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Abstract

A linear composition of a positive integer n is a finite sequence of positive integers
(called parts) whose sum equals n. A cyclic composition of n is an equivalent class of all
linear compositions of n that can be obtained from each other by a cyclic shift. In this
paper, we enumerate the cyclic compositions of n that avoid an increasing arithmetic
sequence of positive integers. In the case where all multiples of a positive integer r

are avoided, we show that the number of cyclic compositions of n with this property
equals to or is one less than the number of cyclic zero-one sequences of length n that
do not contain r consecutive ones. In addition, we show that this number is related to
the r-step Lucas numbers.

1 Introduction

Beck and Robbins [4] use generating functions to give an alternative proof of a result by
Robbins [21, 22] regarding the number of r-regular (linear) compositions of a positive in-
teger n. By a (linear) composition of a positive integer n of length k we mean a k-tuple
(λ1, λ2, . . . , λk) ∈ Zk

>0 such that

n = λ1 + λ2 + · · ·+ λk. (1)

Here the numbers λ1, λ2, . . . , λk are called the parts of the composition. By an r-regular
(linear) composition of n with length k we mean a composition (λ1, λ2, . . . , λk) of n such that
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none of its parts are positive multiples of r. A result that appears in Beck and Robbins [4]
and Robbins [21, 22], and which is stated as Theorem 5 in this paper, gives linear recursive
formulas for the number of r-regular linear compositions of n.

In this paper, we state and prove a similar result for r-regular cyclic compositions (see
Theorem 7). To achieve that, we first provide a formula for the number of cyclic compositions
of a positive integer n with length k whose parts belong to a set A ⊆ Z>0. See formula (4)
in Theorem 1. This formula is a generalization of formulas found by Sommerville [23] more
than a century ago (see below).

Cyclic compositions of length k of positive integer n can be defined as equivalent classes
on the set of all linear compositions of n with length k such that two compositions belong
to the same class if and only if one can be obtained from the other by a cyclic shift. If
(λ1, . . . , λk) is a representative of an equivalent class, we denote the class by [(λ1, . . . , λk)]R.
For example, if n = 4, then we have five equivalent classes (cyclic compositions):

(i) [(4)]R, (ii) [(1, 3)]R = [(3, 1)]R, (iii) [(2, 2)]R,

(iv) [(1, 1, 2)]R = [(2, 1, 1)]R = [(1, 2, 1)]R, (iv) [(1, 1, 1, 1)]R.

Given a set A ⊆ Z>0, we denote by cLA(n; k) and cRA(n; k) the number of linear and cyclic
compositions, respectively, of length k of positive integer n with parts in A. We also let

cLA(n) =
n
∑

k=1

cLA(n; k) and cRA(n) =
n
∑

k=1

cRA(n; k).

When A = Z>0, it was proven by MacMahon [16], and probably others before him, that (for
1 ≤ k ≤ n)

cLZ>0
(n; k) =

(

n− 1

k − 1

)

and cLZ>0
(n) = 2n−1. (2)

Similarly, it was proven by Sommerville [23] that, when n is prime and 1 ≤ k < n,

cRZ>0
(n; k) =

1

n

(

n

k

)

.

When n = 2m for some positive integer m and k is an odd positive integer less than n, he
proved that

cRZ>0
(n; k) =

1

2m

(

2m

k

)

.

Sommerville’s [23] results were generalized more than seven decades later by Razen et
al. [20]; also see [2], [7, p. 48], [14], [24, pp. 70–71], and [25]. In these references, it is proven
that (for 1 ≤ k ≤ n)

cRZ>0
(n; k) =

1

n

∑

j| gcd(n,k)

φ(j)

(

n/j

k/j

)

and cRZ>0
(n) = −1 +

1

n

∑

j|n

φ(j)2
n
j , (3)
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where φ(n) is Euler’s totient function at n. (Here the summation ranges over all positive
divisors j of gcd(n, k) in the first sum and all positive divisors j of n is the second sum.)
The numbers (cRZ>0

(n) : n ∈ Z>0) appear in A037306. We generalize equations (3) to the
case when A is any subset of Z>0; see equations (4) and (5) in this paper.

