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Abstract

We consider several families of binomial sum identities whose definition involves the
absolute value function. In particular, we consider centered double sums of the form

Sα,β(n) :=
∑

k, ℓ

(

2n

n+ k

)(

2n

n+ ℓ

)

|kα − ℓα|β ,

obtaining new results in the cases α = 1, 2. We show that there is a close connection
between these double sums in the case α = 1 and the single centered binomial sums
considered by Tuenter.

1 Introduction

The problem of finding a closed form for the binomial sum

∑

k, ℓ

(

2n

n+ k

)(

2n

n+ ℓ

)

|k2 − ℓ2| (1)

arises in an application of the probabilistic method to the Hadamard maximal determinant
problem [7]. Because of the double-summation and the absolute value occurring in (1), it is
not obvious how to apply standard techniques [10, 15, 19]. A closed-form solution

2n2

(

2n

n

)2

(2)

was proved by Brent and Osborn in [6], and simpler proofs were subsequently found [5, 8, 16].
In this paper we consider a wider class of binomial sums with the distinguishing feature that
an absolute value occurs in the summand.

Specifically, we consider certain d-fold binomial sums of the form

S(n) :=
∑

k1,...,kd

d
∏

i=1

(

2n

n+ ki

)

|f(k1, . . . , kd)|, (3)

where f : Zd → Z is a homogeneous polynomial and |f | will be called the weight function.
For example, a simple case is d = 1, f(k) = k. This case was considered by Best [1] in an
application to Hadamard matrices. The closed-form solution is

∑

k

(

2n

n+ k

)

|k| = n

(

2n

n

)

.

A generalization f(k) = kr (for a fixed r ∈ N) was considered by Tuenter [18], and shown to
be expressible using Dumont-Foata polynomials [9]. Tuenter gave an interpretation in terms
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of the moments of the distance to the origin in a symmetric Bernoulli random walk. It is
easy to see that this interpretation generalizes: 4−ndS(n) is the expectation of |f(k1, . . . , kd)|
if we start at the origin and take 2n random steps ±1

2
in each of d dimensions, thus arriving

at the point (k1, . . . , kd) ∈ Z
d with probability

4−nd

d
∏

i=1

(

2n

n+ ki

)

.

A further generalization replaces
(

2n
n+ki

)

by
(

2ni

ni+ki

)

, allowing the number of random steps
(2ni) in dimension i to depend on i. With a suitable modification to the definition of S, we
could also drop the restriction to an even number of steps in each dimension.1 We briefly
consider such a generalization in §2.

Tuenter’s results for the case d = 1 were generalized by the first author [3]. In this paper
we concentrate on the case d = 2. Generalizations of some of the results to arbitrary d
are known. More specifically, the paper [4] gives closed-form solutions for the d-dimensional
generalization of the sum (9) below in the cases α, β ∈ {1, 2}.

There are many binomial coefficient identities in the literature, e.g. 500 are given by
Gould [11]. Many such identities can be proved via generating functions [12, 19] or the
Wilf-Zeilberger algorithm [15]. Nevertheless, we hope that the reader will find our results
interesting, in part because of the applications mentioned above, and also because it is a
challenge to generalize the results to higher values of d.

A preliminary version of this paper, with some of the results conjectural, was made
available on arXiv [5]. All the conjectures have since been proved by Bostan, Lairez, and
Salvy [2], Krattenthaler and Schneider [14], Brent, Krattenthaler, and Warnaar [4], and the
present authors.

An outline of the paper follows.
In §2 we consider a special class of double sums that can be reduced to the single sums

of [3, 18].
In §3 we consider a generalization of the motivating case (1) described above: f(k, ℓ) =

(kα − ℓα)β. In the case α = 2 we give recurrence relations that allow such sums to be
evaluated in closed form for any given positive integer β. The recurrence relations naturally
split into the cases where β is even (easy) and odd (more difficult).

Theorem 10 in §4 gives a closed form for an analogous triple sum. In [5, Conjecture 2]
a closed form for the analogous quadruple sum was conjectured. This conjecture has now
been proved by Brent, Krattenthaler, and Warnaar [4]; in fact they give a generalization to
arbitrary positive integer d.

In §5 we state several double sum identities that were proved or conjectured by us [5]. The
missing proofs have now been provided by Bostan, Lairez, and Salvy [2], and by Krattenthaler
and Schneider [14].

1For example, in the case d = 1 we could consider
∑

k

(

n

k

)

|f(n− 2k)|.

