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Abstract

Let A be a finite subset of N including 0 and let f4(n) be the number of ways to
write n = Y57 €;2', where ¢; € A. We consider asymptotics of the summatory function
sa(r,m) of fa(n) from m2" to m2™™! — 1, and show that s4(r,m) ~ c(A,m)|A|" for
some nonzero ¢(A,m) € Q.

Introduction

Let f4(n) denote the number of ways to write n = Y2 €;2¢, where ¢; belongs to the set

A:: {0=a07a17"‘7az}7

with a; € N and a; < a;1 for all 0 <i < z—1. For more on this topic, see the author’s previous
work [1]. We parameterize A in terms of its s even elements and (z+1) — s :=t odd elements

as follows:

A={0=2by,2by,...,2b5,2c1 +1,...,2¢c,+ 1}
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If n is even, then ¢y = 0, 2bs, 2b3, . .., or 2bs and

fa(n) = fa(n/2) + fa((n—2b2)/2) + fa((n —2b3)/2) + -+ fa((n—2bs)/2).

Writing n = 2¢, we have

fa(20) = fa(l) + fa(€=ba) + fa(l=bz) + -+ fa(l = bs),

so for any even n, f4(n) satisfies a recurrence relation of order b;.
Similarly, if n =2 + 1 is odd, then €y =2¢; +1,2¢c0+1,..., or 2¢; + 1, and

fa@0+1) = fa(l—c1) + fall=co) +-+ fall - cp),

so for any odd n, fa(n) satisfies a recurrence relation of order ¢;. Dennison, Lansing,
Reznick, and the author [3] gave this argument for fu,(n), the b-ary representation of n
with coefficients from A, using residue classes mod b.

Example 1. Let A={0,1,3,4}. We can write A ={2(0),2(0) +1,2(1) +1,2(2)}. Then
fa20) = fa(l) + fa(£=2) and  fa(20+1) = fa(€) + fa(€-1). (1)

In general, let
fa(2Fm)
[—
wk(m) _ fA(2 m 1)

fA(ka - az)
We shall consider the fixed (a, + 1) x (a, + 1) matrix M4 such that for any &k > 0,
Wie1 = M awy,.

Example 2. Returning to the set A ={0,1,3,4} of Example 1 and using the equations in
(1), we have

fa(25m) fa(2km) + fa(2Fm - 2)
fa(2¥tm - 1) fa(@Fm 1) + fa(2Fm - 2)
wsi(m) =| fa(@*'m-2) |=| fa(2*m-1)+ fa(2"m-3) (2)

fa(25tm = 3) fa(2m =2) + fa(2"m - 3)
fa(2¥m - 4) fa(2bm =2) + f4(25m - 4)
10100 fA(2’“m)
0110 0[] fa2*m-1)

=10 101 0[] fa@m-2)
001 1 0[] fa(@m-3)
001 0 1)\ fa(2m-4)

If M4 is the matrix in (2), then wy,1(m) = M qwi(m).
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We now review some basic concepts of sequences from Section 8.1 of Lidl and Niederreiter
[5] and include a matrix view of recurrence relations, following Reznick [6].
Consider a sequence (b(n)) such that

b(n)+cp1b(n—1)+cpob(n-2)+-+ceb(n—k)=0 (3)
for all n >k and ¢; € N. By shifting the sequence, we see that
b(n+k)+cpb(n+k-1)+cpob(n+k-2)+-+cb(n+k-k)=0 (4)

for n > 0. Then (3) is a homogeneous k-th order linear recurrence relation, and (b(n)) is a
homogeneous k-th order linear recurrence sequence. For any sequence (b(n)) satisfying (3)
we define the characteristic polynomial

k- k-2

f(x) = 2% + 2™+ g2+ 1 qq. (5)

We can also consider a recurrence relation from the point of view of a matrix system,
considering k sequences indexed as (b;(n)) for 1 <i <k which satisfy

k
bi(n+1) = ;mijbj(n)

for n>0and 1< <k. Then

( bl(n.+ 1) ) ( 777/‘11 Wl}k )( b1(n) )
bk(n.+ 1) m'kl m.kk bk(n)

for n > 0. To simplify the notation, if M =[m;;] and

b1 (n)
B(n) = : :
bk(n)

then B(n+1) = MB(n) for n >0. Thus B(n) = M"B(0) for n > 0, where

b1(0)
B(0) = :
by (0)
is the vector of initial conditions.

