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Abstract

We consider several families of binomial sum identities whose definition involves the
absolute value function. In particular, we consider centered double sums of the form

2n 2n
e E le' |8
k, 0

obtaining new results in the cases a = 1,2. We show that there is a close connection
between these double sums in the case « = 1 and the single centered binomial sums
considered by Tuenter.

1 Introduction

The problem of finding a closed form for the binomial sum

2 2
S () (2 e )
T \n +k)\n+/¢

arises in an application of the probabilistic method to the Hadamard maximal determinant
problem [7]. Because of the double-summation and the absolute value occurring in (1), it is
not obvious how to apply standard techniques [10, 15, 19]. A closed-form solution

on\ >
2n’ 2
(%) 2)
was proved by Brent and Osborn in [6], and simpler proofs were subsequently found [5, 8, 16].
In this paper we consider a wider class of binomial sums with the distinguishing feature that

an absolute value occurs in the summand.
Specifically, we consider certain d-fold binomial sums of the form

S(n) == kzk 11 (n ink) (ks k)], (3)

where f : Z¢ — 7 is a homogeneous polynomial and |f| will be called the weight function.
For example, a simple case is d = 1, f(k) = k. This case was considered by Best [1] in an
application to Hadamard matrices. The closed-form solution is

= (-o(3)

A generalization f(k) = k" (for a fixed r € N) was considered by Tuenter [18], and shown to
be expressible using Dumont-Foata polynomials [9]. Tuenter gave an interpretation in terms
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of the moments of the distance to the origin in a symmetric Bernoulli random walk. It is
easy to see that this interpretation generalizes: 4 "¢S(n) is the expectation of |f(ki,. .., kq)|
if we start at the origin and take 2n random steps i% in each of d dimensions, thus arriving
at the point (ky,...,ky) € Z% with probability

—nd d 2n
g n+ k; '

A further generalization replaces (nﬁl) by (n?Zk,)> allowing the number of random steps
(2n;) in dimension ¢ to depend on i. With a suitable modification to the definition of S, we
could also drop the restriction to an even number of steps in each dimension.! We briefly
consider such a generalization in §2.

Tuenter’s results for the case d = 1 were generalized by the first author [3]. In this paper
we concentrate on the case d = 2. Generalizations of some of the results to arbitrary d
are known. More specifically, the paper [4] gives closed-form solutions for the d-dimensional
generalization of the sum (9) below in the cases «, 8 € {1, 2}.

There are many binomial coefficient identities in the literature, e.g. 500 are given by
Gould [11]. Many such identities can be proved via generating functions [12, 19] or the
Wilf-Zeilberger algorithm [15]. Nevertheless, we hope that the reader will find our results
interesting, in part because of the applications mentioned above, and also because it is a
challenge to generalize the results to higher values of d.

A preliminary version of this paper, with some of the results conjectural, was made
available on arXiv [5]. All the conjectures have since been proved by Bostan, Lairez, and
Salvy [2], Krattenthaler and Schneider [14], Brent, Krattenthaler, and Warnaar [4], and the
present authors.

An outline of the paper follows.

In §2 we consider a special class of double sums that can be reduced to the single sums
of [3, 18].

In §3 we consider a generalization of the motivating case (1) described above: f(k, () =
(k% — £*)5. In the case a = 2 we give recurrence relations that allow such sums to be
evaluated in closed form for any given positive integer 5. The recurrence relations naturally
split into the cases where (3 is even (easy) and odd (more difficult).

Theorem 10 in §4 gives a closed form for an analogous triple sum. In [5, Conjecture 2]
a closed form for the analogous quadruple sum was conjectured. This conjecture has now
been proved by Brent, Krattenthaler, and Warnaar [4]; in fact they give a generalization to
arbitrary positive integer d.

In §5 we state several double sum identities that were proved or conjectured by us [5]. The
missing proofs have now been provided by Bostan, Lairez, and Salvy [2], and by Krattenthaler
and Schneider [14].

'For example, in the case d = 1 we could consider Y-, (})[f(n — 2k)|.



1.1 Notation

The set of all integers is Z, and the set of non-negative integers is N.

The binomial coefficient (}) is defined to be zero if k < 0 or k > n (and hence always if
n < 0). Using this convention, we often avoid explicitly specifying upper and lower limits
on k or excluding cases where n < 0.

In the definition of the weight function |f|, we always interpret 0° as 1.

2 Some double sums reducible to single sums

Tuenter [18] considered the binomial sum

and a generalization? to

was given by the first author [3].
Tuenter showed that

Sus(n) = Qa(m)2" . Sapp(n) = Pﬁm)n(z”), (©)

n

where Pg(n) and (Qg(n) are polynomials of degree S with integer coefficients, satisfying
certain three-term recurrence relations, and expressible in terms of Dumont-Foata polyno-
mials [9]. Closed-form expressions for Sgz(n), Ps(n), @Qz(n) are known [3].

