 3 d2 and gcd(b1, b2, b3) = 9 d2.

Since G′
m ≡ 0 (mod 9) and G′

n ≡ 0 (mod 9), it is clear that G′
m ≡ 0 (mod 3) and G′

n ≡ 0
(mod 3). This and Theorem 7 imply that

gcd(G′
m, G

′
m+4) = 3 and gcd(G′

n, G
′
n−4) = 3. (12)

Therefore, 3 | gcd(G′
n−4, G

′
m+4, G

′
mG

′
n). We now show that 3 is the only prime divisor of

gcd(G′
n−4, G

′
m+4, G

′
mG

′
n). If p is a prime number and p | gcd(G′

n−4, G
′
m+4, G

′
mG

′
n), then one

can easily see that p | gcd(G′
n−4, G

′
n) or p | gcd(G′

m+4, G
′
4). This and (12) imply that p = 3.

Thus, gcd(G′
n−4, G

′
m+4, G

′
mG

′
n) = 3k for some integer k ≥ 1. We show that k = 1. If k > 1,

then 9 | G′
n−4 and 9 | G′

m+4. Since G′
m ≡ 0 (mod 9) and G′

n ≡ 0 (mod 9), we can conclude
that 9 | gcd(G′

m, G
′
m+4) and 9 | gcd(G′

n, G
′
n−4). This contradicts (12). Thus,

gcd(G′
n−4, G

′
m+4, G

′
mG

′
n) = 3. (13)

We now prove that gcd(G′
m, G

′
n, G

′
n−4G

′
m+4) = 9. From G′

m ≡ 0 (mod 9), G′
n ≡ 0

(mod 9) and (12), we can write that 9 | gcd(G′
m, G

′
n, G

′
n−4G

′
m+4). We show that 3 is the only

prime divisor of gcd(G′
m, G

′
n, G

′
n−4G

′
m+4). If p is a prime and p | gcd(G′

m, G
′
n, G

′
n−4G

′
m+4),

then one can easily see that p | gcd(G′
n−4, G

′
n) or p | gcd(G′

m+4, G
′
4). This and (12) imply

that p = 3. Thus, gcd(G′
m, G

′
n, G

′
n−4G

′
m+4) = 3l for some integer l ≥ 2. We show that l = 2.

If l > 2, then 33 | G′
n−4G

′
m+4. Therefore, 9 | G′

n−4 or 9 | G′
m+4. Since G′

m ≡ 0 (mod 9)
and G′

n ≡ 0 (mod 9), we can conclude that 9 | gcd(G′
m, G

′
m+4) or 9 | gcd(G′

n, G
′
n−4). This

contradicts (12). Thus,
gcd(G′

m, G
′
n, G

′
n−4G

′
m+4) = 9.

This equality, Lemma 10 and (13) show that gcd(a1, a2, a3) = 3 d2 and gcd(b1, b2, b3) = 9 d2,
proving sufficiency of part (1).

Conversely, we assume that gcd(a1, a2, a3) < gcd(b1, b2, b3). This and Lemma 10 imply
that

gcd(G′
n−4, G

′
m+4, G

′
mG

′
n) < gcd(G′

m, G
′
n, G

′
n−4G

′
m+4). (14)
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Therefore, gcd(G′
m, G

′
n, G

′
n−4G

′
m+4) > 1. If p is a prime such that p | gcd(G′

m, G
′
n, G

′
n−4G

′
m+4),

then it is easy to see that p | gcd(G′
m, G

′
m+4) or p | gcd(G′

n, G
′
n−4). This and Theorem 5

imply that p = 3. Thus,

gcd(G′
m, G

′
n, G

′
n−4G

′
m+4) = 3t for some t ≥ 1. (15)

Therefore, 3 | G′
m and 3 | G′

n. This and Theorem 7 imply that gcd(G′
m, G

′
m+4) = 3 and

gcd(G′
n, G

′
n−4) = 3. Thus, 3 | gcd(G′

n−4, G
′
m+4, G

′
mG

′
n). In particular, we have that 3 ≤

gcd(G′
n−4, G

′
m+4, G

′
mG

′
n). This, (14) and (15) imply that

gcd(G′
m, G

′
n, G

′
n−4G

′
m+4) = 3t for some t ≥ 2.

Thus, G′
m ≡ 0 (mod 9) and G′

n ≡ 0 (mod 9). This proves necessity of part (1).
The proof of part (2) is analogous to the proof of part (1). Indeed, in the proof of part

(1) we need to interchange the roles of ai and bi for i = 1, 2, 3, instead of m use m + 4,
instead of n use n− 4, and also use Theorem 7. This completes the proof.

Theorem 12. Let d = gcd(a, b) and a′ = a/d, b′ = b/d. If a1, a2, a3 and b1, b2, b3 are the
vertices of the star of David of length three where (m,n) are the diagonal coordinates of a2,
then

gcd(G′
m+i, G

′
n−i, L

2
2) 6= L2

2 for i = 0, 4 if and only if gcd(a1, a2, a3) = gcd(b1, b2, b3).

Proof. It is a straightforward application of Theorem 11.

5 Open Questions and a Conjecture

Theorem 9 shows that any star of David of length two has the GCD property. Theorem
12 proves that the star of David of length three has the GCD property provided that the
integers a, b,m and n satisfy some L2

2−divisibility conditions. It is natural to ask the following
questions.

Open Question 1. What conditions should we impose on a, b,m and n so that the star of
David of length l ≥ 2 satisfies the GCD property?

Open Question 2. If a star of David of length l ≥ 2 satisfies the GCD property, then what
is the common value of gcd(a1, a2, a3) and gcd(b1, b2, b3)?

Theorem 9 answers open questions 1 and 2 for l = 2. Theorem 12 answers open question 1
for l = 3. We propose the following conjecture to answer open question 1 for l ≥ 4.

Conjecture 13. Let d = gcd(a, b) and a′ = a/d, b′ = b/d. If a1, a2, a3 and b1, b2, b3 are the
vertices of the star of David of length l where (m,n) are the diagonal coordinates of a2, then

gcd(G′
m+i, G

′
n−i, Q) 6= Q for i = 0, . . . , 2(l − 1) if and only if gcd(a1, a2, a3) = gcd(b1, b2, b3),

where Q depends only on l.
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l Q Relationship between Q
and Lucas number

3 32 L2
2

4 42 L2
3

5 72 L2
4

6 112 L2
5

7 18 L6

8 292 L2
7

9 472 L2
8

10 762 L2
9

11 1232 L2
10

12 1192 L2
11

13 322 L12

Table 5: Values of Q for some l.

Table 5 gives empirical values of Q for some l ≥ 4. Notice that the value of Q for l = 3 is
given by Theorem 12. We were not able to find the values of Q for l ≥ 14. We believe that
the values of Q for l = 19 and l = 25 follow the same pattern as l = 7 and l = 13. These
numerical results, for l ≥ 4 were found using Mathematica R©.
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