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Abstract

We consider a sequence defined by the number of positive solutions to a sequence

of systems of Diophantine equations. We derive some bounds on the solutions to

demonstrate that the terms of the sequence are finite. We develop an algorithm for
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computing an arbitrary term of the sequence, and consider a graph-theoretic approach

to computing the same.

1 Introduction

Solving Diophantine equations is a long-standing goal of number theorists. Many have
studied the number of positive solutions to a finite system of Diophantine equations. In
this paper we shall investigate a particular system of nonlinear Diophantine equations that
accidentally arose to the authors: we shared a cab numbered 1523 and noticed that 1+5 = 2·3
and 1 · 5 = 2 + 3. That is, the cab number was a solution to the system of nonlinear
Diophantine equations

a1,1 + a1,2 = a2,1a2,2

a2,1 + a2,2 = a1,1a1,2
(1)

The authors quickly decided that the system (1) should have finitely many positive solutions,
the only other one being 2, 2, 2, 2. It was unclear that the number of positive solutions to
the system would remain finite if the number of equations were increased. That is, does the
system of nonlinear Diophantine equations

a1,1 + a1,2 = a2,1a2,2

a2,1 + a2,2 = a3,1a3,2
...

an−1,1 + an−1,2 = an,1an,2

an,1 + an,2 = a1,1a1,2

(2)

have finitely many positive solutions? It turns out that it does; proving this fact is the
content of Section 2. This fact is derived from a more general result, which is that the
system of nonlinear Diophantine equations

m
∑

j=1

a1,j =
m
∏

j=1

a2,j

m
∑

j=1

a2,j =
m
∏

j=1

a3,j

...
m
∑

j=1

an−1,j =
m
∏

j=1

an,j

m
∑

j=1

an,j =
m
∏

j=1

a1,j

(3)
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has finitely many positive solutions.
Having established that the number of solutions to (2) is finite, we turn our attention to

finding the actual number of solutions given n. This task is not straightforward; the solution
of systems of nonlinear Diophantine equations is difficult, and most results are fragmentary
and isolated [5]. We defined the sequence A275234 [7] as the number of positive solutions to
(2). We provide a Python script which, given enough time and computing power, will find
the user any desired term of the sequence.

In search of a better method of finding the terms of A275234, we are led to consider
a directed graph which naturally arises from the system of equations. The application of
directed graphs to computing solutions to systems of equations first arose in the work of
Shannon [6] and Mason [3, 4]. A modern exposition on the application of the Coates graph
to solutions of systems of linear equations can be found in [2], [1, Sec. 3.1], and [8, Sec. 6.11].

2 Finiteness of terms

Remark 1. In any solution to Equations (3), replacing ai+1,j with ai,j and a1,j with am,j for
all 1 ≤ i < n and 1 ≤ j ≤ m results in another solution. So does permuting the ai,j with
i fixed. We consider two solutions to Equations (3) to be distinct if one cannot be gotten
from the other by these transformations.

Remark 2. For the remainder of this presentation, unless otherwise stated, we will only
consider solutions to the systems (1), (2), and (3) over the positive integers.

We begin with a result on solutions to Equations (3) over C, then narrow our focus to
positive solutions to Equations (2). As a first step to showing that the number of positive
solutions to (3) is finite, we find an upper bound on the smallest-normed element of any
solution to (3).

Proposition 3. For any solution to Equations (3) over C we have mini,j{|ai,j|} ≤ m
1

m−1 ,

with equality if and only if |ai,j| = m
1

m−1 for all i, j.

Proof. We assume mini,j{|ai,j|} ≥ m
1

m−1 and show equality. Under the hypotheses, for each

i, |∏m

j=1
ai,j| ≥ (minj{|ai,j|})m−1 maxj{|ai,j|} ≥ (m

1

m−1 )m−1 maxj{|ai,j|} = mmaxj{|ai,j|}.