In this section we consider the double sum

Totmon) =30 (27 ) (20 e o )

k,
and show that it can be expressed as a single sum of the form (4).
Theorem 1. For all B,m,n € N, we have
Ts(m,n) = Sg(m +n),

where Tg is defined by (7) and Ss is defined by (4).

21t is a generalization because Ss(n) = Ug(2n), but Ug(n) is well-defined for all n € N.



Proof. If 3 = 0 then Ty(m,n) = 2™+ = Sy(m + n). Hence, we may assume that 3 > 0
(so 0 = 0). Let d = |k — ¢|. We split the sum (7) defining Tj(m,n) into three parts,
corresponding to k > ¢, k < ¢, and k = ¢. The third part vanishes. If k > ¢ thend =k — /¢
and k =d+(;if k <l thend=/{—Fk and ¢ = d+ k. Thus, we get

=22 (m+d+€) (n+£) #+ dzgzk: <m+k) (n—f:—ird) &

L))

By Vandermonde’s identity, the inner sums over k and ¢ are both equal to (fﬁ;i@) Thus,

2m + 2n 2m + 2n
=2 d’ = d|? = .
Z(m—i—n—i—d) ;(m+n+d>| "= Ss(m +n)

Remark 2. If m = n then, by the shift-invariance of the weight |k — ¢|?, we have

Ty(n,n) =Y (2,3 ) @”) k07 = Ss(2n). (8)

k, ¢

There is no need for the upper argument of the binomial coefficients to be even in (8). We
can adapt the proof of Theorem 1 to show that, for all n € N,

> () ()= = sato

3 Centered double sums

In this section we consider the centered double binomial sums defined by?

Saa) =3 () (2 e = e )

Note that S;g(n) = Ts(n,n), so the case a = 1 is covered by Theorem 1. Thus, in the

following we can assume that o > 2. Since we mainly consider the case a = 2, it is
convenient to define
2n 2n
Ws(n) := S = k2 — 2P, 10
400) 5= Saalo) =3 (o e e (10)

3The double sum S, 5(n) should not be confused with the single sum S, (n) of §2.
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Remark 3. The sequences (S, g(n))n>1 for a € {1,2} and 1 < § < 4 are in the OEIS [17].
Specifically, (S1,1(n)),>1 is a subsequence of A166337 (the entry corresponding to n = 0 must

be discarded). (S2,1(n))n>0is A254408, and (S, 5(n))n>0 for (o, B) = (1,2),(2,2), (1,3),(2,3), (1,4),(2,4)
are A268147, A268148, ..., A268152, respectively.

3.1 Wj for odd 3

The analysis of W3(n) naturally splits into two cases, depending on the parity of 5. We first
consider the case that 3 is odd. A simpler approach is possible when f is even, as we show
in §3.3.

As mentioned in §1, the evaluation of Wj(n) was the motivation for this paper, and is
given in the following theorem.

Theorem 4 (Brent and Osborn).
2n 2n 2n\
Wi(n) = K — %] = 2n® .
1) ;(n—kk)(n—i-ﬁ)‘ | n(n)

Numerical evidence suggested the following generalization of Theorem 4. It was conjectured
by the present authors [5, Conjecture 2|, and proved by Krattenthaler and Schneider [14].

Theorem 5 (Krattenthaler and Schneider). For all m,n € N,

2 2 2 2
S () (e =iz 2 () (),
7 m-+k/)\n-+/¢ m n

with equality if and only if m = n.

3.2 Recurrence relations for the odd case

Theorem 4 gives Wi(n). We show how W3(n), Ws(n),... can be computed using recurrence
relations. More precisely, we express the double sums Wy, 1(n) in terms of certain single
sums G,(n,m), and give a recurrence for the G,.(n,m). We then show that Wy, 1(n) is a
linear combination of P,(n),. .., Ps(n), where the polynomials P,,(n) are as in (6), and the
coefficients multiplying these polynomials satisfy another recurrence relation.

Define
f - 1, ifl#0;
T, ife=o.
Using symmetry and the definition (10) of W,.(n), we have
~\ 2n 2n 2 _ p2\2r+1
Wari(n) =8 (k* =2 fy; (11)

e n+k)\n+/¢



the factor f, allows for terms which would otherwise be counted twice.
Let m = k — £. Since k* — (* = m(m + 2(), we can write the double sum W, ,1(n)/8

in (11) as
; Py, (n?k) (nQ—iT_l 5) (k2 — 62)2r+1fz = n;)merGr(n, m), (12>
where : :
= " n 2r+1
Gr(n,m> = Z (n +m _l_g) (n ‘l—g) (m+ QE) + fe. (13)

>0

Observe that G,(0,m) = 0. For convenience we define G,.(—1,m) = 0. We observe that
G.(n,m) satisfies a recurrence relation, as follows.