We also prove that the number of cyclic r-regular compositions of n is closely related to
the number of cyclic 0-1 sequences of length n that do not contain r consecutive ones; see
Theorem 7. A 0-1 sequence of length n, say (δ1, . . . , δn) with δi ∈ {0, 1} for i = 1, 2, . . . , n,
gives rise to a cyclic sequence [(δ1, . . . , δn)]R in the same way cyclic compositions were defined
above. For example, there are 4 cyclic 0-1 sequences of length 3:

(i) [(0, 0, 0)]R, (ii) [(1, 0, 0)]R = [(0, 1, 0)]R = [(0, 0, 1)]R,

(iii) [(0, 1, 1)]R = [(1, 0, 1)]R = [(1, 1, 0)]R, (iv) [(1, 1, 1)]R.

The total number of 0-1 cyclic sequences of length n is cRZ>0
(n) + 1. This was proven by

MacMahon [15]. See also Bender [5] and Zhang and Hadjicostas [26].
If in a cyclic 0-1 sequence [(δ1, . . . , δn)]R we identify 1 with a black bead and 0 with a

white bead, then we get a (fixed) necklace with n beads; e.g., see Graham et al. [9, Section
4.9]. In Knopfmacher and Robbins [14], a bijection is given between necklaces of n beads
with k black and n − k white beads, and cyclic compositions of n with k parts. This
bijection, however, does not seem to help in establishing a connection between the number
of cyclic r-regular compositions of n with the number of 0-1 cyclic sequences of length n that
do not contain r consecutive ones, which is one the main topics of this paper. The bijection
in Knopfmacher and Robbins [14] does, however, prove that the number of necklaces with n
beads of which k are black and the rest white is given by the number cRZ>0

(n; k). In addition,
it also establishes MacMahon’s [15] result that the total number of necklaces with n beads
which are either black or white is cRZ>0

(n)+ 1 (where the extra 1 corresponds to the necklace
consisting of n white beads).

The organisation of the paper is as follows. In Section 2, we first provide a formula that
connects cRA(n; k) to cLA(n/s; k/s), where s ranges over the common divisors of n and k. We
also provide a formula that connects cRA(n) to cLA(n/s), where s|n, through a sequence of
integers (gA(n) : n ∈ Z>0), which is interesting on its own right. We provide a generating
function and recursive formulas for this sequence of integers (see Lemma 2). Using these
results, we provide a generating function for the numbers cRA(n) (see Corollary 4), and we
mention that this generating function is reminiscent of the theory in Flajolet and Soria [8].
For the case when A is the set of positive integers that avoid all multiples of a fixed integer,
we remind the reader of a theorem in Beck and Robbins [4] and Robbins [22] that provides
recursive formulas for the numbers cLA(n), and then (in Corollary 6) we proceed to state a
similar theorem for the numbers gA(n). This result involves the generalized Lucas numbers.
In Theorem 8, we correct a result that appeared in Beck and Robbins [4] for the case when
A avoids an increasing arithmetic sequence, and we state a similar result for the numbers
gA(n) in Corollary 9.
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The proofs of most results in Section 2 appear in Section 3 of the paper. Section 4 contains
examples that illustrate the theory and results of this paper, while Section 5 contains some
concluding remarks.

Note that some of the sequences in this paper maybe shifted versions of the corresponding
cited sequences in OEIS [1]. Not all authors agree on what is the first term of each sequence.

2 The main results

The following theorem connects the numbers of linear and cyclic compositions of n with
parts in A, and it allows us to prove our claims in this paper. This result is important
because the theory of enumeration of all linear compositions with parts in A is more well-
established [11, 12] than the corresponding theory for the enumeration of cyclic compositions
with parts in A. (Proofs of the results in this section, which have not been proven elsewhere,
appear in the next section of the paper.)

Theorem 1. The number of cyclic compositions of n of length k with parts in A is given by

cRA(n; k) =
1

k

∑

s| gcd(n,k)

φ(s) cLA

(

n

s
;
k

s

)

. (4)

Also, the total number of cyclic compositions (of any length) of n with parts in A is

cRA(n) =
1

n

∑

d|n

φ(d)gA

(n

d

)

, (5)

where

gA(s) = s

s
∑

k=1

cLA(s; k)

k
for s ∈ Z>0. (6)

The numbers (gA(n) : n ∈ Z>0) are used throughout this paper, and they satisfy some
useful recurrences; see equations (8) and (9) in the lemma below.

