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Abstract

We consider weighted averages for the products tgl) (j)--- t,gz) (7) of generalized Ra~
manujan sums t,(;)(j) = D dl gcd(k,j) Ji(@)gi(ki/d)hi(j/d) with any arithmetical func-
tions f;,g; and h; (i = 1,...,n), and derive formulas for several weighted averages
with weights concerning completely multiplicative functions, completely additive func-
tions, and others.
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1 Introduction

Let ged(k, j) be the greatest common divisor of the positive integer k and the integer j, and
let K =lem(ky,...,k,) be the least common multiple of n-tuple positive integers kq, ..., k.
The function ¢x(j), as usual, denotes the Ramanujan sum defined as the sum of the m-th
powers of the primitive k-th roots of unity, namely,

alj)= Y exp (2mm7j) :

1<m<k
ged(m,k)=1

which can be expressed as the well-known identity

>, a)

d| ged(k,5)

with the Mébius function . Anderson and Apostol [5] (also see [6, 7, 14, 17]) first introduced

the sum y
- Y fd)g (3)
d| ged(k,5)

with any arithmetical functions f and g, which is a generalization of Ramanujan’s sum. This
function is said to be the Anderson—Apostol sum. Now, let f be a completely multiplicative
function, and let g(k) = p(k)u(k) with v a multiplicative function. Assume that f(p) # 0
and f(p) # u(p) for all primes p, and let F(k) = (f % g)(k). Anderson and Apostol [5]
derived the identity si(j) = F(k)u(m)wu(m)/F (m) with m = k/ged(k, 7). This is said
to be Hélder’s identity for si(j), which has been considered by many mathematicians and
physicists. For any fixed positive integer r, using the properties of the sum

el 0

Alkan [1, 3] derived exact formulas involving Euler’s and Jordan’s functions for averages of
the special values of L-functions. Téth [18] showed a simpler proof of (1) and established
some identities for other weighted averages of Ramanujan’s sum with weights concerning
logarithms, values of arithmetic functions for ged’s, the gamma function, the Bernoulli poly-
nomials, and binomial coefficients. In a recent paper, Kiuchi, Minamide and Ueda [11] gave
a generalization of some identities due to T6th [18]; they showed that

[r/2]
o ZJ si(J f *g)(k) + : > (r;nl)Bzm(f *id; g - g)(K) (2)

r+1m:0



for any fixed positive integer r,

k

> si(i)logj = (f -logxg - id)(k) + (f * g - Log)(k), (3)

and

S B (1) 520 = 22 s 15 )0, (6)
()07

J

Il
=)

where the function Log d is given by log(d!) and " denotes the gamma function. Here, B,,(x)
[7] (also see [8, 9]) denotes the Bernoulli polynomials defined by the expansion

m=0
where |z| < 27. The number B,, is the Bernoulli number given by B,,(0). The expressions in
(2)-(6) give a generalization of some interesting identities by T6th [12] and Alkan [1, 2, 3, 4].
The function

E(]CI, ceey n Ckl Ckn ) (7)

MZ

J:1

of the product ¢, (j) - - - ¢k, (j) of Ramanujan’s sums for n variables was investigated in the
studies of Liskovets [12] and Téth [20], which has some interesting formulas for combinatorial
and topological applications. The expression (7) has been introduced by Mednykh and
Nedela [15] to handle certain problems of enumerative combinatorics. They showed that
all the values E(ky,...,k,) are nonnegative integers. Furthermore, Téth derived that two
interesting representations [20, Propositions 3 and 9], [19, Corollary 4] for E hold:

Bkt k)= Y 1cm?;;"_'_?fdn)u(%)MM(I;_:) (8)

dilki,...,dn|kn

and



where ¢ is the Euler totient function. He also noted that all values for E are nonnegative
integers and that E is multiplicative as a function of several variables. Let E denote a
generalization of E defined by

K
Eky,. .. k) Z sk, (7). (10)
Then T6th [20, Proposition 19] deduced that two formulas for E hold:

