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Inspired by work of Fu, Reiner, Stanton, and Thiem [2], Cai and Readdy [1] asked the
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Abstract

We give a new ¢-(1 + g)-analogue of the Gaussian coefficient, also known as the ¢-
binomial which, like the original ¢g-binomial [Z] ” is symmetric in k£ and n —k. We show
this ¢-(1+¢)-binomial is more compact than the one discovered by Fu, Reiner, Stanton,
and Thiem. Underlying our ¢-(1 + ¢)-analogue is a Boolean algebra decomposition of
an associated poset. These ideas are extended to the Birkhoff transform of any finite
poset. We end with a discussion of higher analogues of the ¢-binomial.

Introduction

following question. Given a combinatorial g-analogue

where X is a set of objects and a(-) is a statistic defined on the elements of X, when can

X(a) =) "™,

weX

one find a smaller set Y and two statistics s and ¢ such that

X(g)=> ¢™ - (14",

weY
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Such an interpretation is called an ¢-(1+ ¢)-analogue. Examples of ¢-(1 + ¢)-analogues have
been determined for the g-binomial by Fu et al. [2], and for the ¢-Stirling numbers of the first
and second kinds by Cai and Readdy [1], who also gave poset and homotopy interpretations
of their ¢-(1 + ¢)-analogues.

In 1916 MacMahon [3, 4, 5] observed that the Gaussian coefficient, also known as the
g-binomial coefficient, is given by

[Z:|q: Z qinv(w).

wEQn,k

Here Q,, . = &(0" ", 1%) denotes all permutations of the multiset {0"%, 1%}, that is, all words
w = wy -+~ wy of length n with n — k zeroes and k ones, and inv(-) denotes the inversion
statistic defined by inv(wjws - --w,) = [{(,7) : 1 <i<j<n,w; >w,}|. Fuet al. defined
a subset € ; C €2, ;. and two statistics @ and b such that

n
M = 3 g (14 ),
q

!
wEQn,k

In this paper we will return to the original study by Fu et al. of the Gaussian coefficient.
We discover a more compact ¢-(1+ ¢)-analogue which, like the original Gaussian coefficient,
is also symmetric in the variables k£ and n — k. See Corollary 6 and Theorem 12. This
symmetry was missing in Fu et al.’s original ¢-(1 + ¢)-analogue. We give a Boolean algebra
decomposition of the related poset (2, ;. Since this poset is a distributive lattice, in the last
section we extend these ideas to poset decompositions of any distributive lattice and other
analogues.

2 A poset interpretation

In this section we consider the poset structure on 0-1-words in €2, ;. For further poset
terminology and background, we refer the reader to [6].
We begin by making the set of elements €2, 5, into a graded poset by defining the cover
relation to be
uo0lov <uollow,

where o denotes concatenation of words. The word 0" *1* is the minimal element and the
word 1%0"* is the maximal element in the poset (2, ;. Furthermore, this poset is graded by
the inversion statistic. This poset is simply the interval [6, x] of Young’s lattice, where the
minimal element 0 is the empty Ferrers diagram and z is the Ferrers diagram consisting of
n — k columns and k rows.

An alternative description of the poset €2,,  is that it is isomorphic to the Birkhoff trans-
form of the Cartesian product of two chains. Let C,, denote the m-element chain. The

poset €1, is isomorphic to the distributive lattice of all lower order ideals of the product

Ch_i X Cy, usually denoted by J(C)_x X Ci).
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Definition 1. Let ng consist of all 0,1-words v = vjv - - - v, in €y, ;, such that
v SV, V3 S Uy, -y V2gn/2)-1 S U2 ng2)-
Observe that when n is odd there is no condition on the last entry w,. Define two maps

¢ and ¢ on Q, ; by sending the word w = wyws - - - w,, to

o(w) = min(wq, wy), max(wy, we), min(ws, wy), max(ws, wy), ...,

Y(w) = max(wy, wy), min(wy, wy), max(ws, wy), min(ws, wy), ...
The map ¢ sorts the entries in positions 1 and 2, 3 and 4, and so on. If n is odd, the
entry w, remains in the same position. Similarly, the map v sorts in reverse order each pair

of positions. Note that the map ¢ maps ), x surjectively onto the set €27 ;.
We have the following Boolean algebra decomposition of the poset €2, ;.

Theorem 2. The distributive lattice (), has the Boolean algebra decomposition

Qn,k: U [’U,@D(U)].

"
vEQnyk

Proof. Observe that the maps ¢ and v satisfy the inequalities ¢(w) < w < tp(w). Further-
more, the fiber of the map ¢ : Q,, — € ; is isomorphic to a Boolean algebra, that is,

¢~ (v) = [v,P(v)]. =
For v € Q7 ; define the statistic
asCoaa(v) = [{i : v; < vy, odd},
that is, ascoqq () enumerates the number of ascents in odd positions.

