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Abstract

Let A be a finite union of disjoint sets of consecutive integers and let n be a
positive integer. We give a formula for the number of relatively prime subsets (resp.,
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relatively prime subsets of cardinality k) of A, which generalizes results of Nathanson,
El Bachraoui and others. We give as well similar formulas for the number of subsets
with gcd coprime to n.

1 Introduction

A nonempty set S of integers is said to be relatively prime if gcd (S) = 1, where gcd (S)
denotes the greatest common divisor of the elements of S. Nathanson [10] defines f (n) to
be the number of relatively prime subsets of {1, 2, . . . , n} and, for k ≥ 1, fk (n) to be the
number of relatively prime subsets of {1, 2, . . . , n} of cardinality k. By analogy with Euler’s
phi function φ (n) that counts the number of positive integers a in the set {1, 2, . . . , n} such
that gcd (a, n) = 1, Nathanson [10] defines Φ (n) to be the number of nonempty subsets S of
the set {1, 2, . . . , n} such that gcd (S) is relatively prime to n and, for integer k ≥ 1, Φk (n)
to be the number of subsets S of the set {1, 2, . . . , n} such that gcd(S) is relatively prime to
n and |S| = k. He obtains explicit formulas for these four functions and deduces asymptotic
estimates.

For simplicity, we use a more general notation than Nathanson [10]. For a nonempty set
of integers S, we define

• f (S) = |{H ⊆ S : gcd (H) = 1, H 6= ∅}| as the number of nonempty relatively prime
subsets of S;

• fk (S) = |{H ⊆ S : gcd (H) = 1, |H| = k}| as the number of relatively prime subsets of
S of cardinality k;

• Φ (S, n) = |{H ⊆ S : gcd (H ∪ {n}) = 1, H 6= ∅}| as the number of nonempty subsets
of S with gcd relatively prime to integer n;

• Φk (S, n) = |{H ⊆ S : gcd (H ∪ {n}) = 1, |H| = k}| as the number of subsets of S of
cardinality k and with gcd relatively prime to integer n.

Further, we define [a, b]Z = [a, b] ∩ Z = {a, a+ 1, . . . , b} for integers a < b as the set of
consecutive integers from a to b, inclusive.

El Bachraoui [4] and Nathanson and Orosz [11] generalize the results of Nathanson [10]
to subsets of [ℓ,m]Z for integers 0 ≤ ℓ < m, and prove Theorem 1.

Theorem 1. For non-negative integers ℓ < m and k ≥ 1, using the notation f (ℓ,m) =
f ([ℓ,m]Z) and fk (ℓ,m) = fk ([ℓ,m]Z) of El Bachraoui [4] and Nathanson and Orosz [11] we
have

f (ℓ,m) =
m
∑

d=1

µ (d)
(

2⌊
m

d ⌋−⌊
ℓ

d⌋ − 1
)

(1)

and

fk (ℓ,m) =
m
∑

d=1

µ (d)

(

⌊m/d⌋ − ⌊ℓ/d⌋

k

)

, (2)
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where µ is the Möbius function.

For brevity, define the arithmetic sequence A
(a,b)
n = {a, a+ b, . . . , a+ (n− 1)b} for pos-

itive integers n, a, and b. Ayad and Kihel [1] generalize Theorem 1 to obtain Theorem
2.

Theorem 2. For all positive integers n, a, and b, with gcd (a, b) = 1, using the notation

f (a,b) (n) = f
(

A
(a,b)
n

)

and f
(a,b)
k (n) = fk

(

A
(a,b)
n

)

of Ayad and Kihel [1], we have

f (a,b) (n) =

a+(n−1)b
∑

d=1
gcd(b,d)=1

µ (d)
(

2⌊
n

d⌋+εd − 1
)

(3)

and

f
(a,b)
k (n) =

a+(n−1)b
∑

d=1
gcd(b,d)=1

µ (d)

(
⌊

n
d

⌋

+ εd
k

)

, (4)

where

εd =











0, if d | n;

1, if d ∤ n and (−ab−1) mod d ∈
{⌊

n
d

⌋

d, . . . , n− 1
}

;

0, otherwise.

(5)

El Bachraoui [6] extends Theorem 1 to the union of two sets of consecutive integers, to
obtain Theorem 3.