~ dy)--- f(d, ky
E(ky, .. k)= ) IJ(:ED(C)h?..J.CEdn))g(d_l).“g

dilki,....dn|kn

and

B
K

Eky, ... ky) = = > i (d) s, (d)g (g) . (12)

d|K

He also showed that if f and ¢ are multiplicative functions, then (10) is multiplicative as
a function of several variables. The weighted average of the products of Ramanujan’s sum
with weight concerning the function id, for any fixed positive integer r defined by

K

Sy kv k) = o D3k () 0, () (13)

Jj=1

was considered by Té6th [18, Proposition 7], who derived the following identity

2K

Sr(klv ) kn) =
L3

1 r+1\ B d ---dy i
+7"-|—1m220< 2m )sz Z 10m(d1,-~7dn)1_2mﬂ <d_1) o

dllkl ----- dn|kn

(14)

(&)

He presented a multivariable generalization of (1) connected to the orbicyclic arithmetic
function, discussed by Liskovets [12] and Téth [20]. Substituting » = 1 in (14), it follows

that

Sl(kla'”)kn): 2K 2 )

which was given by Téth [18, Corollary 2].

For any arithmetical functions f;, g; and h; (i = 1,2,...,n), we define s,(:i) (7) and t,(ji) (7)

by .
Y fild)g (%) and #)(j)= > fild ( ) (é)
j d| ged(ki,j5)

d| ged(ki,7)



respectively.

The first aim of this study is to derive some identities for weighted averages of the product
t;? (7) - -t,(;;) (7) with weight function w,, completely multiplicative, completely additive, and
others, for any fixed positive integer r, namely

Up(kr, - k) = > w, (OED () -+ 187 () (15)

Jj=1

This sum is a generalization of some of the identities for weighted averages mentioned by
Alkan [2], Liskovets [12], T6th [18, 20] and Kiuchi, Minamide and Ueda [11]. To our knowl-
edge, we derive some new and useful formulas in Theorems 1, 6 and 10. This study then
aims to establish some identities for the weighted averages of the product 3,(:1) (j)--- s,(;z (7)
with weights concerning the gamma function, binomial coefficients, and Bernoulli polynomi-
als, which provide a generalization of some interesting identities discussed by Téth [18] and

Kiuchi, Minamide and Ueda [11].

Notations. We use the following notation throughout this paper. For any positive integer
n, the functions id and id, as well as the unit function 1 are given by id(n) = n, id,(n) = n?
for any real number g and 1(n) = 1, respectively. The symbols * and - denote the Dirichlet
convolution and the ordinary product of arithmetical functions, respectively. The function
¢s(n) defines the Jordan function by (ids * p)(n) for any real number s.

2 Some formulas for U,(ki,..., k)

We shall evaluate the function U,.(ky, ..., k,). The weight function w, of U,(k,...,k,) only
deals with completely multiplicative functions and completely additive functions, and we
introduce a simple proof of (15) and some useful formulas in Theorems 1 and 6. Moreover,

we shall derive some identities of the weighted averages of the product s,(gll) (j)--- 3,(;;) (7) with
weights concerning the gamma function, binomial coefficients, and the Bernoulli polynomials.

Theorem 1. Let fi,...,fu, 91,---,9n, and hy,..., h, denote any arithmetical functions,
and let

U, (ki ... k)

S, %t (5)n(5) - 5 s () (1)

di| ged(k1,9) dn | ged(kn,j) "