As an additional connection between these two views of linear recurrence sequences, note
that for a sequence satisfying (3),

b(n+1) o 1 - 0 0 b(n)
b(n+2) 0o 0 - 0 0 b(n+1)
b(n+k-1) o 0 - 0 1 b(n+k-2)
b(n+k) —Cop —C1 v+ —Ckg —Ck-1 b(n+k-1)



where this matrix, the companion matriz to g, has characteristic polynomial (-1)¥g.
In this matrix point of view, the characteristic polynomial of M is

g(A) =det(M - \I},).

By the Cayley-Hamilton Theorem, g(M) =0, the k x k zero matrix.
If g(z) is the characteristic polynomial in (5), then

0=g(M)=MF+c_ M+ ¢ o MF2 4o+ oI,
Hence for any n > 0,

0=M"F 4+  M™F 1 gop o M™R2 4 g M
and thus

0= (M"* 4 ey M™ 4 e s M™% 4ot o M™) B(0)
=B(n+k)+c1B(n+k-1)+coB(n+k—-2)+-+cB(n).

Thus each sequence (b;(n)) satisfies the original linear recurrence (4).

2 Main result

We will use the ideas of Section 1 to examine the asymptotic behavior of the summatory
m27 -1

function Y fa(n), but we must first establish a lemma.

n=m2"

Lemma 3 ([4,5.6.5 & 5.6.9]). Let M = [m;;] be an nxn matriz with characteristic polynomial
g(A) and eigenvalues A\, Ao, ..., \,. Then

max| | < {nangl |-

Theorem 4. Let A, f4(n), M4, and wp(m) be as above, with the additional assumption that
there exists some odd a; € A. Define
m2r+l_1

SA(ram) = Z fA(n)

n=m2"

Let |A| denote the number of elements in the set A. Then for a fized value of m,

lim 220 Ay

7—00 |A|7’

for some nonzero constant c(A,m) € Q, so ss(r,m) ~c(A,m)|Al".



Proof. Let g(\) := det(M4 — M) be the characteristic polynomial of M4 with eigenvalues
A1, A2, ..., Ay, where each \; has multiplicity e;. We can write

ax+1

g(A) = Z ap\F.

By Cayley-Hamilton, we know that g (M4) = 0. Thus we have

az+1

0=g(Ma)= ) apM}
k=0

and hence, for all r,

ax+1 az+1
0= ( Z ak]\/[fl) wr(m) = Z apwr ik (m).
k=0

k=0
Since
fa(27 m)
rp(m) = fA(2T+]fm -1) ’
fa(2*m - a.)
we have it
;;) af(2Fm = j) =0 (6)

forall 0<j <a,.
Let I, ={2",2" + 1,27 +2,..., 21 =1}, Then I, =2I,_; u(2,_; +1). Thus

m27 -1
sa(r,m) = fa(n)

n=m2"

m2"-1

= > (fa(2n)+ fa(2n+1))

n=m2r-1

m2"-1

= Z (fa(n) + fa(n=by)+-+ fa(n=0bs)+ fa(n—c1) +-+ fa(n-c¢)).
n=m2r-1

Since

m2"-1 m2"-1 k

oo faln=k)= > fa(n)+ > (fa(m27t = 5) = fa(m2" - j)),
n=m27-1 n=m27r-1 7=1

we deduce that

m2" -1

sa(r,m) = |A| Z fa(n) +h(r,m)

n=m2r-1

:|“4|Sf1(r'_ 1a7n) +’h(T,Tﬂ),



where

h(r,m) = ZS:

bi

Cq

(fa(m27" = j) = fa(m2" - j)) +Zt: (fa(m2r7" = j) = fa(m2" - j))

=2 j=1 i=1j=1
and
a,+1
> agh(r+k,m) =0
k=0

by Equation (6).
Thus we have an inhomogeneous recurrence relation for s4(r,m) and will first consider
the corresponding homogeneous recurrence relation

sa(r,m) =|Alsa(r—1,m),

which has solution s4(r,m) = c¢|A|". Then the solution to our inhomogeneous recurrence
relation is of the form y
sa(r,m) = clAl"+ > pi(\i,r),
i=1
where o
pi(Xir) = Y eI
j=1
By Lemma 3, |\;| is bounded above by the maximum row sum of M 4, which is at most
|A| - 1 since all elements of My are either 0 or 1 and by assumption not all elements have
the same parity. Hence the ¢|A|" term dominates s4(r,m) as r — oo, so

. sa(r,m)
lim ——>——+= =
AR
Observe that

az+1

y
Z oszpi()\i,rJrk):O.