Theorem 3. For nonnegative integers ℓ1 < m1 < ℓ2 < m2 and for k ≥ 1,

f ([ℓ1,m1]Z ∪ [ℓ2,m2]Z) =

m2
∑

d=1

µ (d)
(

2⌊
m1

d ⌋+⌊m2

d ⌋−⌊ ℓ1−1

d ⌋−⌊ ℓ2−1

d ⌋ − 1
)

(6)

and

fk ([ℓ1,m1]Z ∪ [ℓ2,m2]Z) =

m2
∑

d=1

µ (d)

(
⌊

m1

d

⌋

+
⌊

m2

d

⌋

−
⌊

ℓ1−1
d

⌋

−
⌊

ℓ2−1
d

⌋

k

)

. (7)

We now switch our attention to analogous results for functions Φ and Φk. For the
consecutive integers case, El Bachraoui [4] and Nathanson and Orosz [11] prove Theorem 4.

Theorem 4. For non-negative integers ℓ < m and k ≥ 1, using the notation Φ (ℓ,m) =
Φ ([ℓ,m]Z ,m) and Φk (ℓ,m) = Φk ([ℓ,m]Z ,m) of El Bachraoui [4] and Nathanson and Orosz
[11] we have

Φ (ℓ,m) =
∑

d|m

µ (d) 2(
m

d
−⌊ ℓ

d⌋) (8)

and

Φk (ℓ,m) =
∑

d|m

µ (d)

(

m
d
−
⌊

ℓ
d

⌋

k

)

. (9)
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Ayad and Kihel [1] generalize Theorem 4 to obtain Theorem 5.

Theorem 5. For nonnegative integers a, b, and n, with gcd (a, b) = 1, using the notation

Φ(a,b) (n) = Φ
(

A
(a,b)
n , n

)

and Φ
(a,b)
k (n) = Φk

(

A
(a,b)
n , n

)

of Ayad and Kihel [1] we have

Φ(a,b) (n) =
∑

d|n
gcd(b,d)=1

µ (d)
(

2
n

d − 1
)

(10)

and

Φ
(a,b)
k (n) =

∑

d|n
gcd(b,d)=1

µ (d)

(

n
d

k

)

. (11)

El Bachraoui and Salim [9] extend Theorem 4 to the union of two sets of consecutive
integers, to obtain Theorem 6.

Theorem 6. For nonnegative integers ℓ1 < m1 < ℓ2 < m2 and for k ≥ 1,

Φ ([ℓ1,m1]Z ∪ [ℓ2,m2]Z , n) =
∑

d|n

µ (d) 2⌊
m1

d ⌋+⌊m2

d ⌋−⌊ ℓ1−1

d ⌋−⌊ ℓ2−1

d ⌋ (12)

and

Φk ([ℓ1,m1]Z ∪ [ℓ2,m2]Z , n) =
∑

d|n

µ (d)

(
⌊

m1

d

⌋

+
⌊

m2

d

⌋

−
⌊

ℓ1−1
d

⌋

−
⌊

ℓ2−1
d

⌋

k

)

. (13)

In Section 2, we extend Theorems 3 and 6 to the union of any finite number of disjoint
sets of consecutive integers. The approach we take is simple and much different from the
approach of El Bachraoui [6] and El Bachraoui and Salim [9] for the union of two sets.
Several authors [2, 3, 12, 7, 13, 14, 5] discuss other properties and generalizations.

2 Finite union of disjoint sets of consecutive integers

For positive integers ℓi ≤ mi for i = 1, . . . , r, denote A(i) = [ℓi,mi]Z for brevity and assume
A(i) ∩ A(j) = ∅ for i 6= j. Consider the union

A =
r
⋃

i=1

A(i). (14)

El Bachraoui [6] derives equations for f (A) and fk (A) for r = 2, as in Theorem 3. We extend
this to any r ∈ N in Theorem 8, but first we need Lemma 7. Also, throughout this section,
for a set of integers S we denote P (S) = {H ⊆ S : H 6= ∅} and Pk (S) = {H ⊆ S : |H| = k}.
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Lemma 7. Let Ad = {x ∈ A : d | x} be all the multiples of d found in A, where A is defined
in equation (14). Then,

|Ad| =
r
∑

i=1

(

⌊mi

d

⌋

−

⌊

ℓi − 1

d

⌋)

.