Lemma 2. The generating function of the numbers gA(n) is given by

∑

n≥1

gA(n)x
n =

∑

s∈A sxs

1−
∑

s∈A xs
. (7)

For each positive integer n,

gA(n) =
n−1
∑

s=1

gA(s)I(n− s ∈ A) + n I(n ∈ A) (8)

and

gA(n) =
n−1
∑

s=1

s I(s ∈ A) cLA(n− s) + n I(n ∈ A), (9)

where I(x ∈ A) = 1 if x ∈ A, and zero otherwise.
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Since an empty sum is by definition zero, equations (8) and (9) in Lemma 2 give gA(1) =
I(1 ∈ A). This of course agrees with the equation gA(1) = cLA(1; 1) = I(1 ∈ A).

Remark 3. Using the generating function of the numbers cLA(n) (see Beck and Robbins [4]
and Moser and Whitney [18], or see equation (22) in this paper), one can easily show that,
for n ∈ Z>0,

cLA(n) =
n−1
∑

s=1

cLA(s) I(n− s ∈ A) + I(n ∈ A). (10)

The following result is reminiscent of the theory in Flajolet and Sedgewick [7, pp. 27
and 729–730] and Flajolet and Soria [8] about the generating function of cycles of unlabelled
combinatorial structures, but we derive it independently using Theorem 1 and Lemma 2
above.

Corollary 4. The generating function of the total number of cyclic compositions (of any
length) of n with parts in A, i.e., cRA(n), is

∑

n≥1

cRA(n)x
n =

∑

n≥1

φ(n)

n
log

1

1−
∑

s∈A xsn
.

Robbins [22] and Beck and Robbins [4] have shown the following result for the special
case when we count all r-regular linear compositions of n.

Theorem 5. If r is a fixed positive integer and A is the set all of positive integers that are
not multiples of r, then the number of linear compositions of n with parts in A, i.e., cLA(n),
is given by the sequence (fn : n ∈ Z>0) defined recursively through

fj = 2j−1 for 1 ≤ j ≤ r − 1,

fr = 2r−1 − 1,

fj = fj−1 + fj−2 + · · ·+ fj−r for j > r.

Clearly, for r = 1 the sequence (fn : n ∈ Z>0) is a sequence of 0’s. As noted in Beck and
Robbins [4], the case r = 2 gives rise to the Fibonacci numbers, while the cases r = 3 and
r = 4 give rise to one version of Tribonacci and Tetranacci numbers, that is, A001590 and
A001631, respectively. These sequences should not be confused, however, with the Tribonacci
and Tetranacci sequences A000073 and A000078, respectively, which are special cases of the
r-step (or r-generalized) Fibonacci sequences, which are mentioned, for example, in Miles [17]
and Zhang and Hadjicostas [26]. These r-step Fibonacci sequences are first cousins of the
r-step Lucas numbers defined below, which are needed in this paper.

For positive integer r, following Noe and Vos Post [19] and Zhang and Hadjicostas [26],

we may define the r-generalized Lucas numbers (L
(r)
n : n ∈ Z) by

L(r)
n = −1 for n < 0, L

(r)
0 = r, (11)
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and by the recursion

L(r)
n =

r
∑

i=1

L
(r)
n−i for all n ≥ 1. (12)

For r = 1, starting from n = 0, we get a sequence of 1’s, while the case r = 2 corresponds to
A000032, and it is the usual Lucas sequence. Starting at n = 0, the cases r = 3 and r = 4
correspond to A001644 and A073817, respectively.

Corollary 6. Let r be a fixed positive integer and A be the set all of positive integers that
are not multiples of r. Then the sequence

(gA(n) + rI(r|n) : n ∈ Z>0)

satisfies the same r-order recurrence that the sequence (cLA(n) : n ∈ Z>0) satisfies in Theo-
rem 5, but (in general) with different initial conditions. More specifically,

gA(n) = L(r)
n − rI(r|n) for all n ∈ Z>0.

Let ρ
(r)
n be the number of cyclic sequences of length n consisting of 0’s and 1’s that do

not contain r consecutive 1’s. For example, ρ
(3)
4 = 4 because we have the following cyclic

sequences of length n = 4 that avoid r = 3 consecutive 1’s:

(i) [(0, 0, 0, 0)]R, (ii) [(0, 0, 0, 1)]R, (iii) [(0, 0, 1, 1)]R, (iv) [(0, 1, 0, 1)]R.