k=0 i=1

Thus we can compute ZZ’;SI agsa(r+k,m), and for sufficiently large r,

az+1 az+1

Y apsa(r+km)=c . o |A|r+k +0=c|A" g (JA]).

k=0 k=0

Then we can solve for ¢ to see that
a+1
2 agpsa(r+kom)
c=c(Am):= =0 —0 : (7)
|Al" g (JA])

It remains to be shown that ¢(A,m) # 0, and we thank the referee for raising this point.
For a particular value of n, all | A" sums of the form

ZeiQi, e€{0=ag<a; < <a,}



have the value of the sum less than or equal to a,(2" - 1). Thus

Ja(0) + fa(l) +-+ fa(a(2" - 1)) > |A". (8)
Fix m. There exists ¢ € N such that m2¢ > a,. Then
Ja(0) + fa(1) + -+ fa(az(2" = 1)) < fa(0) + fa(L) + -+ fa(m2" 1) (9)

=54(0,m) +s4(1,m) + - +sa(n+l-1,m).
Combining (8) and (9), we have
A" < 54(0,m) +s4(1,m) +++s4(n+£—-1,m).
We know from above that s4(r,m) = (¢(A,m) + o(1))|A]". Thus
AP < (e(A,m) +0(1)) (AL + [A + [AP + -+ [A)

< (e(A,m) +o(1)) ||j||1fi.

Dividing both sides by |A|", we see that

¢
1S(C(A’m)+0(l))|l{|4—|_1'
Hence c¢(A,m) # 0 and sa(r,m) ~ c(A,m)|Al". O
3 Examples
Example 5. Let A={0,1,8}. Then
fa(20) = fa(l) + fa(l-4) (10)
and
fa(20+1) = fa(l), (11)
SO
fa(2F1m) 100010000 fa(2km)
fa(2kim - 1) 010000000 |] fa@m-1)
fa(2k1m - 2) 01000100 0/[] fa@m-2)
fa(28m - 3) 00100000 0] fa2m-3)
fa(@*m—-4) =1 0 0 1.0 0 0 1 0 0 || fa(2"m-4)
fa(281m - 5) 000010000 0] fa2m-5)
fa(281m - 6) 000100010 /|] fa2m=-6)
Fa(2kim = 7) 00001000 0/|]| fam-17)
fa(281m - 8) 00001000 1)\ fa(2km-38)




If M4 is the matrix above, then wy,1(m) = M 4wi(m). The characteristic polynomial of M4
is
g(x) =1 =32+ 32% - 323 + 627 - 62° + 325 - 327 + 32% - 2°. (12)

We then compute
SA(3, 1) - 38A(4, 1) + 38A(5, 1) - 38A(6, 1) + 68A(7, 1) - 68A(8, 1)

+354(9,1) = 35.4(10,1) +35.4(11,1) - s.4(12,1)
= -59184

Using the formula from Theorem 4, we see that

-59184  -59184 137
g(3)-27  -5408-27 338

(A1) =

Example 6. Let A=1{0,1,3}. Then

fa(20) = f4(0) (13)
and
fa(20+1) = fa(l) + fa(l-1), (14)
SO
fa(2¥1m) 1000 fa(2km)
fa(2kim — 1) 01 10 || fa(m-1)
fa(2kim - 2) 01 0 0 || fa(2*m-2)
Fa(261m — 3) 00 1 1)\ fa(2m-3)
1 00 0
Hence M4 = 8 1 0 8 satisfies wy,1(m) = M 4wi(m). The characteristic polynomial of
0011
MA is

g(z) = (x-1)*(2* -2 -1). (15)
Let F}, denote the k-th Fibonacci number. Then

fa(2¥=1) = Fry (16)

for all k£ > 0. This can be shown by using induction and Equations (13) and (14).



Considering the summatory function with m = 1 and using Equations (13),(14), and (16),
we see that

sa(r,1) = 2;; fa(n)
_ Z (fa(2n) + fa(2n+1))
_ Z (fa(n) + fa(n) + fa(n=1))
=2s4(r—1,1) +:;1 fa(n-1)
C9sa(r—1,1) Z Fa(n) ¢ Fa@ 1)~ fa@ 1)

=3sa4(r =1L, 1) + fa(27 = 1) = fa(2 - 1)
=3s4(r-1,1)+ F, - F, 4
=3s4(r-1,1) - F,_1.