Corollary 3. The q-binomial is given by

n )
|:k:| _ Z qan(’U) . (1 + q)ascodd(v)‘ (1)
q

1"
veQn’k

Proof. 1t is enough to observe that the sum of the inversion statistic over the elements in
the fiber ¢~ (v) = [v,9(v)] for v € Q) ; is given by ™) - (1 4 g)25Caalv), O

A geometric way to understand this ¢-(1 + ¢)-interpretation is to consider lattice paths
from the origin (0,0) to (n — k, k) which only use east steps (1,0) and north steps (0, 1).
Color the squares of this (n — k) x k board as a chessboard, where the square incident to the
origin is colored white. The map ¢ in the proof of Theorem 2 corresponds to taking a lattice
path where every time there is a north step followed by an east step that turns around a
white square, we exchange these two steps. The statistic asc,qq enumerates the number of
times an east step is followed by a north step when this pair of steps borders a white square.

Let er(n, k) denote the cardinality of the set €2 ;. Then we have

3



Proposition 4. The cardinalities er(n, k) satisfy the recursion
er(n,k) =er(n — 2,k —2)+er(n—2,k—1)+er(n—2,k) for0<k<mnandn>2,

with the boundary conditions er(0,0) = er(1,0) = er(1,1) = 1 and er(n,k) = 0 whenever
k>n,k<0orn<A0.

Proof. A word in  ; begins with either 00, 01 or 11, yielding the three cases of the recursion.
O

Directly we obtain the generating polynomial.

Theorem 5. The generating polynomial for er(n, k) is given by
Z er(n, k) - 2% = (1 4+ 2 4+ 22)V2 . (1 4 z)n=2n/2]
k=0

We end with a statement concerning the symmetry of the ¢-(1 + ¢)-binomial.

Corollary 6. The set of defining elements for the q-(1 + q)-binomial satisfy the following

symmetric relation:
|Q;~Ibk| = |Qg,n—k|'

Proof. This follows from the fact that the generating polynomial for er(n, k) is a product of
palindromic polynomials, and thus is itself is a palindromic polynomial. O

3 Analysis of the Fu—Reiner—Stanton—Thiem interpre-
tation

A weak partition is a finite non-decreasing sequence of non-negative integers. A weak par-
tition A = (Ay,..., \p_x) with n — k parts and each part at most k where \; < --- < A\,
corresponds to a Ferrers diagram lying inside an (n — k) x k rectangle with column ¢ having
height \;. These weak partitions are in direct correspondence with the set €2, .

Fu, Reiner, Stanton, and Thiem used a pairing algorithm to determine a subset €2 , C
, of 0-1-sequences to define their ¢-(1 + ¢)-analogue of the g-binomial; see [2, Proposi-
tion 6.1]. This translates into the following statement. The set (2] , is in bijection with weak
partitions into n — k parts with each part at most k such that

(a) if k is even, each odd part has even multiplicity,
(b) if k is odd, each even part (including 0) has even multiplicity.
Definition 7. Let frst(n, k) be the cardinality of the set ()], .
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Lemma 8. The quantity frst(n, k) counts the number of weak partitions into n — k parts
where each part is at most k and each odd part has even multiplicity.

Proof. When £k is even there is nothing to prove. When k is odd, by considering the com-
plement of weak partitions with respect to the rectangle of size (n — k) X k, we obtain a
bijective proof. The same complement proof also shows the case when k is even holds. [

Theorem 9. The frst-coefficients satisfy the recursion

fust(n, k) frst(n — 1,k — 1) + frst(n — 1, k), if k is even;
rst(n, k) = L

frst(n — 2,k — 2) + frst(n — 2,k — 1) + frst(n — 2, k),  if k is odd;
where 0 < k <n and n > 2 with the boundary conditions frst(0,0) = frst(1,0) = frst(1,1) =
1 and frst(n, k) = 0 whenever k >n, k <0 orn < 0.

Proof. We use the characterization in Lemma 8. When k is even there are two cases. If the
last part is k, remove it to obtain a weak partition counted by frst(n — 1, k). If the last part
is less than k, then the weak partition is counted by frst(n — 1,k — 1).

When £ is odd there are three cases. If the last two parts are equal to k, then removing
these two parts yields a weak partition counted by frst(n — 2, k). Note that we cannot have
the last part equal to k& and the next to last part less than k since k is odd. If the last part
is equal to k — 1, we can remove it to obtain a weak partition counted by frst(n — 2,k — 1).
Finally, if the last part is less than or equal to k — 2, the weak partition is counted by
frst(n — 2,k — 2). O

Remark 10. For k odd we have the shorter recursion frst(n, k) = frst(n — 1,k — 1) + frst(n —
2, k). However, we use the longer recursion in the proof of Theorem 12.