3



1.1 Notation

The set of all integers is Z, and the set of non-negative integers is N.
The binomial coefficient

(

n
k

)

is defined to be zero if k < 0 or k > n (and hence always if
n < 0). Using this convention, we often avoid explicitly specifying upper and lower limits
on k or excluding cases where n < 0.

In the definition of the weight function |f |, we always interpret 00 as 1.

2 Some double sums reducible to single sums

Tuenter [18] considered the binomial sum

Sβ(n) :=
∑

k

(

2n

n+ k

)

|k|β, (4)

and a generalization2 to

Uβ(n) :=
∑

k

(

n

k

)

∣

∣

∣

n

2
− k

∣

∣

∣

β

(5)

was given by the first author [3].
Tuenter showed that

S2β(n) = Qβ(n)2
2n−β, S2β+1(n) = Pβ(n)n

(

2n

n

)

, (6)

where Pβ(n) and Qβ(n) are polynomials of degree β with integer coefficients, satisfying
certain three-term recurrence relations, and expressible in terms of Dumont-Foata polyno-
mials [9]. Closed-form expressions for Sβ(n), Pβ(n), Qβ(n) are known [3].

In this section we consider the double sum

Tβ(m,n) :=
∑

k, ℓ

(

2m

m+ k

)(

2n

n+ ℓ

)

|k − ℓ|β (7)

and show that it can be expressed as a single sum of the form (4).

Theorem 1. For all β,m, n ∈ N, we have

Tβ(m,n) = Sβ(m+ n),

where Tβ is defined by (7) and Sβ is defined by (4).

2It is a generalization because Sβ(n) = Uβ(2n), but Uβ(n) is well-defined for all n ∈ N.
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Proof. If β = 0 then T0(m,n) = 22(m+n) = S0(m + n). Hence, we may assume that β > 0
(so 0β = 0). Let d = |k − ℓ|. We split the sum (7) defining Tβ(m,n) into three parts,
corresponding to k > ℓ, k < ℓ, and k = ℓ. The third part vanishes. If k > ℓ then d = k − ℓ
and k = d+ ℓ; if k < ℓ then d = ℓ− k and ℓ = d+ k. Thus, we get

Tβ(m,n) =
∑

d>0

∑

ℓ

(

2m

m+d+ℓ

)(

2n

n+ℓ

)

dβ +
∑

d>0

∑

k

(

2m

m+k

)(

2n

n+k+d

)

dβ

=
∑

d>0

dβ
∑

ℓ

(

2m

m+d+ℓ

)(

2n

n− ℓ

)

+
∑

d>0

dβ
∑

k

(

2n

n+k+d

)(

2m

m− k

)

.

By Vandermonde’s identity, the inner sums over k and ℓ are both equal to
(

2m+2n
m+n+d

)

. Thus,

Tβ(m,n) = 2
∑

d>0

(

2m+ 2n

m+ n+ d

)

dβ =
∑

d

(

2m+ 2n

m+ n+ d

)

|d|β = Sβ(m+ n).

Remark 2. If m = n then, by the shift-invariance of the weight |k − ℓ|β, we have

Tβ(n, n) =
∑

k, ℓ

(

2n

k

)(

2n

ℓ

)

|k − ℓ|β = Sβ(2n). (8)

There is no need for the upper argument of the binomial coefficients to be even in (8). We
can adapt the proof of Theorem 1 to show that, for all n ∈ N,

∑

k, ℓ

(

n

k

)(

n

ℓ

)

|k − ℓ|β = Sβ(n).

3 Centered double sums

In this section we consider the centered double binomial sums defined by3

Sα,β(n) :=
∑

k, ℓ

(

2n

n+ k

)(

2n

n+ ℓ

)

|kα − ℓα|β. (9)

Note that S1,β(n) = Tβ(n, n), so the case α = 1 is covered by Theorem 1. Thus, in the
following we can assume that α ≥ 2. Since we mainly consider the case α = 2, it is
convenient to define

Wβ(n) := S2,β(n) =
∑

k, ℓ

(

2n

n+ k

)(

2n

n+ ℓ

)

|k2 − ℓ2|β. (10)

3The double sum Sα,β(n) should not be confused with the single sum Sα(n) of §2.
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Remark 3. The sequences (Sα,β(n))n≥1 for α ∈ {1, 2} and 1 ≤ β ≤ 4 are in the OEIS [17].
Specifically, (S1,1(n))n≥1 is a subsequence of A166337 (the entry corresponding to n = 0 must
be discarded). (S2,1(n))n≥0 is A254408, and (Sα,β(n))n≥0 for (α, β) = (1, 2), (2, 2), (1, 3), (2, 3), (1, 4), (2, 4)
are A268147, A268148, . . . , A268152, respectively.