This is an inhomogeneous recurrence relation for s4(r,1). We first consider the corre-
sponding homogeneous recurrence relation s4(r,1) = 3s4(r - 1,1), which has solution

SA(?", 1) = d13r7

for some d; in Q. Recall that the characteristic polynomial g(x) of M4 has roots 1, ¢, and
¢, where the first has multiplicity 2 and the others have multiplicity 1. Hence the solution
to the inhomogeneous recurrence relation is

SA(’/‘,l) :d13r+d2¢T+d3§gr+d4(1)r+d57"(1)r, (17)
where ds, d3, dy, ds € Q. Observe that the d;3" summand will dominate as r — oo, so

1
lim —SA(C, ) = d1
and s4(r, 1) ~ d;3".

Using Equations (15) and (17), we can compute d; as

sa(r+2,1) =s4(r+1,1) —=s4(r,1) =d13"(3* =3 -1) + da¢" (¢* - - 1)
+dsd (PP —p—1)+dy(12-1-1)
+ds(r+2-(r+1)-r)

= i35 —dy— ds(r ~ 1).



Plugging in 7 =2, r = 1, and r = 0 and computing sums, we see that d; = 4/5. Hence

lim sa(r1) 4
e 35
and s4(r, 1) ~ % .37,
Example 7. Let A ={0,2,3}. Then
fA(Zé) szl(f)—i_fﬂ(g_l) (18)
and
fa20+1) = f4(0-1), (19)
SO
£4(21m) 1100 £4(25m)
Fa(2m - 1) 0010 || fa(2m-1)
£1(25m - 2) 01 1 0 || fa(2¢m-2)
Fi(2¥1m - 3) 000 1)\ fu(2¢m-3)
1 100
00 10 . . .
A~ k+1 = AV .
Hence M ; 01 10 satisfies wy.1(m) = M zwi(m). The characteristic polynomial of
00 01
MA is

g(x) = (x- 1) - 1), (20)
Let F}, denote the k-th Fibonacci number. Then
fa2F-1) = Fiy (21)

for all k£ > 1. This can be shown by using induction and Equations (18) and (19) to prove that
fi(2k=2) = F}, for all k> 2 and observing that Equation (19) gives f ;(2¥-1) = f;(2*1-2).

Considering the summatory function with m =1 and using Equations (18),(19), and (21)
and manipulations similar to those in Example 6, we see that

si(r,1)=3s4(r-1,1) - 2F,_3.
Again, the corresponding homogeneous recurrence relation has solution
s i(r, 1) =dy3",

for some d; in QQ, and we can use Equation (20) to see that the solution to the inhomogeneous
recurrence relation is

s1(r,1) =di3" + dag” + d3” + dy(1)" + dsr(1)", (22)
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where ds, d3, dy, ds € Q. Observe that the d;3" summand will dominate as r - oo, so

i(r, 1
lim —SA(C’ ) 4,
and s 3(r,1) ~ dy3".

Using Equations (20) and (22), we can compute d; as

si(r+2,1) =sz(r+1,1) =s4(r,1) = d13"-5 = dy - ds(r - 1).

Plugging in 7 =2, r = 1, and r = 0 and computing sums, we see that d; = 2/5. Hence

lim sa(r 1) 2
T

and s 4(r,1) ~ 2-3".

In Example 6, we had A = {0,1,3}, and in Example 7, we had A=1{0,2,3)={3-3,3-
1,3-0}. We found ¢(A,1) in Example 6 and ¢(A,1) in Example 7 and can observe that

they have the same denominator. .
Given a set A={0,a1,...,a.}, let A be

A= {0,a.-a.1,...,a.-ay,a.}.

The following chart displays the value ¢(A, 1) for various sets A and their corresponding sets
A, where s4(r,1) ~ ¢(A,1)|A]". Note that in all cases the denominator of c¢(A, 1) is the same
as that of ¢(A,1). The following theorem will show that this holds for all A.

A ¢(A,1) N(e(A,1) | A c(A,1) N(c(A 1))
{0,1,2,4} & 0.636 {0,2,3,4} & 0.273
{0,1,3,4} 1 0.500 {0,1,3,4} 1 0.500
{0,2,3,6} 2 0.221 {0,3,4,6} o 0.141
{0,1,6,9} 2. 0.221 {0,3,8,9} & 0.070
{0,1,7,9y 259 0.202 {0,2,8,9} 2 0.100
{0,4,5,6,9} 4 0.048 {0,3,4,5,9} 2SS 0.080

Table 1: ¢(A, 1) for various sets A and A
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Th/eorem 8. Let A, fa(n), M4 = [mqp], and A be as above, with 0 < o, 8 < a,. Let Mj =
[maﬁ] be the (a, + 1) x (a, + 1) matriz such that

fi(2n) fi(n)
fa(2n-1) - My fa(n-1)
fi(2n-a.) fa(n-a.)