If w, 1s a completely multiplicative function, we have

Ur(ki, ... ky)
kq k,
= Z fidi)g a o fuldn)gn 1 wy(lem(dy, ..., dy)) ¥
dy k1 i i ! "
o (@)
e lem(dy, ..., d,) lem(dy, ..., dy,)
(DA L)-hy L),
" ; wrlt) 1< dy ) ( dn
and if in addition, hy, ..., h, are completely multiplicative functions, then
Up(ki, ... kn)
k lem(dy, ..., d, ky,
=Y At () g (b)) g (B
AL ),
I (dK an)
1 e
X hn ( Cm(dlc’l ’d”)> w, (lem(dy, ..., dy)) we(Dhy (1) -y (1)
" =1
If w, 1s a completely additive function, we have
Ur(kla >kn)
ky ky,
= D h@a () falda)ga (7 ) wellem(ds, . dy))x
1|1 sdon [ ! n
I (dK dn)
y Treees " hl lcm(dl,., ,dn)l h,n lcm(dl,...,dn)l
d1 dn
1=1
k kn
dy k1 s [ ! n
I (dK dn)
e lem(dy, ..., d, lem(dy, ..., d,
X wr(l)h‘l Cm( = 7 )l crrlin Cm( = : )l 9
=1 dl dn

(16)

(17)

(18)



and if in addition, hy, ..., h, are completely multiplicative functions, then

U (kv k) (19)
= Y fld)g (%) hy <1€m(dlc’i'l' : ’dn)) - Fu(dn)gn (2—2) h (1cm(d1(;7.1. : ’d”)) x

dl |k31 ----- dn|k5n

Remark 2. The formulas (16) and (17) immediately imply a generalization of the two for-
mulas (8) and (11). We substitute w, =1, fi = -+ = f, = f, g1 =+ = g, = g, and
hy =---=h, =11n (16) to obtain the formula (11).

The formulas (16)—(19) give an analogue and a generalization of result of Téth [22,
Proposition 1]. For any positive integer k, Kiuchi, Minamide and Ueda [11] recently showed
that if w, is a completely multiplicative function, then the identity

Zwr i) = (f - wn g W)(K) (20)

holds with W (d) = 3¢ _ w,(m)h(m), and if w, is a completely additive function, then the
identity

ZwT (i) = (F - w, v g - HY(k) + (f * g W)(k) (21)

holds with H(d) = an:l h(m). Thus, the formulas (16) and (18) give a generalization of
(20) and (21), respectively. Substituting w, = id, and hy = --- = h, = 1 in (17), w, = id,
and g = --- =g, = 1 in (16), and w, = id, and f; = --- = f; = 1 in (16), we derive the
following formulas (22), (23), and (24), respectively.



Corollary 3. Let the notation be as above. Then we have

r (1 .
Wzy s (7)1 () (22)

S (fr an) (k) - (e g0) ()

1 & 41\ By fild)- - fuld) (R Fn
+r+1;<2m>[(2m 2. (_>”'g”( )

lem(dy, . .. ,dn)lfzmgl dy

di|ged(k1,5)

ga > fild)h (—) -dnlz fn<dn>hn(i> (23)

ged(kn,j)
= > fld) faldy)lem(dy, . dy) %
dy k1 ey o
lem(dy,..., dn,)
lem(dy, ..., d,) lem(dy, ..., d,)
I"h L) hy l
<% () (M
and
ijrzgﬁhi...zgk_”hi (24)
— \d) T\ M \dn) "\,
J=1 " di| ged(k1,5) dn|ged(kn,j)
k k.,
= Z g (=) g (22 ) lem(dy, ..., dy) %
dy d,
dy k1 sy | o
lem(dy,..., dn,)
lem(dy, ..., d,) lem(dy, ..., d,)
I"h L) hy L.
<% () (M

The formula (22) also gives a generalization of the formula (2)

2). As an application of
Corollary 3, we give some formulas for weighted averages of the products of the arithmetical
functions of Anderson—Apostol sums.