(To be able to define ρ
(r)
n for any n, r ∈ Z>0, we make the convention that a sequence of

length n with all 1’s contains r consecutive 1’s even if n < r.) For r = 2 and r = 3 the

sequences of numbers ρ
(r)
n appear in A000358 and A093305, respectively.

Using Theorem 1, Corollary 6, and a result from Zhang and Hadjicostas [26], we prove
in the next section the following theorem.

Theorem 7. If r is a fixed positive integer and A is the set all of positive integers that are
not multiples of r, then the number of cyclic compositions of n with parts in A, i.e., cRA(n),
is given by

cRA(n) = −I(r|n) +
1

n

∑

d|n

φ
(n

d

)

L
(r)
d = −I(r|n) + ρ(r)n , (13)

where I(r|n) = 1 if r|n, and zero otherwise.

In other words, the previous theorem says that when r does not divide n, the number
of r-regular cyclic compositions of n equals the number of cyclic sequences of length n
consisting of 0’s and 1’s that not contain r consecutive 1’s. Otherwise, if r divides n, then
c
(R)
A (n) = ρ

(r)
n − 1.

When A is the set of all positive integers that do not include any member of an increasing
arithmetic sequence, say of the form m+ jr for j ∈ Z≥0, where r and m are positive integers
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with m < r, we may derive a result like Corollary 6 above, but not as elegant. This is done
in Corollary 9 below.

Before we do that, we remind the reader of a result in Beck and Robbins [4] about
the number of linear compositions of n with parts that are not members of an increasing
arithmetic sequence of positive integers. Unfortunately, some of the initial conditions in the
recurrence in Theorem 4 in Beck and Robbins [4] are not correct, so we correct them here.
The proof of the corrected Theorem 4, stated as Theorem 8 below, is similar to the proofs
in Beck and Robbins [4], and hence it is omitted; one can also prove it using equation (10)
in this paper. (The notation B − C denotes set difference between the sets B and C.)

Theorem 8. Let r and m be fixed integers with 1 ≤ m < r, and let

A = Z>0 − {m+ jr : j ∈ Z≥0}. (14)

Then the number of linear compositions of n with parts in A, i.e., cLA(n), is given by the
sequence (fn : n ∈ Z>0) defined recursively through

fn = 2n−1 for 1 ≤ n ≤ m− 1,

fm = 2m−1 − 1,

fn =
n−1
∑

i=1

i 6=m

fn−i + 1 for m+ 1 ≤ n ≤ r,

fn =
r−1
∑

i=1

i 6=m

fn−i + 2fn−r for n > r.

Using Lemma 2, we can prove the result below. Here, I[n 6≡ m (mod r)] = 1 when r
does not divide n−m, and zero otherwise.

Corollary 9. Let r and m be fixed integers with 1 ≤ m < r, and assume A is given by
equation (14). Then the sequence (gA(n) : n ∈ Z>0) satisfies

gA(n) = 2n − 1 for 1 ≤ n ≤ m− 1,

gA(m) = 2m −m− 1,

gA(n) =
n−1
∑

i=1

i 6=m

gA(n− i) + n for m+ 1 ≤ n ≤ r,

gA(n) =
r−1
∑

i=1

i 6=m

gA(n− i) + 2gA(n− r) + r I[n 6≡ m (mod r)] for n > r.

There is some similarity between the four equalities in Theorem 8 and those in Corollary 9,
but the two results yield different sequences (for fixed values of m and r). For example, when
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m = 1 < r, the sequence (fn : n ∈ Z>0) in Theorem 8 is defined through

f1 = 0, fn =
n−1
∑

i=2

fn−i + 1 for 2 ≤ n ≤ r,

and

fn =
r−1
∑

i=2

fn−i + 2fn−r for n ≥ r + 1.

On the other hand, the sequence (gA(n) : n ∈ Z>0) in Corollary 9 is defined through

gA(1) = 0, gA(n) =
n−1
∑

i=2

gA(n− i) + n for 2 ≤ n ≤ r,

and

gA(n) =
r−1
∑

i=2

gA(n− i) + 2gA(n− r) + r I(r ∤ n− 1) for n > r.