3.1 Wβ for odd β

The analysis of Wβ(n) naturally splits into two cases, depending on the parity of β. We first
consider the case that β is odd. A simpler approach is possible when β is even, as we show
in §3.3.

As mentioned in §1, the evaluation of W1(n) was the motivation for this paper, and is
given in the following theorem.

Theorem 4 (Brent and Osborn).

W1(n) =
∑

k, ℓ

(

2n

n+ k

)(

2n

n+ ℓ

)

|k2 − ℓ2| = 2n2

(

2n

n

)2

.

Numerical evidence suggested the following generalization of Theorem 4. It was conjectured
by the present authors [5, Conjecture 2], and proved by Krattenthaler and Schneider [14].

Theorem 5 (Krattenthaler and Schneider). For all m,n ∈ N,

∑

k, ℓ

(

2m

m+ k

)(

2n

n+ ℓ

)

|k2 − ℓ2| ≥ 2mn

(

2m

m

)(

2n

n

)

,

with equality if and only if m = n.

3.2 Recurrence relations for the odd case

Theorem 4 gives W1(n). We show how W3(n),W5(n), . . . can be computed using recurrence
relations. More precisely, we express the double sums W2r+1(n) in terms of certain single
sums Gr(n,m), and give a recurrence for the Gr(n,m). We then show that W2r+1(n) is a
linear combination of Pr(n), . . . , P2r(n), where the polynomials Pm(n) are as in (6), and the
coefficients multiplying these polynomials satisfy another recurrence relation.

Define

fℓ =

{

1, if ℓ 6= 0;
1
2
, if ℓ = 0.

Using symmetry and the definition (10) of Wr(n), we have

W2r+1(n) = 8
n

∑

ℓ=0

n
∑

k=ℓ

(

2n

n+ k

)(

2n

n+ ℓ

)

(k2 − ℓ2)2r+1fℓ; (11)
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the factor fℓ allows for terms which would otherwise be counted twice.
Let m = k − ℓ. Since k2 − ℓ2 = m(m + 2ℓ), we can write the double sum W2r+1(n)/8

in (11) as
n

∑

ℓ=0

n
∑

k=ℓ

(

2n

n+ k

)(

2n

n+ ℓ

)

(k2 − ℓ2)2r+1fℓ =
∑

m≥0

m2r+1Gr(n,m), (12)

where

Gr(n,m) :=
∑

ℓ≥0

(

2n

n+m+ ℓ

)(

2n

n+ ℓ

)

(m+ 2ℓ)2r+1fℓ. (13)

Observe that Gr(0,m) = 0. For convenience we define Gr(−1,m) = 0. We observe that
Gr(n,m) satisfies a recurrence relation, as follows.

Lemma 6. For all m,n, r ∈ N,

Gr+2(n,m) = 2(4n2 +m2)Gr+1(n,m)− (4n2 −m2)2Gr(n,m)

+ 64n2(2n− 1)2Gr(n− 1,m). (14)

Proof. If n = 0 the proof of (14) is trivial, since Gr(0,m) = Gr(−1,m) = 0. Hence, suppose
that n > 0. We observe that

[(m+ 2ℓ)4 − 2(4n2 +m2)(m+ 2ℓ)2 + (4n2 −m2)2]

(

2n

n+m+ ℓ

)(

2n

n+ ℓ

)

= 16(n+m+ ℓ)(n−m− ℓ)(n+ ℓ)(n− ℓ)

(

2n

n+m+ ℓ

)(

2n

n+ ℓ

)

= 64n2(2n− 1)2
(

2n− 2

n− 1 +m+ ℓ

)(

2n− 2

n− 1 + ℓ

)

.

Now multiply each side by (m+ 2ℓ)2r+1fℓ and sum over ℓ ≥ 0.

The recurrence (14) may be used to compute Gr(n,m) for given (n,m) and r = 0, 1, 2, . . .,
using the initial values

G0(n,m) =
n

2

(

2n

n

)(

2n

n+m

)

and

G1(n,m) =
4n2 + (2n− 5)m2

2n− 1
G0(n,m).

These initial values may be verified from the definition (13) by standard methods [15] – we
omit the details.

Write gr(n,m) = 0 if Gr(n,m) = 0, and otherwise define gr(n,m) by

Gr(n,m) =

(

2n

n

)(

2n

n+m

)

gr(n,m).
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The recurrence (14) for Gr gives a corresponding recurrence for gr:

gr+2(n,m) = 2(4n2 +m2)gr+1(n,m)− (4n2 −m2)2gr(n,m)

+ 16n2(n2 −m2)gr(n− 1,m), (15)

with initial values

g0(n,m) =
n

2
, g1(n,m) =

4n2 + (2n− 5)m2

2n− 1
g0(n,m).