Example 4. Let the notation be as above. Then we have

1 - . .
WZ] ged(kr, j) - - - ged(kn, ) (25)
j=1

:k1]€2"'/€n+ 1 WZQJ r+ 1Y\ By, Z P(dy) - - o(dy)
2K r+1m:0 2m lem(dy, ..., d,) =2m’

(26)



K

;QT ZJZr Z ¢(dl ) . Z (biicfnr) (27)

Jj=1 d1] ged(k1,9) dy|(kr,5)
_ 1 Z o(dy) -+ - o(d,)
di--d,
dilky,....dr|kr
K "\ (2r + 1\ By, o(dq) o(d,) 2m—1
1 di,...,d.)"
+2r+12(2m>K2m Z . d, cm(dy, ..., dy)
m=0 ikt dy|kr
K
1 fl(dl) fu(dy)
r+n
Krntl Zj Z d, Z d (28)
j=1 dy| ged(k1,7) dn|(kng)
fl dl fn dl
-y kil Dl
d1|k‘1 dn‘kn

r4+n

lem(dy, ..., d,)*"!

|
1 r+n+1\ By,

- dy) - f, (d, 7

+r+n+1mzo( om )K2m 2. i) o (d) ==

k1, o
and
K
1 . kY 1 ko\ 1
Jorndl Z] Z g1 (d_1> d_1 T 9n (d_) 0 (29)
i=1 di] ged(k1.9) dn| ged (kn.) o
1 1 1
T oK (91 * ﬁ) (k1) - (gn * ﬁ) (kn)
2 i1 By iy ko lem(ds, ..., dy)2m=1
+r+n+1z ( 2m )sz Z gl(d_l)g”<ﬁ) dy---dy .
m=0 1K1yt i
We substitute f{ = --- = f, = ¢and ¢y = --- = g, = 1 in (22) to obtain (25) using
(px1)(ged(ks, j)) = ged(kiy j) (i =1,...,n). The formula (25) is an analogue of the identity
1 o(dy) - - $(dy)
— d(ky, ) - - ged(kn, j) = . i
7o 2 ged(kr. )+ ged (. j) 2. lem(ds, .. ., dy) (30)
Jj=1 dy|k1,eesdn |kn

20, Proposition 12], [21, Corollary 2]. The formula (30) was mentioned by Liskovets [12],
and it was considered by Deitmar, Koyama and Kurokawa [10] in a special case, investi-
gating analytic properties of Igusa-type zeta-functions. Using the arguments of elementary
probability theory, the explicit formula for the values of (30) derived in [10] was re-proved
by Minami [13] for the general case my,...,m,. We substitute n =r, f; = --- = f, = ¢



and hy = --- = h,, = id in (23) and use (51) below to obtain (27). The formulas (23) and
(24) imply a generalization of two formulas derived in [11], namely

kiij > fdh (fl) =X/ (S) %ZWW

j=1 d| ged(k,5)

and . ;
LS AT E] 9(d) .
7 Z] Z 9 (a) h (;l) = dr Zh(l)l g
j=1 d| ged(k,j) d|k =1
which follow from (20). Substituting h; = --- = h,, = id in (23) and (24), respectively, and
using (51) below we easily obtain the two formulas (28) and (29).

We shall evaluate some identities of weighted averages for the product t,(jf o -t,(j? of
the weight w, with the completely additive function. We set w, = log and substitute
hy =---=h,=1in (18), 91 = =g, = 1in (18), and f; = --- = f, = 1 in (18) to
obtain the following formulas (31), (32), and (33), respectively.

Corollary 5. Let the notation be as above. Then we have

Zs(” -5 (j) log j (31)
k1 kn\ loglem(dy, ..., d,)

pr— K —_— ... JES—

2. il (dl) Jn(dn)gn (dn) lem(ds, ..., dy)
dy Ky ,rd e
k1 kn K
ML n !
" d kzd Ik fildan <d1) ol ) (dn) o <1Cm(al17 . .,dn))’

élogj > fild)h (dil) e faldy) n( n) (32)

di| ged(k1,5) dn | ged(kn,j)

— Z fi(dy) -+ fu(dy)loglem(dy, . .., d,) %

d1lk1 ..., fin
lem(dy,..., dn,)
lem(dy, ..., d,) lem(dy, ..., d,)
h l I, l
S G ) B G
ﬁ
e lem(dy, ..., d,) lem(dy, ..., d,)
+ Y fldh) - faldn) h1< i l) --~h1( s z) log
dylky,....dn|kn =1