3 Proofs

In this section we prove Theorems 1 and 7, Corollaries 4, 6 and 9, and Lemma 2 from the
previous section. Before we do that, we illustrate that Theorem 1 works even when A = Z>0.
Equation (4) in Theorem 1 becomes

cRA(n, k) =
1

k

∑

s| gcd(n,k)

φ(s)

(

(n/s)− 1

(k/s)− 1

)

=
1

n

∑

s| gcd(n,k)

φ(s)
n/s

k/s

(

(n/s)− 1

(k/s)− 1

)

=
1

n

∑

s| gcd(n,k)

φ(s)

(

n/s

k/s

)

,

which is the first equation in (3). Also, when A = Z>0, we can use the first equation in (2)
and equation (6) to obtain

gA(n) = n

n
∑

k=1

(

n−1
k−1

)

k
= 2n − 1. (15)

We leave it to the reader to prove the second equation in (15); e.g. use the binomial theorem
and integration. It follows from Theorem 1 that

cRA(n) =
1

n

∑

d|n

φ(d)
(

2n/d − 1
)

=
1

n

∑

d|n

φ(d)2n/d −
1

n

∑

d|n

φ(d),

which gives the second equation in (3) because
∑

d|n φ(d) = n; see Apostol [3, Section 2.3].
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Proof of Theorem 1. Consider an arbitrary circular composition [(λ1, . . . , λk)]R of n with
length k and with parts in A. Place the λi’s of this composition on a circle (i.e., λ1 follows
λn). We define the period h of this circular composition to be the length of the shortest
subsequence of λi’s with consecutive indices that is able to re-produce [(λ1, . . . , λk)]R by
repeating itself k/h times. Because of equation (1), we must have that the positive integer
k/h divides n.

The set of all linear compositions of n with length k and parts in A can be partitioned
into equivalent classes representing all circular compositions of n with length k and parts in
A. These equivalent classes can be classified according to their period h, and each equivalent
class with period h produces exactly h linear compositions of n with length k and with parts
in A. If we denote by cRA(n; k;h) the number of all circular compositions of n with length k,
period h, and parts in A, then

cLA(n; k) =
∑

h|k & k
h
|n

h cRA(n; k;h).

Let s = k
h
, in which case

cLA(n; k) =
∑

s| gcd(n,k)

k

s
cRA

(

n; k;
k

s

)

=
∑

s| gcd(n,k)

k

s
cRA

(

n

s
;
k

s
;
k

s

)

. (16)

The last step follows from the fact that a circular composition of n with length k and period
k/s can be partitioned into s identical circular compositions of n/s with length k/s and
period k/s. Similarly,

cRA(n; k) =
∑

h|k & k
h
|n

cRA(n; k;h)

=
∑

s| gcd(n,k)

cRA

(

n; k;
k

s

)

=
∑

s| gcd(n,k)

cRA

(

n

s
;
k

s
;
k

s

)

.

Letting a = gcd(n, k), n∗ = n/a, k∗ = k/a, and v = a/s, we get

cRA(n
∗a, k∗a) =

∑

s|a

cRA

(

n∗a

s
;
k∗a

s
;
k∗a

s

)

=
∑

v|a

cRA(n
∗v; k∗v; k∗v) (17)

and
cLA(n

∗a; k∗a) =
∑

v|a

k∗v cRA(n
∗v; k∗v; k∗v). (18)

Fixing n∗ and k∗ while varying a (and this can be done because n and k are arbitrary
positive integers with 1 ≤ k ≤ n), we apply the Möbius ‘inversion principle’ on equation
(18); see Graham et al. [9, Section 4.9]. We then get, for v ∈ Z>0,

k∗v cRA(n
∗v; k∗v; k∗v) =

∑

w|v

µ(w) cLA

(

n∗v

w
;
k∗v

w

)

. (19)
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Here µ(d) is the Möbius function at integer d, which equals 1 if d is square-free with an even
number of prime factors, −1 if d is square-free with an odd number of prime factors, and 0
otherwise; e.g., see Apostol [3, Chapter 2].

It follows from equations (17) and (19) that

cRA(n
∗a, k∗a) =

∑

v|a

1

k∗v

∑

w|v

µ(w) cLA

(

n∗v

w
;
k∗v

w

)

=
1

k∗a

∑

v|a

a

v





∑

w|v

µ(w) cLA

(

n∗v

w
;
k∗v

w

)





=
1

k∗a

∑

v|a





∑

w|v

v

w
µ(w)



 cLA

(

n∗a

v
;
k∗a

v

)

.