3

http://oeis.org/A275234
http://oeis.org/A275234/a275234.txt
http://oeis.org/A275234


We have
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Hence all terms above are equal, and mmaxj{|ai,j|} =
∑m

j=1
{|ai,j|}, implying |ai,j| =

maxk,l{|ak,l|} for all i, j. Let a = maxk,l{|ak,l|}. We have ma = am, so a = m
1

m−1 .

The proof that the terms of A275234 are finite relies on the insight that, from each row
to the next on the left side of the equations in the system (3), the sum can increase by at
most one. The following lemma establishes this fact.

Lemma 4. If m ≥ 2, ai ∈ N for 1 ≤ i ≤ m, and a1 ≤ · · · ≤ am, then
∑m

j=1
aj ≤

m − 1 +
∏m

j=1
aj, with equality if and only if am−1 = 1. In the case of equality, we have

∑m

j=1
aj = m− 1 + am.

Proof. Define g : Rm → R by g(x1, . . . , xm) =
∏m

j=1
xj −

∑m

j=1
xj. We have g(1, . . . , 1) =

1 − m. Also, ∂g

∂xk
(r1, . . . , rm) > 0 whenever rj ≥ 1 for each j and rl > 1 for some l 6= k.

In particular, ∂g

∂xk
(r1, . . . , rm) > 0 if rj ≥ 1 for each j and rj > 1 for at least two distinct

j. Thus g(a1, . . . , am) > 1 −m if am−1 > 1. For the converse, if am−1 = 1, then
∑m

j=1
aj =

m− 1 + am = m− 1 +
∏m

j=1
aj.

Since the sums in the rows of (3) can increase by at most one from one row to the next,
from no one row to the next can the decrease be as great as the number of rows in the system.
The following two results show that, given this restriction, for each i there are finitely many
choices for ai,1, . . . , ai,m.

Lemma 5. Fix m ≥ 2 and B > 0. Let ai ∈ N for 1 ≤ i ≤ m and a1 ≤ · · · ≤ am.
If

∏m

j=1
aj is sufficiently large (depending on B), then either

∑m

j=1
aj = am + m − 1 or

B +
∑m

j=1
aj <

∏m

j=1
aj.
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Proof. Assume
∑m

j=1
aj 6= am +m− 1. By Lemma 4, am−1 ≥ 2. Let g be as in the proof of

Lemma 4. We have ∂g

∂xj
(a1, . . . , am) ≥ 1, so

g(a1, . . . , am) ≥ g(1, . . . , 1, 2, 2) + (am − 2) + (am−1 − 2) +
m−2
∑

j=1

(aj − 1).

Reorganizing terms, and noting g(1, . . . , 1, 2, 2) = 4− (1 + . . . 1 + 2 + 2) = 2−m, we have

m
∏

j=1

aj −
m
∑

j=1

aj ≥ (2−m) + (am − 2) + (am−1 − 2) +
m−2
∑

j=1

(aj − 1)

m
∏

j=1

aj −
m
∑

j=1

aj ≥ −2−m+ am + am−1 +
m−2
∑

j=1

(aj) +
m−2
∑

j=1

(−1)

m
∏

j=1

aj −
m
∑

j=1

aj ≥ −2−m+ am + am−1 +
m−2
∑

j=1

(aj) + 2−m

m
∏

j=1

aj ≥ −2m+ 2
m
∑

j=1

aj

m
∑

j=1

aj ≤ m+
1

2

m
∏

j=1

aj.

We want m+ 1

2

∏m

j=1
aj < −B +

∏m

j=1
aj, which is true if

∏m

j=1
aj > 2(m+ B).

Corollary 6. If m ≥ 2 and B > 0 then B +
∑m

j=1
aj <

∏m

j=1
aj for all but finitely many

choices of a1, . . . , am ∈ N.

We now unite the preliminary results to prove the main result of the section.

Theorem 7. There are finitely many positive solutions to Equations (3).