10



and

K ‘ .
. kl J kn J
S S oa(@)n(n) - 2 e(@)e() e
j=1 di] ged (k1 J) dn|ged(kn,j)
k kn
= Z [} - “gn | = | loglem(dy, ..., d,)x
dy d,
d1lk1,e..,dn | kon
Kk
el ) lem(dy, ..., dy) lem(dy, ..., d,)
X hy y l)-h, g [
=1 1 n
kl kn
+ > @ (d—1> © e gn (d_n> x
d1lk1,e..rd kin

NNgkis

| |
x hy ( em(ds, ’d”)z> . ( Cm(dlc’l ’d")l) log [.

(31) implies a generalization of (3). (32) and (33) give a generalization of the formulas

Zlogy > s@n(5) = (¢ ogsm)) + (7 D)

d| ged(k,j)
and

Zlogj Z) (S)

d| ged(k,j

)-
0 (5) = towsa )00+ (129 W)

with I(d) = 3%, h(D)l, H(d) = % _ h(m) and W(d) = 3¢ _ w,.(m)h(m). These two
identities immediately follow from (21).

Next, we shall evaluate the function U,(ky,...,k,), which is another representation of
(16) and (18). Using the method of Téth [20], we have the following formulas.

Theorem 6. Let ki, ..., k, be any positive integers and let K = lem(ky, ..., k,) be the least

common multiple of n-tuple integers ki, ..., k,. If w, is completely multiplicative function,
then

Uty k) = (w0t 5 W) (K) (34)
with

S

(ld) 1

and if w, 1s a completely additive function, then

Uty k) = (w8 60 5 @) () + (¢ - 10 5 W) (K. (35)

11



Remark 7. We substitute w, =1, fi=---=f,=id, g =--- =g, =pand hy = --- =

h, = 1 in (34) to obtain (9), and w, = 1,f; = --- = f, = f,g1 = -+ = g, = g and
hy = --- = h, = 11in (34) to obtain the formula (12). The formulas (34) and (35) are an
analogue of (20) and (21), respectively.

We substitute w, = id and hy = --- = h, = 1 in (34) and use (54) below to obtain the

formula (36), which is a generalization of (14). We also substitute w, = log and h; = -+ =
h, =1 in (35) and use (52) below to obtain the formula (37).

Corollary 8. Let the notation be as above. Then we have

= Zy St (7) - 510 (5) (36)
Lo gy sy 4 R K QNES Lf " By 6o (d)
2 k1 kn ,',,_'_1 d‘K k1 d Skn d —~ 9 2m¥1—-2m
and
Zs(” -5 (j) log j (37)
(K d
= (s, sy - log #¢) (K) + ) sf! (—) eosp (E)Z#(é’) Log —
d|K eld
) (K ) (K log p
d|K pld

where Logd is given by log(d!).

As an application of Corollary 8, we provide two formulas for the weighted averages of
the product ged(ky, j) ged(ka, j) - - - ged(ky, j) of the ged’s.

Example 9. Let the notation be as above. Then we have

K
1 o . .
e D d" ged(hyg) - ged (k) (38)
j=1

1
= Egcd(th) ged(ky, K)

Lr/2)
K r+1
E ng (kh > e ng <kn7 E) m§:0 ( om, )B2m¢12m(d)7

d\K

12



and

K
> ged(ky, 4) - - ged(kn, ) log (39)
=1
K
= 7 scd (k) - scd (ki ) (o ) (3)
K
+ ged | ki, — K -+ ged (e Log—
d
K eld
K K logp
d| K pld
We substitute w, =1id,, fi =+ = f,=¢ and gy = --- = g, = 1 in (36) to obtain (38),
which is a generalization of Téth’s result [20, Proposition 14]:
1« , K
7 >_ged(kj) - ged(kn, ) ded d, k1) -+ ged(d, ka)o | — )
j=1 d|K
We also substitute w, =log, fi =---= f,=¢and gy = --- = g, = 1 in (37) to obtain (39).