!

Then mgp = My oap-

Proof. Recall that we can write
A:={0,2by,...,2bs,2¢1 +1,...,2¢, + 1},

so that

fa(@n=2j) = fa(n=j)+ fa(n—j=0bz) +-+ fa(n-j-bs)
and

fa@n=2j-1)=fa(n-j-c1=1)+-+faln-j-c 1)

for j sufficiently large.

Then m, g =1 if and only if f4(n - /) is a summand in the recursive sum that expresses
fa(2n — «), which happens if and only if 2n -« = 2(n - ) + K, where K € A, and this is
equivalent to 2 — a belonging to A.

Now m;zfa’afﬁ =1if and only if f;(n—(a,-f)) is a summand in the recursive sum that
expresses f7(2n - (a. - a)), which happens if and only if 2n - (a. - ) =2(n - (a. - 8)) + K,
where K € A. This means that a, + a — 25 = K, which gives 25— a € A. O

Thus M= S"'M ;S, where

00 - 01
00 - 120
S=|: R
01 - 00
10 - 00

so My and M 4 are similar matrices and thus have the same characteristic polynomial, [4,
1.3.3]. Hence the denominator in (7) for A is equal to the denominator in (7) for A.

4 Open questions

A nicer formula for ¢(A,m) than that given in Equation (7) is desired and seems likely. To
that end, we have computed values of ¢(A) for a variety of sets A but have not been able
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to detect any patterns. Table 2 shows ¢(A, 1) for all sets of the form A = {0,1,¢}, where
2 <t <17, and we have obtained the following bounds on ¢(A, 1) for sets A of this form.

Let t e N with ¢t > 1 and A ={0,1,t}. Choose k such that 2% <t < 2%+ Recall that f4(s)
is the number of ways to write s in the form

oL

s=Y €2', where ¢; € {0,1,t}.
=0
Then
27‘+1 1
sa(r,1)= > fa(n)~c(A1)3",
n=2"
as shown in Theorem 4. Thus
2m-1 n-1271-1
Z fa(s) = Z Z fa(s) ~ ZC(A 1)3J
Jj=0 s=27

:cLAJJ(Sngl

Consider choosing ¢; € {0,1,¢t} for0<i<n-k-3 and ¢ € {0,1} forn-k-2<i<n-2.
Then

)deAJB¢

n—2
Y2 <ttt 24127 4 p 20T gk gkl Ly g2
=0

<t-Qnk=2 4 9nml

< 2k:+1 . 2n—k—2 + 2n—1 -1

=2"-1

< 2",

There are 37-%-2.2k+1 guch sums, and each of them is counted in Y2 ' f4(s). Thus

2k+1

1 n n—k—2 k+1 n
56(/471)3 23 '2 + :3 '3k+27

and so ¢(A, 1) > (2 )k+2.

Now suppose there exists some iy > n — k such that €;, =¢. Then

Y2 >t-200 > - 20F 5 2kgnh Z on,
i=0
Thus the sums counted in Y2 f4(s) all have the property that €; € {0 1} forn-k<i<n-1,
and there are 377% - 2 such sums. Hence 3"%-2F > 3¢(A,1)-3" and %5 > (A ).
Combining the above, we see that

2k+1 2 2k+1
o <c(A 1)< TR
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A (A1) N(e(A,1)) | A c(A4,1)  N(c(A, 1))
{0,1,2} 1 1.000 {0,1,3y 1 0.800
{0,1,4y 2 0.625 {0,1,5} 4 0.560
{0,1,6y 2 0.493 {0,1,7y 38 0.450
{0,1,8y I 0.405 {0,1,9} 8 0.384
{0,1,10} L% 0.360 {0,1,11} £ 0.340
{0,1,12} 232 0.322 {0,1,13} =8 0.306
{0,1,14} 2524 0.291 {0,1,15} 222 (.280
{0,1,16} 828 (.267 {0,1,17} 2318281 ().259

Table 2: ¢(A, 1) for all sets of the form A ={0,1,¢}, where 2 <t <17

To compare these bounds with Table 2, note that if 8 <t < 15, then k =3, and we have
0.132<¢(A,1) £0.593

for A={0,1,t}, with ¢ in this range.

We have also computed ¢(A, 1) for some sets with |A| = 4 and |A| = 5, and that data is
contained in Table 1. Larger sets have not been considered because computations become
increasingly tedious as the cardinality of A grows.
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