Note that the gr(n,m) are rational functions in n and m; if computation with bivariate
polynomials over Z is desired then gr(n,m) can be multiplied by (2n− 1)(2n− 3) · · · (2n−
(2r−1)). If n is fixed, then gr(n,m) is an even polynomial inm and, from the recurrence (15),
the degree is 2r. This suggests that we should define rational functions γr,j(n) by

gr(n,m) =
r

∑

j=0

γr,j(n)m
2j.

For j < 0 or j > r we define γr,j(n) = 0. From the recurrence (15), we obtain the following
recurrence for the γr,j(n):

γr+2,j(n) = 8n2γr+1,j(n) + 2γr+1,j−1(n)− 16n4γr,j(n) + 8n2γr,j−1(n)

− γr,j−2(n) + 16n4γr,j(n− 1)− 16n2γr,j−1(n− 1). (16)

The γr,j(n) can be computed from (16), using the initial values

γ0,0(n) = n/2,

γ1,0(n) = 2n3/(2n− 1), (17)

γ1,1(n) = n(2n− 5)/(4n− 2).

Using the definition of γr,j(n) and (11)–(13), we obtain

W2r+1(n) = 4

(

2n

n

) r
∑

j=0

γr,j(n)S2r+2j+1(n).

Since S2r+1(n) = Pr(n)n
(

2n
n

)

, we obtain the following theorem, which shows that the double
sums W2r+1(n) may be expressed in terms of the same polynomials Pm(n) that occur in
expressions for the single sums of [3, 18].

Theorem 7.

W2r+1(n) = 4n
r

∑

j=0

γr,j(n)Pr+j(n) ·

(

2n

n

)2

, (18)

where the polynomials Pr+j(n) are as in (6), and the γr,j(n) may be computed from the
recurrence (16) and the initial values given in (17).
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The factor before the binomial coefficient in (18) is a rational function ωr(n) with de-
nominator (2n − 1)(2n − 3) · · · (2n − 2⌈r/2⌉ + 1). Thus, we have the following corollary of
Theorem 7.

Corollary 8. If r ∈ N and Wr(n) is defined by (10), then

W2r+1(n) = ωr(n)

(

2n

n

)2

,

where
ωr(n)

⌈r/2⌉
∏

j=1

(2n− 2j + 1)

is a polynomial of degree 2r + ⌈r/2⌉+ 2 over Z. The first four cases are:

ω0(n) = 2n2,

ω1(n) =
2n3(8n2 − 12n+ 5)

2n− 1
,

ω2(n) =
2n3(128n4 − 512n3 + 800n2 − 568n+ 153)

2n− 1
, and

ω3(n) =
2n3 ω3(n)

(2n− 1)(2n− 3)
, where

ω3(n) = 9216n7 − 86016n6 + 350464n5 − 802304n4+

1106856n3 − 914728n2 + 417358n− 80847.

3.3 Wβ for even β

Now we consider Wβ(n) for even β. This case is easier than the case of odd β because the
absolute value in the definition (10) has no effect when β is even. Theorem 9 shows that
W2r(n) can be expressed in terms of the single sums S0(n), S2(n), . . . , S4r(n) or, equivalently,
in terms of the polynomials Q0(n), Q1(n), . . . , Q2r(n). It follows that 22r−4nW2r(n) is a
polynomial over Z of degree 2r in n.

Theorem 9. For all n ∈ N,

W2r(n) =
∑

k

(−1)k
(

2r

k

)

S2k(n)S4r−2k(n)

= 24n−2r
∑

k

(−1)k
(

2r

k

)

Qk(n)Q2r−k(n),

where Qr(n) and Sr(n) are as (4)–(6) of §2, and Wβ(n) is defined by (10).
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Proof. From the definition of W2r(n) we have

W2r(n) =
∑

i

∑

j

(

2n

n+ i

)(

2n

n+ j

)

(i2 − j2)2r.

Write

(i2 − j2)2r =
∑

k

(−1)k
(

2r

k

)

i4r−2kj2k,

change the order of summation in the resulting triple sum, and observe that the inner sums
over i and j separate, giving S4r−2k(n)S2k(n). This proves the first part of the theorem. The
second part follows from (6).