Lastly, we shall consider some weighted averages of the product s( )( J)- --s,(;z) (j) with
weights concerning the gamma function, binomial coefficients, and Bernoulli polynomials.
To state Theorem 10, we use the well-known multiplication formula of Gauss—Legendre [8,
Proposition 9.6.33] for the gamma function

() -2

for any positive integer n, and the binomial formula [22, (27)]

1A ST ) S S

Jj=1

for any positive integers n and r. Furthermore, we use the well-known formula for the
Bernoulli polynomial [8, Proposition 9.1.3]

k—1 .
J B,
By (z) = (42)

J=0

for any positive integer k.

13



Theorem 10. Let ky, ..., k, be any positive integers and let K = lem(ky, ..., k,) be the least
common multiple of n-tuple integers ki, ..., k,. Then we have

> s () s () log T (i)

: K (43)
7=1
_ / fl(dl)fn(dn) kl kn
= Klogvar lem(ds, ..., dy) P \a, ) 9\ 4,
dilkiy..., dn|kn
= (fixg)(F1) - (fu * gn)(kn) log V21 K
k k.
+ Y fuld)g (d—1> e ful(dn) gn (d_n) log v/lem(dy, . . ., dy),
dilki,..., dn|kn
K
K n
S (5)sti s ()
j=0 J
— oK ) eg, (22
2. lem(dy, . dy) P\ ) \a, ) "
dilk1,....dn|kn
lem(dy,...,dn) Ir
— 1) Tem(dy,..dn) K
D DENC) O em(dy, .. dy)’
=1
and
K—-1 j
1 . n), -
B () 0 5L (45)
=0
_Km_1d|k2d|k lem(dy,. ... dy) = \a, ) I \a, )

As an application of Theorem 10, we give three formulas for weighted averages of the
product ged(ky, j) ged(ka, 7) - - - ged(ky, 7) of the ged’s.

Example 11. Let the notation be as above. Then we have

K :
Z ged(ky, j) - - - ged(ky, j) log T (i>
j=1

s (46)

dy)---o(d, 1
= KlogV2nr Z 1?511(;1, . gbfdn)) i Z

—klkg"'knlOgVQﬂ'K,

o(dy) -+ o(dy) loglem(dy, . .., dy)

14



> (K) ged(kr,7) - ged(Fn, ) (47)

lem(di,...,dn)
lem(dy, ..., d,) lem(dy, ..., d,)
|1y Ko =1
and
g (2 B O(c) - 9(d)
B .. 1 — m 1 n . 4
( ) ng kl, ) ng(knaj) Fm—1 Z lcm(dl, ' .,dn>17m ( 8)
Jj=0 dy|k1yesdn |Fn
Wesubstitutefl:...:fn:¢andgl:..-:gn:]_in(43>andflz...:fn:¢
and gy = -+ = g, = 1 in (44) to obtain (46) and (47), respectively. We also substitute
fi=-=fo=¢and g =--- =g, = 11in (45) to obtain (48), which is an analogue of (30).

3 Proofs of Theorems 1, 6, 10 and Corollaries 3, 5, 8

Proof of Theorem 1. Since

W) = > fild) ( ) <di> (i=1,2,...,n),

d;| ged(ki.j)
we have
Ur(kla R kn) (49)
k AN j j
1 n .
= Y nwa () hn () X e () (4)
dffr-..sdnlkn 4117 dnls
k kn
= > hld)gi (5 ) falda)gn (55 X
dl dn
di |k ek
lem(dy,..., dn)
lem(dy, ..., d,) lem(d,, ..., d,)
X ; (Lem(dy, ..., dy)) by ( 7 z) hn( N l
We use the completely multiplicative function w, in (49) to obtain
Ur(ki, ... k) (50)
ky ky,
= > fild)g; o) falda)gn () we (lem(dy, - dy)) X
1 [ty o ! "
T
R lem(dy, ..., d, lem(d,, ..., d,
x wn (1) hy (L) N Clemldn o dn)
=1 dy dy,