Lemma 6. For all m,n,r € N,

Gr+2(n7 m) = 2(4712 + m2>Gr+1(n7 m) - (4712 - m2)2G7‘(n7 m)
+ 64n*(2n — 1)*G.(n — 1,m). (14)

Proof. 1f n = 0 the proof of (14) is trivial, since G, (0, m) = G,.(—1,m) = 0. Hence, suppose
that n > 0. We observe that

[(m +20)" = 2(4n” + m?)(m + 20)* + (4n* — m?)?] (n +27Z + 6) <n247: 6)

:16(n—|—m—|—€)(n—m_g)(n_i_g)(n_g)( 2n )( m )

n+m+~)\n+/¢
2n — 2 2n — 2
= 64n*(2n — 1)° :
n(2n )(n—l—i-m—i-f)(n—l—i-ﬁ)
Now multiply each side by (m + 2¢)?"*! f, and sum over ¢ > 0. O

The recurrence (14) may be used to compute G,.(n, m) for given (n,m) and r = 0,1,2, .. .,

using the initial values
n (2n 2n
Go(n,m) = 2 (n) (n+m>

_An? + (2n — 5)m?
- 2n—1
These initial values may be verified from the definition (13) by standard methods [15] — we
omit the details.

Write g,(n,m) = 0 if G,.(n, m) = 0, and otherwise define g,(n, m) by

Go(n,m) = (?) (n inm> gr(n,m).

and

G1(n,m)

Go(n,m).



The recurrence (14) for G, gives a corresponding recurrence for g,.:

2

gra(n,m) = 2(4n* +m?)gs1(n,m) — (4n* — m?)*g,(n, m)

+16n*(n* — m?)g,.(n — 1,m), (15)
with initial values
An? 2n — 5)m?
lnm) = 5. it m) = I g )

Note that the g,(n,m) are rational functions in n and m; if computation with bivariate
polynomials over Z is desired then g.(n,m) can be multiplied by (2n —1)(2n —3)--- (2n —
(2r—1)). If nis fixed, then g,(n,m) is an even polynomial in m and, from the recurrence (15),
the degree is 2r. This suggests that we should define rational functions v, ;(n) by

9r (n7 m) = Z P)/r,j(n)m%-
7=0

For j < 0 or j > r we define 7, ;(n) = 0. From the recurrence (15), we obtain the following
recurrence for the v, ;(n):

Yra2,j(n) = 80°Ypp15(n) 4+ 29,415-1(n) — 160"y, 5(n) + 8nv,;-1(n)
— Yrj—2(n) + 16n4%7]~(n —1)— 16n27w~_1(n —1). (16)

The 4, j(n) can be computed from (16), using the initial values

’Yo,o(n) =n/2,
T.0(n) = 2n/(2n — 1), (17)
y.1(n) =n(2n —5)/(4n — 2)

Using the definition of v, ;(n) and (11)-(13), we obtain

) ET; Vrg (1) S2r42j41 (1)

2n
W27-+1(n) == 4(
n

Since Syr41(n) = Pr(n)n(*"), we obtain the following theorem, which shows that the double

n
sums Wy, 1(n) may be expressed in terms of the same polynomials P,,(n) that occur in

expressions for the single sums of [3, 18].

Theorem 7.

Wares(n) = 403 3y Prast) - (2 (1s)

n

where the polynomials P, ;(n) are as in (6), and the v, ;(n) may be computed from the
recurrence (16) and the initial values given in (17).
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The factor before the binomial coefficient in (18) is a rational function w,(n) with de-
nominator (2n — 1)(2n — 3)---(2n — 2[r/2] + 1). Thus, we have the following corollary of
Theorem 7.

Corollary 8. If r € N and W,(n) is defined by (10), then

Warr(n) = wy(n) (2”) .

n

where [r/2]
we(n) [T @n—2j+1)

j=1

is a polynomial of degree 2r + [r/2] 4+ 2 over Z. The first four cases are:

wo(n) = 2n?,
_ 2n°(8n* — 12n +5)

wi(n)

Y

2n —1
2n3(128n* — 512n® + 800n* — 568n + 153)
wa(n) = y» and
2n —1
2n3w
ws(n) = n”ws(n) » where

(2n —1)(2n — 3)
w3(n) = 9216n" — 86016n° + 350464n° — 802304n*+
11068561 — 914728n” + 4173580 — 80847.