For example, the first four cases are

W0(n) = 24n,

W2(n) = 24n−1 n(2n− 1),

W4(n) = 24n−2 n(2n− 1)(18n2 − 33n+ 17),

W6(n) = 24n−3 n(2n− 1)(900n4 − 4500n3 + 8895n2 − 8055n+ 2764).

It follows from Theorem 9 that the coefficients of 22r−4nW2r(n) are in Z, but it is not obvious
how to prove the stronger result, suggested by the cases above, that the coefficients of
2r−4nW2r(n) are in Z. We leave this as a conjecture.

4 A triple sum

In Theorem 10 we give a triple sum that is analogous to the double sum of Theorem 4. A
straightforward but tedious proof is given in [5, Appendix]. The result also follows from
the case d = 3 of a more general result proved in [4, Proposition 1.1] for the analogous
d-fold sum, where the weight function is generalized to the absolute value of a Vandermonde
|∆(i21, i

2
2, . . . , i

2
d)|.

Theorem 10. For all n ∈ N,

∑

i, j, k

(

2n

n+ i

)(

2n

n+ j

)(

2n

n+ k

)

|(i2 − j2)(i2 − k2)(j2 − k2)|

= 3n3(n− 1)

(

2n

n

)2

22n−1.

5 Further identities

In this section we give various identities that were stated in [5]. Of these, (25), (26), (27),
(30) and (32) were conjectural. The conjectures have since been proved by Bostan, Lairez,
and Salvy [2, §7.3.2].
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5.1 Centered double sums

Recall that, from the definition (9), we have

Sα,1(n) =
∑

i, j

(

2n

n+ i

)(

2n

n+ j

)

|iα − jα|. (19)

We give closed-form expressions for Sα,1(n), 1 ≤ α ≤ 8. Observe that (24) follows from
Theorem 1 since S1,1(n) = T1(n, n), and (20) is equivalent to Theorem 4. It appears that,

for even α, Sα,1(n) is a rational function of n multiplied by
(

2n
n

)2
, but for odd α, it is a

rational function of n multiplied by
(

4n
2n

)

. This was conjectured in [5], and has been proved
by Krattenthaler and Schneider [14].

S2,1(n) = 2n2

(

2n

n

)2

, (20)

S4,1(n) =
2n3(4n− 3)

2n− 1

(

2n

n

)2

, (21)

S6,1(n) =
2n3(11n2 − 15n+ 5)

2n− 1

(

2n

n

)2

, (22)

S8,1(n) =
2n3(80n4 − 306n3 + 428n2 − 266n+ 63)

(2n− 1)(2n− 3)

(

2n

n

)2

, (23)

S1,1(n) = 2n

(

4n

2n

)

, (24)

S3,1(n) =
4n2(5n− 2)

4n− 1

(

4n− 1

2n− 1

)

, (25)

S5,1(n) =
8n2(43n3 − 70n2 + 36n− 6)

(4n− 2)(4n− 3)

(

4n− 2

2n− 2

)

, (26)

S7,1(n) =
16n2P7,1(n)

(4n− 3)(4n− 4)(4n− 5)

(

4n− 3

2n− 3

)

, n ≥ 2, where

P7,1(n) = 531n5 − 1960n4 + 2800n3 − 1952n2 + 668n− 90, (27)

(S7,1(1) = 12 is a special case).

Following are some similar identities. We observe that, since i4 − j4 = (i2 + j2)(i2 − j2),
(28) is easily seen to be equivalent to (21). Similarly, since i6−j6 = (i4+i2j2+j4)(i2−j2), any
two of (22), (29) and (31) imply the third. Higher-dimensional generalizations of (30)–(31)
are known [4].
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∑

i, j

(

2n

n+i

)(

2n

n+j

)

|i2(i2 − j2)| =
n3(4n− 3)

2n− 1

(

2n

n

)2

, (28)

∑

i, j

(

2n

n+i

)(

2n

n+j

)

|i4(i2 − j2)| =
n3(10n2 − 14n+ 5)

2n− 1

(

2n

n

)2

, (29)

∑

i, j

(

2n

n+i

)(

2n

n+j

)

|ij(i2 − j2)| =
2n3(n− 1)

2n− 1

(

2n

n

)2

, (30)

∑

i, j

(

2n

n+i

)(

2n

n+j

)

|i2j2(i2 − j2)| =
2n4(n− 1)

2n− 1

(

2n

n

)2

, (31)

∑

i, j

(

2n

n+i

)(

2n

n+j

)

|i3j3(i2 − j2)| =
2n4(n− 1)(3n2 − 6n+ 2)

(2n− 1)(2n− 3)

(

2n

n

)2

. (32)
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