15



and if hq,..., h, are completely multiplicative functions, (50) gives

Uy (ki, ... k)

_ Y s (S—i) . (lcm(dlc,l.l. : ,dn)) o Foldn) g <S—:) X

Similarly, as in the proof of the above, using the completely additive function w, in (49), we
have the identity (18), and if hq, ..., h, are completely multiplicative functions, we establish
the identity (19). This completes the proof of Theorem 1. O

Proof of Corollary 3. We substitute w, =id, and hy = --- = h,, = 1 in (17) and use
L5

N
N” 1 r+1
§ "= § Bay, NTH172m 51
m 5 +r+1 ( ) 9 (51)

2m

for any positive integer N > 1 [8, Proposition 9.2.12], [9, Section 3.9] to obtain

K

(1 . n .
ST G) s ()
j=1

= X e () o (5 )i, duy r
1|kt senosd | Kon ! K -1
ky by )
= Z fildi)g 7 fo(dn)gn 1 lem(dy, ..., d,)"
d1|k1ensdn |k 1 n

1 K o1 r+1 K e
X o + BQm
2 \lem(dy, . ... dy,) r+1 2m lem(dy, ..., dy,)

~ (frxg)(ka) - (fu *x gn) ()

_ KT
2
K (41 B fild) - fuld) (K 2
* r+1 Z 2m ) K2m Z lem(d d )1—2"191 a,) I \a, )
m=0 1K1 yooosdn i 1re-esBn 1 n
which proves (22). We substitute gy = --- = ¢, = 1 and w, = id,. in (16) and f; = --- =
fn =1 and w, = id, in (16) to obtain the formulas for (23) and (24), respectively. O
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Proof of Corollary 5. We substitute w, = log and h; = --- = h,, = 1 in (18) to obtain
K
D s (@) s () log
j=1

B k1 k., \ loglem(dy,. .., d,)

dilki,....dn|kn

dy [k oonpdln | =1
kq k. \ loglem(dy,. .., d,)
- K d L) f(d)g [
Z fl( 1)91 (dl) f ( )g (dn) lcm(dl, o ,dn)
dy ey yoonpdln |
ky ky, K
d — ) fuld)gn | — )1 L.
+ Z fi(di)g: (dl) fa(dn)g (dn) 0g (lcm(dl,...,dn))
dy [kt yoeesdn | Fon
Furthermore, we substitute g; = --- =g, =1 and w, =login (18) and f; =--- = f, =1

and w, = log in (18) to get the formulas (32) and (33), respectively. O

itive integers ki, ..., k,. Note that ¢;(j ) k(ged(k, j)) for any positive integers k and j.
Since ged(ged(j, K), k ) = ged(j, ged(K, k;)) = ged(g, k;) for any i € {1,2,...,n}, we observe
that t(i) (7) is equal to ¢l )(gcd( J, K)). If w, is a completely multiplicative function, we have

)
Proof of Theorem 6. Let K =lcm(ky,. .., ky,) be the least common multiple of n-tuple pos-
=1

U kl?"'a Zw'r ng j?K))tl(gZ)(ng(.]7K))

K
K
= w10 > w(l)
gcd(;:%l):l

K
K\ o (K w(KY <
e (B)e(s) £ () § o
dK scd(id)=1
which completes the proof of the formula (34). Similarly, as in the proof of (34), we have
(35). O

To prove Corollary 8, we need the following formula.