The last step follows from the associativity of Dirichlet convolutions; see again Apostol [3,
Chapter 2]. Using the formula

v
∑

w|v

µ(w)

w
= φ(v),

which is a standard result from Number Theory (e.g. see Apostol [3, Theorem 2.3]), we get

cRA(n
∗a, k∗a) =

1

k∗a

∑

v|a

φ(v) cLA

(

n∗a

v
;
k∗a

v

)

.

Using the equalities n = n∗a, k = k∗a, and a = gcd(n, k) in the above equation, we obtain
equation (4). The methodology we used above is due to Bender [5].

To prove equation (5) we sum both sides of (4) from k = 1 to k = n:

cRA(n) =
n
∑

k=1

cRA(n; k) =
n
∑

k=1

∑

d| gcd(n,k)

1

k
φ(d) cLA

(

n

d
;
k

d

)

.

Letting t = n/d and ℓ = k/d, and switching the order of summation in the last double sum
above, we get

cRA(n) =
∑

t|n

t
∑

ℓ=1

φ(n/t)

ℓn/t
cLA(t; ℓ) =

1

n

∑

t|n

φ
(n

t

)

t
t
∑

ℓ=1

cLA(t; ℓ)

ℓ
.

Using equation (6), we can easily get equation (5).

Proof of Lemma 2. According to Beck and Robbins [4] and Hoggatt and Lind [13], the
bivariate generating function of the numbers cLA(n; k) is given by

CL
A(x, y) = 1 +

∑

n,k≥1

cLA(n; k)x
nyk =

1

1− y
∑

s∈A xs
, (20)
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which implies
∑

n,k≥1

cLA(n; k)x
nyk−1 =

∑

s∈A xs

1− y
∑

s∈A xs
.

Integrating both sides of the above equation with respect to y, from 0 to z, we obtain

∑

n≥1

(

∑

k≥1

cLA(n; k)

k
zk

)

xn =

∫ z

0

∑

s∈A xs

1− y
∑

s∈A xs
dy = − log

(

1− z
∑

s∈A

xs

)

.

Setting z = 1 in the above equations and differentiating with respect to x, we get

∑

n≥1

gA(n)x
n−1 =

d

dx

[

− log

(

1−
∑

s∈A

xs

)]

=

∑

s∈A sxs−1

1−
∑

s∈A xs
. (21)

(Note that we have used the fact that cLA(n; k) = 0 for k > n.) This proves equation (7).
Also,

(

∑

n≥1

gA(n)x
n

)(

1−
∑

s≥1

I(s ∈ A)xs

)

=
∑

s≥1

sI(s ∈ A)xs.

Multiplying the two power series on the left-hand side of the above equation, and equating
coefficients of xs from the resulting equality, we get

gA(s)−
s−1
∑

t=1

gA(t)I(s− t ∈ A) = sI(s ∈ A),

and this proves equation (8).
Finally, we know from Beck and Robbins [4] and Moser and Whitney [18] that the

generating function of the numbers cLA(n) is

CL
A(x) = 1 +

∑

n≥1

cLA(n) x
n =

1

1−
∑

s∈A xm
. (22)

This of course follows from equation (20) by setting y = 1, i.e.,

CL
A(x) = CL

A(x, y = 1).

Using then equation (7), we obtain

(

∑

s≥1

s I(s ∈ A) xs

)(

1 +
∑

n≥1

cLA(n) x
n

)

=
∑

n≥1

gA(n) x
n,

from which we can easily prove equation (9).

11



Proof of Corollary 4. Using Theorem 1, we have

∑

n≥1

cRA(n)x
n =

∑

n≥1

1

n

∑

d|n

φ(d)gA

(n

d

)

xn.

We want to change the order of summation in the right-hand side of the above equation. We
let n = td, and then we have

∑

n≥1

cRA(n)x
n =

∑

d≥1

∑

t≥1

φ(d)

td
gA(t)x

td =
∑

d≥1

φ(d)

d

∑

t≥1

gA(t)

t
(xd)t. (23)

Integrating both sides of the first equation in (21) from x = 0 to x = z, we obtain

∑

n≥1

gA(n)

n
zn = − log

(

1−
∑

s∈A

zs

)

= log
1

1−
∑

s∈A zs
. (24)

Letting z = xd, it then follows from equations (23) and (24) that

∑

n≥1

cRA(n)x
n =

∑

d≥1

φ(d)

d
log

1

1−
∑

s∈A xsd
,

and this completes the proof of the corollary.