3.3 Wj for even 3

Now we consider Wz(n) for even . This case is easier than the case of odd § because the
absolute value in the definition (10) has no effect when  is even. Theorem 9 shows that
Wy, (n) can be expressed in terms of the single sums Sp(n), Se(n), . .., Si(n) or, equivalently,
in terms of the polynomials Qy(n),Q1(n),..., Qs (n). It follows that 22 ~1"Wy.(n) is a
polynomial over Z of degree 2r in n.

Theorem 9. For alln € N,

W) = S (-1F () Sul)Sir-an(o)

k

_ gt N1y (2]:) Qu(1) Qa4

k

where Q,(n) and S.(n) are as (4)—(6) of §2, and Wg(n) is defined by (10).



Proof. From the definition of Ws,.(n) we have

-5

2r
2 2\or k Ar—2k -2k
17— = —1 1
=P =3 ()
change the order of summation in the resulting triple sum, and observe that the inner sums
over ¢ and j separate, giving Sy, _ox(n)Sax(n). This proves the first part of the theorem. The

second part follows from (6). O

Write

For example, the first four cases are
W()(TL) = 2471’
Wa(n) = 2"t n(2n — 1),
Wi(n) =22 n(2n — 1)(18n* — 33n + 17),
Ws(n) = 2*" 3 n(2n — 1)(900n* — 4500n° + 8895n* — 8055n + 2764).
It follows from Theorem 9 that the coefficients of 22" ~4"W,,.(n) are in Z, but it is not obvious

how to prove the stronger result, suggested by the cases above, that the coefficients of
274" Wy, (n) are in Z. We leave this as a conjecture.

4 A triple sum

In Theorem 10 we give a triple sum that is analogous to the double sum of Theorem 4. A
straightforward but tedious proof is given in [5, Appendix]. The result also follows from
the case d = 3 of a more general result proved in [4, Proposition 1.1] for the analogous
d-fold sum, where the weight function is generalized to the absolute value of a Vandermonde

INGCE )
Theorem 10. For alln € N,

> (nzf ) <n2f j) (nzm (=)@ = B = )
= 3n’(n—1) (2")222”—1.

n

5 Further identities

In this section we give various identities that were stated in [5]. Of these, (25), (26), (27),
(30) and (32) were conjectural. The conjectures have since been proved by Bostan, Lairez,

and Salvy [2, §7.3.2].
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5.1 Centered double sums

Recall that, from the definition (9), we have

S = Y (fj ) (ffj) i — . (19)

/L?]

We give closed-form expressions for S,1(n), 1 < a < 8. Observe that (24) follows from
Theorem 1 since Sy 1(n) = Ti(n,n), and (20) is equivalent to Theorem 4. It appears that,
for even «a, S,1(n) is a rational function of n multiplied by ( ) but for odd a, it is a

rational function of n multiplied by ( ) This was conjectured in [5], and has been proved
by Krattenthaler and Schneider [14].

5[ 2n ?
5271(71) =2n n s (20)
ond(4n — 3) (2n\’
Saa(n) = —5—5— (n) , (21)
2n?(11n? — 150 + 5) (21
Se1(n) = ( o — 1 ) (n) ’ (22)
2n?(80n* — 306n° + 428n2 — 2660 + 63) (20
= 2
Sea(n) 2n—1)(2n—3) <n> / (23)
4n
SLI(n) =2n <2n> y (24)
4n*(5n —2) (4n —1
S =B (), %)
8n?(43n® — 70n* + 36n — 6) [4n — 2
Ss.(n) = (4n — 2)(4n — 3) (2n - 2> (26)
16n? Py 1(n) dn — 3
’ > 2, wh
S0 = G T3 = ) (4 = 5) (Qn - 3)’ =S WREE
Pri(n) = 531n° — 1960n* 4 2800n° — 1952n2 + 668n — 90, (27)

(S71(1) = 12 is a special case).

Following are some similar identities. We observe that, since i* — j* = (i? + j2)(i* — j?),
(28) is easily seen to be equivalent to (21). Similarly, since i®—j% = (i*+4%52+5%)(i*—5?), any
two of (22), (29) and (31) imply the third. Higher-dimensional generalizations of (30)—(31)
are known [4].
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,Zj: (nﬁlz <n2fj> =) = % (2: )2’ (28)
(. (1o i =i = T D) (B 2

Qﬁ;)u@?—fﬂzg§§§}9(ﬁﬁi (30)

Vi -l = et () 31

2n*(n — 1)(3n% — 6n + 2) (Qn) 2'

(2n —1)(2n — 3) (82)

n
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