Lemma 12. For any positive integers N > 1 and r, we have

N
lo
> 10gl—2u< )logcw o(N) Y L (52)
gcd(ll,:]\lf) 1 d|N p‘N p

17



and

Proof. Using the well-known identity

Z@bgd: _¢(N)Z log p
d N

d|N pIN

8, Exercise 10.8.45 (c)], we have

N N/d
> logl=> u(d)> log(dj)
gcd(ll,:]\lf)zl dIN =1

— Zu(d)log (%)!—FNZ@logd

dIN d|N
N |
= S utyton ()1 60 3
dN o P

which completes the proof of (52). From Theorem 12.15 in [7], we have
. 1
3 ( ’ )Bm 0
m=0 m

It follows that

r+1 r+1 r+1 r+1
B B By+ ... Byjz) = 0.
(o) (1) (5 ) (g )

Since By = 1, B; = —% and Bs,,+1 = 0 for any positive integer m, we obtain the formula

(53). 0

Proof of Corollary 8. We substitute w, = id, and hy = -+ = h, = 1 in (34) and use the
formula [16, Corollary 4]

5!

r+1 !
Z m’ = 7{V+ 1 Z_O (T i 1) Bop®1-om(N) (54)

2m

18



for any positive integers N > 1, and r to obtain

Z] Skl Skn)(j>
K/d
=Y ds)( @) YT

d K !
l

gcd( :%1) 1
[r/2]
e (D) (n) r+1 K
—K‘Skl (K)Skn T—{—l;Skl . n(d)zo(zm )Bgm¢1_2m (E
d<‘K "=
lr/2]
_ per D (n) m) (K r+1
_K Skl (K)Skn T+1;{:8k1 (—> ”.Skn (E) Z:U < 2m )B2m¢12m (d)
d‘>1 m=
lr/2]
r (1 n KT‘ 1 n 7""‘ 1
= K"s\(K) - s (K) - el sSW(K) - s (K) > ( o )Bgm
m=0
.. .8 R m —9m .
r -+ 1 e k:1 d kn d — m 2 1-2

Using the well-known identity (53), we obtain the formula (36). We also substitute w, = log
and hy = --- = h, = 1 in (35), and use (52) to obtain

K
2511 )logj

7=1
o (K d
= ol o)+ S22 () ool () St ()
K eld
(1) K (n) K logp
d| K pld
[
Proof of Theorem 10. Using (40) and substituting w,(d) =logI" (£) and hy = -+ = hy =

19



n (49); we haVe

(1) N (j)logT i
;Skl ]) og (K>

d|k1ennydn o I=
k ky,
= Z fl(d1>gl - e fn(dn)gn — | X
dq d,
da ke sdn |
X K log V21 — log V27 K + log \/lcm di,...,dy)
lem(dy, ..., dy) Y
fildy) - fuldn) — (ka K
— Klog V2 MY g (R
ogVar lem(ds,...,d,) \a, ) 9\ 4,
dy k1. rdn [
_IOgVQWKZfl(dl)gl (_) an n n( )
dilk1 dp|kn n
+ > Ald) k o fuldy) B 1o Viem(d d,)
1\d1)g91 dl n\Un)gn dn g 1y---5,Un),
dy k1 ,ee.rdi o
which completes the proof of (43). We set w,(j) = (I;) and hy = --- = hy = 1. Using (41),
we have
K
K n
> (%)t s
=0 7
T,
Ky I W K
— d L)t (d)g, [
2. h(@a <d1) Jn(dn)g (dn) (lcm(dl,...,dn)m)
d1|k1 ..... dn‘kn m=0

K fildy) -~ - fo(dy)
’ Z lem(dy,...,d,) X

_ .. .
di|k1,endn|kn lem(dy, . .., d,)
lem(dy,...,dn)
k1 ky, b ; i
X - n -5 —1 lem(dq,..., dn) ’
91 (dl) (dn) ; (—1)Temt@ cos ETCAN
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hence, we obtain (44). Setting w,(j) = B, (£) and hy = --- = by = 1 and using (42), we
have
K-1 j
1)/ . n), -
B, (§> sk () s ()
=0
Ic (dK a1
Ky ko) R lem(dy, ..., d,)
dy [kt yooerdln | Fon 1=0
B B h() (Y
Km—T lem(dy, ..., dy)—m " \a, ) \a, )
da [kt yennydln o
Hence, we prove (45). ]
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