Proof of Corollary 6. We note that equation (8) in Lemma 2 implies

gA(n) =
n−1
∑

s=1

gA(s)I(r ∤ n− s) + nI(r ∤ n).

Note that r ∤ n − s if and only if r ∤ n − r − s, and r ∤ n if and only if r ∤ n − r. Thus, for
n > r,

gA(n) =
n−1
∑

s=n−r+1

gA(s) +
n−r−1
∑

s=1

gA(s)I(r ∤ n− r − s)

+(n− r)I(r ∤ n− r) + rI(r ∤ n)

=
n−1
∑

s=n−r+1

gA(s) + gA(n− r) + rI(r ∤ n)

=
n−1
∑

s=n−r

gA(s) + rI(r ∤ n).

It is then easy to prove that, for n > r,

gA(n) + rI(r|n) =
n−1
∑

s=n−r

[gA(s) + rI(r|s)],

12



i.e., the sequence of numbers (gA(n)+rI(r|n) : n ∈ Z>0) satisfies the same recurrence as the
r-step Lucas numbers described by equations (11) and (12). In addition, if 1 ≤ k ≤ n ≤ r,
then

cLA(n; k) = cLZ>0
(n; k) =

(

n− 1

k − 1

)

except when n = r and k = 1, in which case, cLA(r; 1) = 0. It follows from equation (15) that

gA(n) = 2n − 1− rI(r|n) = L(r)
n − rI(r|n) for n = 1, 2, . . . , r.

Therefore, gA(n) = L
(r)
n − rI(r|n) for all n ∈ Z>0.

Proof of Theorem 7. The equality

ρ(r)n =
1

n

∑

d|n

φ
(n

d

)

L
(r)
d ,

where ρ
(r)
n is the number of cyclic 0-1 sequences of length n that do not contain r consecutive

1’s, has been proven in Zhang and Hadjicostas [26].
The first equality in (13) follows from Theorem 1, Corollary 6, and the fact that

r

n

∑

d|n

φ
(n

d

)

I(r|d) = I(r|n). (25)

We leave it to the reader to prove equation (25).

Proof of Corollary 9. When 1 ≤ n ≤ m − 1, we have cLA(n) = cLZ>0
(n) = 2n−1, which is

the total number of linear compositions of n (of any length) with parts in the set of positive
integers. It then follows from equation (9) that

gA(n) =
n−1
∑

s=1

s 2n−s−1 + n = 2n − 1.

When n = m, we have

gA(m) =
m−1
∑

i=1

s 2m−s−1 + 0 = 2m −m− 1.

For m+ 1 ≤ n ≤ r, the equation

gA(n) =
n−1
∑

i=1

i 6=m

gA(n− i) + n

follows immediately from equation (8).
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When n > r, equation (8) implies

gA(n) =
n−1
∑

s=n−r

gA(s)I(n− s ∈ A) +
n−r−1
∑

s=1

gA(s)I(n− r − s ∈ A)

+(n− r)I(n− r ∈ A) + rI(n ∈ A)

because x ∈ A if and only x − r ∈ A for x > r. Thus, for n > r, by applying equation (8)
again for n− r rather than n, we get

gA(n) =
n−1
∑

s=n−r+1

s 6=n−m

gA(s) + 2gA(n− r) + rI(n ∈ A)

=
r−1
∑

s=1

s 6=m

gA(n− s) + 2gA(n− r) + rI[n 6≡ m (mod r)],

and this completes the proof of the corollary.

4 Examples

In this section, we illustrate the results of the paper for the cases m = 0 < r = 2 and
m = 1 < r = 2, i.e., when A consists of the positive odd integers and the positive even
integers, respectively. Instead of using the subscript A for the quantities cLA(n), gA(n) and
cRA(n), we use the subscript ‘2, 0’ for the first case and the subscript ‘2, 1’ for the second case.
Values of these three quantities for each of the two cases are given in Table 1 from n = 1 to
n = 20.

The generating functions of the three quantities when A is the set of all odd positive
integers are

1 +
∑

n≥1

cL2,0(n)x
n =

1− x2

1− x− x2
,

∑

n≥1

g2,0(n)x
n =

x(x2 + 1)

(1− x− x2)(1− x2)
,

∑

n≥1

cR2,0(n)x
n =

∑

n≥1

φ(n)

n
log

1− x2n

1− xn − x2n
.