Proof. Let {ai,j} ⊂ N satisfy Equations (3). Assume ai,j ≤ ai,j+1 for each 1 ≤ i ≤ n and
1 ≤ j < m. Solving for 0 in each equation in (3) and summing the results yields

n
∑

i=1

(

m
∑

j=1

ai,j −
m
∏

j=1

ai,j

)

= 0. (4)

By Lemma 4, for each i we have
∑m

j=1
ai,j −

∏m

j=1
ai,j ≤ m− 1, so Equation (4) is impossible

if
∏m

j=1
ai,j −

∑m

j=1
ai,j > (m − 1)(n − 1) for any i. Then by Corollary 6, for each i there

are finitely many choices ai,1, . . . , ai,m with ai,m−1 > 1. To complete the proof we show that
there are finitely many choices with ai,m−1 = 1.
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Figure 1: an infinite directed graph

Suppose ai,m−1 = 1 and ai+1,m−1 > 1. Because ai,m = 1 − m +
∏m

j=1
ai+1,j, if ai,m is

sufficiently large, then by Lemma 5 we have
∏m

j=1
ai+1,j−

∑m

j=1
ai+1,j > (m−1)(n−1). That

contradicts Equation (4), so there are finitely many choices for ai,m.
By Lemma 4 and Equation (4), al,m−1 > 1 for some l. So the final case is ai,m−1 = · · · =

ai+k−1,m−1 = 1 and ai+k,m−1 > 1. We know ai+k−1,m is bounded above. Since ai+k−1,m =
(k − 1)(m− 1) + ai,m, the same bound applies to ai,m.

Corollary 8. The sequence A275234 defined by the number of positive solutions to Equations
(2) has finite terms.

3 Finding the terms

The authors created a Python script which computes the nth term of the subject sequence
A275234 (or, at the user’s option, a list of the solutions). While the script was created with
performance in mind, there is no guarantee of optimum performance. The first several terms
are

1, 2, 2, 3, 3, 5, 4, 7, 7, 12, 12, 21, 22, 37, 47, 72, 93, 145, 198, 303, 427, . . .

Computation time becomes an issue soon after this point.
We discuss a potential efficient alternate approach to finding larger terms. Consider the

infinite directed graph in Figure 1. The nodes are the positive integers, and there is an edge
from m to n whenever there exists a pair of positive integers a, b such that ab = m and
a+ b = n. For example, there is an edge from 5 to 6 because 5 · 1 = 5 and 5 + 1 = 6. There
is an edge from 6 to 5 because 2 · 3 = 6 and 2 + 3 = 5. The number of edges originating at
a node n is the number of divisors of n which are less than or equal to

√
n (A038548), and

the number of edges terminating at a node n is equal to ⌊n
2
⌋ (A004526). We call an edge

from m to m− k with k > 0 a chute (of length k) (in analogy with the board game Chutes
and Ladders). The number of chutes of length k is equal to the number of divisors of k + 1
which are less than or equal to

√
k + 1 (A038548).

The significance of the graph is that every closed walk of length n constitutes a solution
to Equations (2). For example, with n = 5 the closed walk 6 → 7 → 8 → 6 → 5 → 6
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corresponds to the solution

6 + 1 = 7 · 1
7 + 1 = 2 · 4
2 + 4 = 2 · 3
2 + 3 = 1 · 5
1 + 5 = 1 · 6

One may consider the infinite adjacency matrix A corresponding to the graph. The
matrix is sparse in the sense that all but finitely many entries in each row and column are
0. In particular, the sum of the ith row is the ith term of A038548, and the sum of the jth

column is ⌊ j

2
⌋ (A004526). The matrix Ak has as its nth diagonal entry the number of closed

walks starting at the node n. In light of the proof of Lemma 5, in computing the number of
closed walks of length k it suffices to find the kth power of the upper-left square submatrix of
dimension 2k + 4. Unfortunately, the walks counted in this way are not necessarily distinct
in the sense of distinct solutions to Equations (2), and so we have only upper bounds on
the terms of A275234. The authors remain interested in finding a combinatorial argument
which bridges the adjacency matrix and the terms of A275234.
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