Lemma 11. The inequality frst(n, k) < frst(n+ 1,k + 1) holds.

Proof. The weak partitions which lie inside the rectangle (n—k) x k and satisfy the conditions
of Lemma 8 are included among the weak partitions which lie inside the larger rectangle
(n — k) x (k+ 1) and satisfy the same conditions. O

Theorem 12. For all 0 < k < n the inequality |2 | = er(n, k) < frst(n, k) = [, | holds.

Proof. We proceed by induction on n. The induction base is n < 3. Furthermore, the
inequality holds when k is 0, 1, n — 1 and n. When k is odd we have that

er(n, k) =er(n —2,k —2)+er(n—2k—1)+er(n—2,k)
<frst(n — 2,k — 2) + frst(n — 2,k — 1) + frst(n — 2, k)
= frst(n, k).



1 1

11 11

11 1 11 1

12 2 1 12 2 1

12 4 2 1 12 3 2 1

13 6 5 3 1 13 5 5 3 1

13 9 8 8 3 1 13 6 7 6 3 1

1412 14 16 9 4 1 14 913 13 9 4 1
1 4 16 20 30 19 13 4 1 14 10 16 19 16 10 4 1
15 20 30 50 39 32 14 5 1 1 5 14 26 35 35 26 14 5 1
1 5 25 40 8 69 71 36 19 5 1 1 5 15 30 45 51 45 30 15 5 1

Table 1: The frst- and er-triangles for n < 10.

Similarly, when k is even we have

er(n, k) =er(n —2,k —2)+er(n—2,k—1) +er(n—2,k)
< frst(n — 2,k — 2) 4+ frst(n — 2,k — 1) + frst(n — 2, k)
<frst(n — 1,k — 1) + frst(n — 2,k — 1) + frst(n — 2, k)
= frst(n — 1,k — 1) + frst(n — 1, k)
= frst(n, k),

where the second inequality follows from Lemma 11. These two cases complete the induction
hypothesis. [

See Table 1 to compare the values of frst(n, k) and er(n, k) for n < 10.

4 Concluding remarks

Is it possible to find a ¢-(1 + ¢)-analogue of the Gaussian coefficient which has the smallest
possible index set? We believe that our analogue is the smallest, but cannot offer a proof
of a minimality. Perhaps a more tractable question is to prove that the Boolean algebra
decomposition of €2, ;, is minimal.

We can extend these ideas involving a Boolean algebra decomposition to any distributive
lattice. Let P be a finite poset and let A be an antichain of P such that there is no cover
relation in A, that is, there is no pair of elements u,v € A such that u < v. We obtain a
Boolean algebra decomposition of the Birkhoff transform J(P) by defining

J'(P)={I € J(P) : theideal I has no maximal elements in the antichain A}.



The two maps ¢ and 1 are now defined as
¢(I)=1—{a€ A : theelement a is maximal in I},
Y(I)=1U{a€e A : IU{a} € J(P)}.

We have the following decomposition theorem.

Theorem 13. For P any finite poset the distributive lattice J(P) has the Boolean algebra
decomposition

IeJ"(P)

Yet again, how can we select the antichain A such that the above decomposition A
has the fewest possible terms? Furthermore, would this give the smallest Boolean algebra
decomposition?

Another way to extend the ideas of Theorem 2 is as follows. Define Q2 ; to be the set of
all words v € (1, satisfying the inequalities

Ur.|n/r|—r+1 < Ur.\n/r|—r+2 <. < Ur.|n/r]-
For 1 <i < |r/2] define the statistics b;(v) for v € Q] ; to be

bi(v) ={j € lln/r]] + vpjori1 + Vpjpia + -+ v, € {i,7 — i} }].
Theorem 14. The distributive lattice 2, ;, has the decomposition
Q= [J OB 087 )

veQdy

Corollary 15. The g-binomial is given by

. - Z inv(v) T ) . r ) e r o)
K, 1 1 2 17/2] '

veqQr q q q

The least complicated case is when » = 3, where only one term appears in the above poset
product. This term is €23, which is the three element chain C5. The associated Gaussian
coefficient is 1 + ¢ + ¢>. Thus Corollary 15 could be called a q-(1 + q + ¢?)-analogue in the
case of r = 3. As an example, we have

6
[3] =14+q¢-(1+q+)°+¢" - 1+q+)°+¢"
q

On a poset level this is a decomposition of J(C5 x C3) into two one-element posets of rank 0
and rank 9, and two copies of C3 x ('3, where one has its minimal element of rank 1 and the
other of rank 4.
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