The generating functions of the three quantities when A is the set of all even positive

14



n cL2,0(n) cL2,1(n) g2,0(n) g2,1(n) cR2,0(n) cR2,1(n)

1 1 0 1 0 1 0
2 1 1 1 2 1 1
3 2 0 4 0 2 0
4 3 2 5 6 2 2
5 5 0 11 0 3 0
6 8 4 16 14 4 3
7 13 0 29 0 5 0
8 21 8 45 30 7 5
9 34 0 76 0 10 0
10 55 16 121 62 14 7
11 89 0 199 0 19 0
12 144 32 320 126 30 13
13 233 0 521 0 41 0
14 377 64 841 254 63 19
15 610 0 1364 0 94 0
16 987 128 2205 510 142 35
17 1597 0 3571 0 211 0
18 2584 256 5776 1022 328 59
19 4181 0 9349 0 493 0
20 6765 512 15125 2046 765 107

Table 1: Evaluations of various sequences for the cases m = 0 < r = 2 and m = 1 < r = 2.

integers are

1 +
∑

n≥1

cL2,1(n)x
n =

1− x2

1− 2x2
,

∑

n≥1

g2,1(n)x
n =

2x2

(1− 2x2)(1− x2)
,

∑

n≥1

cR2,1(n)x
n =

∑

n≥1

φ(n)

n
log

1− x2n

1− 2x2n
.

By using a symbolic computation package that has calculus and number theory capabil-
ities, one can expand the above six generating functions around x = 0 far enough in order
to obtain the results in Table 1.

Alternatively, we can find recurrences for the first two quantities in each case. For the
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first case:

cL2,0(1) = cL2,0(2) = 1,

cL2,0(n) = cL2,0(n− 1) + cL2,0(n− 2) for n > 2;

g2,0(1) = 1, g2,0(2) = 1,

g2,0(n) = g2,0(n− 1) + g2,1(n− 2) + 2I(2 ∤ n) for n > 2.

Of course the sequence (cL2,0(n) : n ∈ Z>0) is the classical Fibonacci sequence, while the
sequence (g2,0(n) : n ∈ Z>0) satisfies

g2,0(n) = L(2)
n − 2I(2|n) = L(2)

n − [1 + (−1)n] for all n ∈ Z>0,

and it is given by A001350. These numbers are called “associate Mersenne numbers” by
Haselgrove [10] in an article that he published in 1949 in the Cambridge University Math-
ematics Society magazine Eureka. (It is actually one of three sequences that he calls like
that.) The sequence (cR2,0(n) : n ∈ Zn>0) can be calculated through equations (13) and it
appears in A032189.

For the second case, using Theorem 8 and Corollary 9, we find

cL2,1(1) = 0, cL2,1(2) = 1,

cL2,1(n) = 2cL2,1(n− 2) for n > 2;

g2,1(1) = 0, g2,1(2) = 2,

g2,1(n) = 2g2,1(n− 2) + 2I(2 | n) for n > 2.

In this case, it is easy to prove that for all n ≥ 1:

cL2,1(n) = 2
n
2
−1 I(2|n) and g2,1(n) = (2

n
2
+1 − 2) I(2|n).

The sequence (cR2,1(n) : n ∈ Zn>0) can be calculated through equation (5). Obviously,
cR2,1(2n− 1) = 0 for n ∈ Z>0, while the sequence (cR2,1(2n) : n ∈ Zn>0) appears in A008965.

5 Concluding remarks

The various r-step Lucas numbers L
(r)
n , defined by equations (11) and (12), have been studied

extensively and satisfy various combinatorial identities involving binomial coefficients; e.g.,
see Charalambides [6]. When A is the set of all positive integers that are not multiples of

a positive integer r, we managed to express cRA(n) in terms of L
(r)
n through equation (13)

in Theorem 7. It would be nice to find a similar elegant equality for the numbers cRA(n) in
terms of well-studied sequences of integers for the case

A = Z>0 − {m+ jr : j ∈ Z>0}
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when r,m ∈ Z>0 with 1 ≤ m < r.
Finally, it would be nice to find a simple and elegant combinatorial argument to prove

cRA(n) = −I(r|n) + ρ(r)n

when A = Z>0 − {rj : j ∈ Z>0}. Is there a ‘quasi-bijection’ between the number of cyclic
compositions of n that are not multiples of r with the number of cyclic 0-1 sequences of
length n that do not contain r consecutive 1s?
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