Proof. For i = 1, . . . , r, let A
(i)
d =

{

x ∈ A(i) : d | x
}

, M
(i)
d = {x ∈ [0,mi]Z : d | x}, and L

(i)
d =

{x ∈ [0, ℓi − 1]Z : d | x}. Clearly, we have
∣

∣

∣
A

(i)
d

∣

∣

∣
=
∣

∣

∣
M

(i)
d

∣

∣

∣
−
∣

∣

∣
L
(i)
d

∣

∣

∣
. But, we simply have

∣

∣

∣
M

(i)
d

∣

∣

∣
=
⌊

mi

d

⌋

and
∣

∣

∣
L
(i)
d

∣

∣

∣
=
⌊

ℓi−1
d

⌋

. So,

∣

∣

∣
A

(i)
d

∣

∣

∣
=
⌊mi

d

⌋

−

⌊

ℓi − 1

d

⌋

.

Now, since Ad =
r
⋃

i=1

A
(i)
d and since A

(i)
d ∩ A

(j)
d = ∅ for i 6= j, we have |Ad| =

r
∑

i=1

∣

∣

∣
A

(i)
d

∣

∣

∣
which

completes the proof.

Theorem 8. For A defined in equation (14), we have

f(A) =

max{m1,...,mr}
∑

d=1

µ (d)

(

2

r∑

i=1

(⌊mi

d ⌋−⌊
ℓi−1

d ⌋)
− 1

)

; (15)

fk(A) =

max{m1,...,mr}
∑

d=1

µ (d)

(

r
∑

i=1

(⌊

mi

d

⌋

−
⌊

ℓi−1
d

⌋)

k

)

. (16)

Proof. We begin by proving equation (15). From the total amount of nonempty subsets of
A, remove those subsets that are not relatively prime:

f (A) = |P (A)| −

∣

∣

∣

∣

∣

⋃

p prime

P (Ap)

∣

∣

∣

∣

∣

.

Using inclusion-exclusion and the same principle as in the proof of Ayad and Kihel [1,
Theorem 5], we obtain

f (A) =

max{m1,...,mr}
∑

d=1

µ (d)
(

2|Ad| − 1
)

.

Applying Lemma (7), we obtain equation (15).
To prove equation (16), from the total amount of subsets of A with cardinality k, remove

those subsets that are not relatively prime:

fk (A) = |Pk (A)| −

∣

∣

∣

∣

∣

⋃

p prime

Pk (Ap)

∣

∣

∣

∣

∣

.
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Using inclusion-exclusion and the same principle as in the proof of Ayad and Kihel [1,
Theorem 5], we obtain

fk(A) =

max{m1,...,mr}
∑

d=1

µ (d)

(

|Ad|

k

)

.

Applying Lemma (7), we obtain equation (16).

Similarly, we now extend Theorem 6.

Theorem 9. Define A as in equation (14). Then for any integer k ≥ 1,

Φ (A, n) =
∑

d|n

µ (d)

(

2

r∑

i=1

(⌊mi

d ⌋−⌊
ℓi−1

d ⌋)
− 1

)

; (17)

Φk (A, n) =
∑

d|n

µ (d)

(

r
∑

i=1

(⌊

mi

d

⌋

−
⌊

ℓi−1
d

⌋)

k

)

. (18)

Proof. We begin by proving equation (17). Notice that

Φ (A, n) = |P (A)| −

∣

∣

∣

∣

∣

∣

∣

∣

⋃

p prime
p|n

P (Ap)

∣

∣

∣

∣

∣

∣

∣

∣

.

As in the proof of Theorem 8, we have

Φ (A, n) =
∑

d|n

µ (d)
(

2|Ad| − 1
)

.

Applying Lemma 7 proves equation (17).
To prove equation (18), notice that

Φk (A, n) = |Pk (A)| −

∣

∣

∣

∣

∣

∣

∣

∣

⋃

p prime
p|n

Pk (Ap)

∣

∣

∣

∣

∣

∣

∣

∣

.

As in the proof of Theorem 8, we have

Φk (A, n) =
∑

d|n

µ (d)

(

|Ad|

k

)

.

Applying Lemma 7 proves equation (18).
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